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Multiclass Counterfactual Explanations Using
Support Vector Data Description

Alberto Carlevaro , Marta Lenatti , Alessia Paglialonga , and Maurizio Mongelli , Member, IEEE

Abstract—Explainability has become crucial in artificial intel-
ligence studies and, as the complexity of the model increases, so
does the complexity of its explanation. However, the higher the
complexity of the problem, the higher the amount of informa-
tion it may provide, and this information can be exploited to
generate a more precise explanation of how the model works.
One of the most valuable ways to recover such input–output
relation is to extract counterfactual explanations that allow us
to find minimal changes from an observation to another one
belonging to a different class. In this article, we propose a novel
methodology to extract multiple counterfactual explanations
[MUltiCounterfactual via Halton sampling (MUCH)] from an
original multiclass support vector data description algorithm. To
evaluate the performance of the proposed method, we extracted
a set of counterfactual explanations from three state-of-the-art
datasets achieving satisfactory results that pave the way to a
range of real-world applications.

Impact Statement—When a system is analyzed by artificial
intelligence, the inherent models are posed to the attention
of domain experts, thus delegating further possible actions.
Counterfactual explanations, on the other hand, directly suggest
actuation on the system. Counterfactual control still remains
under experts’ supervision, but the system improves its level of
autonomy. The long-term goal is to make the artificial intelligence
(AI) model aware of how to affect the environment properly
(both in terms of performance and safety). Examples may
include: maneuvering of autonomous cars, clinical diagnosis,
and finance. The proposed approach generalizes counterfactuals
intelligibility and control to the multiclass case. The validation
over practical scenarios (e.g., the FIFA dataset) corroborates both
control precision and quality of counterfactual explanations, thus
increasing the readiness level of the approach.
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I. INTRODUCTION

A. Background and Rationale

1) eXplainable AI: Over the past decade, artificial intelli-
gence (AI) models have achieved astounding levels of accuracy
in countless application areas. However, the pervasive presence
of opaque or black box architectures can become an obstacle
to their application in everyday life. This opacity in decision-
making has motivated the investigation of new techniques that
provide deeper insights into the inner logic of AI models, i.e.,
eXplainable AI (XAI) algorithms [1]. The rapid spread of XAI
techniques has been mainly driven by the demand to increase
the transparency of AI models [2] and the need to allow humans
to actively interact with these models. Among the various tech-
niques available, counterfactual explanations [3] have recently
gained attention thanks to their capability to explain why a
model makes a certain decision, given a specific observation.
More specifically, counterfactual explanations describe what
should be changed in a certain input sample (the factual) to
obtain a different model decision.

2) Controllability: Counterfactual explanations can be used
to introduce control over the AI model in a flexible way [4], [5],
[6]. The process consists of generating counterfactuals around
controllable variables, still under noncontrollable constraints.
Several sets of controllable variables may be considered to look
at the problem under different angles and understand reacha-
bility over specific conditions. Counterfactual controllability in
some ways extends canonical AI understanding, opening the
door to increased autonomy.

3) Multiclass: Examples may help understand the impor-
tance of counterfactual reasoning in multiclass situations. In
healthcare, several diseases present different stages of severity
(e.g., cancer) that can worsen drastically in a short time if not
properly treated. Multiclass counterfactuals can be a valuable
instrument to monitor the stage of disease progression in order
to detect minimal changes in the patient’s condition and apply
appropriate countermeasures before the disease progresses to
the next stage. Another example may involve the study of the
transitions of a phenomenon that develops over several stages
(e.g., A, B, C, and D). Thus, counterfactual analysis can be use-
ful to check for differences between different transitions (e.g.,
direct paths skipping intermediate transitions or progressive
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sequential paths). Some practical applications of this kind
include predictive maintenance and vehicular platooning [7].

B. Contribution

The objective of this article is to develop a novel method
based on support vector data description in multiclass
frameworks (MC-SVDD) to identify multiple counterfactual
explanations from a given observation, under varying
constraints. The use of SVDD envelopes may provide several
advantages, e.g., detection of anomalous points (outside SVDD
clusters) and flexible contour of different classes, by including
the control of false positives/false negatives rates [6]. To the best
of our knowledge, this is the first work aimed at the generation
of counterfactuals for multiclass classification problems based
on data envelopes extracted via SVDD. The method developed
in this study addresses: 1) explainability, through the use of
counterfactuals; 2) controllability of counterfactuals via
MC-SVDD; and 3) validation of counterfactuals quality.

II. RELATED WORKS

A. MC-SVDD

Multiclass classification is the task of classifying a new in-
stance into one among at least three classes. As always, when
the variability of a problem increases, so does the effort to
solve it. There exist different approaches to address multiclass
problems: some algorithms (e.g., decision trees and neural net-
works) automatically handle multiple outputs, whereas other
algorithms (e.g., logistic regression) provide exclusively binary
outputs. In the latter case, the classifiers must be adapted to
handle multiple outputs. Therefore, we can distinguish two
types of multiclass classification techniques [8]: one-vs-one
(OvO) and one-vs-rest (OvR). In OvO techniques, the prob-
lem is divided into m(m− 1)/2 binary classifiers, where m
is the number of classes and each binary classifier predicts a
class label. Then, an instance is assigned to the class with the
highest number of counts. Due to its incremental adaptation to
multiple outputs, the OvO approach lack a comprehensive view
of relationship among the classes. In OvR techniques, instead,
m different classifiers are trained, where each target class is
classified against the rest of the classes. Then, an instance is
assigned to the class with the highest probability. The MC-
SVDD1 approach here proposed, solves the problem in one
shot, without repetitive adaptations and providing the weights
for classification as an exact solution to an optimization prob-
lem. All uncertainties and data characteristics are handled at the
same time, providing a result that best fits the problem [9]. The
algorithm generalizes the well-known SVDD by Tax and Duin
[10] to the multiclass case, quite naturally as an extension of
the original method. Other attempts address multiclass SVDD,
but focus on identifying anomalous objects rather than provid-
ing canonical classification [11]. The algorithm proposed by
[12] generalizes the unsupervised one class classifier of [13] to
multiple outputs; however, it does not consider the fact that the

1https://github.com/AlbiCarle/MultiClass_SVDD.git

classification regions (i.e., the hyperspheres) may intersect with
each other. A different approach is proposed by [14], in which
the canonical SVDD is merged with binary trees to handle the
multiclassification problems. Guo et al. [15] proposed a multi-
kernel learning adaptation to SVDD (MKL-SVDD) to design
the kernel weights for multiple kernels and obtain the optimal
kernel combination. Hou and Ji [16] developed a multiclass
SVDD algorithm to classify multiple classes of planetary gear
faults based on the method proposed by [17] that minimizes the
radius of each hypersphere, while maximizing the distance be-
tween them. However, the boundary between couples of classes
is optimized for each pair of centers, without including further
constraints inherent to the other classes.

B. Counterfactual Explanations

Following the XAI taxonomies suggested in the litera-
ture (e.g., [1]), counterfactual explanations can be defined as
local post-hoc XAI techniques, either model-specific or model-
agnostic, depending on their generation process. Counterfac-
tuals generation methods may be designed to handle different
data types like tabular data, images, or text and may deliver
explanations in different forms including numerical values, re-
gions of pixels, and linguistic expressions, as remarked in a
recent survey [4]. For example, Mothilal et al. [18] introduced
a gradient-based method that produces a set of diverse coun-
terfactual explanations (DiCEs) for each input observation in
tabular format and proposed a set of quantitative metrics to eval-
uate the proposed explanations. Vermeire et al. [19], instead,
introduced a method for the generation of visual counterfactual
explanations for multiclass, model-agnostic image classifica-
tion and compared the proposed explanations with other state-
of-the-art explainability methods, including LIME and SHAP,
in terms of stability and computational time. Another method
was proposed by Wu et al. [20] to generate grammatically
and semantically correct counterfactual explanations starting
from text in a more efficient and cost-saving way compared
to manual generation from scratch. In a previous work [5], we
introduced a method to generate counterfactual explanations
for tabular data based on sampled classification regions defined
by a two-class support vector data descriptor (TC-SVDD). The
method was then extended in [6] and applied to provide clinical
recommendations for type 2 diabetes risk reduction, showing a
better counterfactual quality, in terms of availability and simi-
larity, with respect to DiCE [18]. The present article extends the
analysis with respect to the multiclass problem, as described in
Sections III and IV.

III. MULTICLASS SUPPORT VECTOR DATA

DESCRIPTION (MC-SVDD)

The training set {(xi, yi)}ni=1 is composed by m classes
of objects of different sizes n1, n2, . . . , nm (n1 + n2 + · · ·+
nm = n), labeled according to their class

y =
[
1 . . . 1 2 . . . 2 . . . m . . . m

]�
.

In order to find them hyperspheres with minimum total volume,
we should minimize the total volume of the m hyperspheres

https://github.com/AlbiCarle/MultiClass_SVDD.git
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with the constraint that, for each object: 1) the distance between
the center of one hypersphere and the object is smaller than
the radius of that hypersphere (i.e., the object belongs to a
specific output class); and 2) the object should not fall into
other hyperspheres (i.e., the object should not belong to other
output classes).

Let ak and Rk denote the center and radius of the hyper-
sphere k. To allow a flexible description of the hyperspheres
we introduce ϕ : X −→V , a feature map from the space of the
input features x ∈ X to an higher dimensional inner product
space V . Searching for hyperspheres of minimum volume that
satisfy the above constraints means finding the solution of the
following optimization problem:

minF (Rk;ak) =

m∑

k=1

R2
k (1a)

s.t.
∥
∥ϕ(xk

i )− ak
∥
∥2 ≤R2

k, i ∈ [nk], ∀k (1b)
∥
∥ϕ(xk

i )− ah
∥
∥2 ≥R2

h, i ∈ [nk], ∀h �= k. (1c)

We can follow the classical approach as in [10], which consists
in reducing (1) to a quadratic programming problem. To allow
for the possibility of outliers in the training set, the distance
from an object belonging to class k, ϕ(xk

i ), to its own center
ak should not be strictly smaller than R2

k, but larger distances
should be penalized, and the distance from ϕ(xk

i ) to the other
centers ah, h �=k, should not be strictly larger than R2

h, i.e.,
smaller distances should be penalized. Therefore, we introduce
slack variables ξkk ≥ 0, ξkh ≥ 0 and the minimization problem
changes into

minF (Rk;ak; ξ
kh) =

m∑

k=1

R2
k +

m∑

k=1

m∑

h=1

Ckh

nk∑

i=1

ξkhi (2a)

s.t.
∥
∥ϕ(xk

i )− ak
∥
∥2 ≤R2

k + ξkki , i ∈ [nk], ∀k (2b)
∥
∥ϕ(xk

i )− ah
∥
∥2 ≥R2

h − ξkhi , i ∈ [nk], ∀h �= k (2c)

and ξkki ≥ 0 ∀k, ξhki ≥ 0 ∀h �= k (2d)

where the parameter Ckh controls the misclassification error
between the classes. Now, we consider the dual problem of (2)
by incorporating the constraints (2b) and (2c) into (2a) with the
introduction of Lagrange multipliers

L(Rk;ak; ξ
kk, ξkh;αkk,αkh;γkk,γkh)

=

m∑

k=1

R2
k +

m∑

k=1

m∑

h=1

Ckh

nk∑

i=1

ξkhi

−
m∑

k=1

nk∑

i=1

αkk
i

(
R2

k + ξkki −
∥
∥ϕ(xk

i )− ak
∥
∥2

)

−
∑

h �=k

nh∑

i=1

αkh
i

(∥
∥ϕ(xk

i )− ah
∥
∥2 −R2

h + ξkhi

)

−
m∑

k=1

nk∑

i=1

γkk
i ξkki −

∑

h �=k

nh∑

i=1

γkh
i ξkhi (3)

with the Lagrange multipliers

αkk,αkh,γkk,γkh ≥ 0. (4)

In the dual form, L should be maximized with respect to the
Lagrange multipliers so setting partial derivatives to zero gives
the new constraints

∂L

∂Rk
= 0⇒

nk∑

i=1

αkk
i −

∑

h �=k

nh∑

i=1

αkh
i = 1 (5)

∂L

∂ak
= 0⇒ ak =

nk∑

i=1

αkk
i ϕ(xk

i )−
∑

h �=k

nh∑

i=1

αkh
i ϕ(xh

i ) (6)

∀k ∈ [m] and ∀h �= k. And with respect to the slack variables

∂L

∂ξssi
= 0⇒ Css − αss

i − γss
i = 0⇒ 0≤ αss

i ≤ Css (7)

∂L

∂ξsti
= 0⇒ Cst − αst

i − γst
i = 0⇒ 0≤ αst

i ≤ Cst (8)

∀s ∈ [m] and ∀t �= s, respectively.
Substituting (5) and (6) in (3), the Lagrangian in the dual

takes the following form:

L=

m∑

k=1

nk∑

i=1

αkk
i

(
ϕ(xk

i ) · ϕ(xk
i )
)

−
∑

h �=k

nk∑

i=1

αkh
i

(
ϕ(xk

i ) · ϕ(xk
i )
)

−
m∑

i=1

nk∑

i,j=1

αkk
i αkk

j

(
ϕ(xk

i ) · ϕ(xk
j )
)

−
∑

h �=k

nk∑

i,j=1

αkh
i αkh

j

(
ϕ(xk

i ) · ϕ(xk
j )
)

+ 2
∑

h �=k

nk∑

i=1

nh∑

j=1

αkk
i αkh

j

(
ϕ(xk

i ) · ϕ(x)hj
)
. (9)

The maximization of (9) under the constraints (4)–(5) and (7)–
(8) gives the set of αkk,αkh ∀k ∈ [m], ∀h �= k (γkk and γkh

can be eliminated by exploiting their positivity and the first-
order conditions on the slack variables). Depending on the po-
sition of the training objects in the feature space, the Lagrange
multipliers take on different values in the way the training
objects do or do not satisfy the constraints (2b) and (2c):

∥
∥ϕ(xk

i )− ak
∥
∥2 <R2

k ⇒ αkk
i = 0

∥
∥ϕ(xk

i )− ah
∥
∥2 >R2

h ⇒ αkh
i = 0

∥
∥ϕ(xk

i )− ak
∥
∥2 =R2

k ⇒ 0< αkk
i <Ckk

∥
∥ϕ(xk

i )− ah
∥
∥2 =R2

h ⇒ 0< αkh
i <Ckh

∥
∥ϕ(xk

i )− ak
∥
∥2 >R2

k ⇒ αkk
i = Ckk

∥
∥ϕ(xk

i )− ah
∥
∥2 <R2

h ⇒ αkh
i = Ckh (10)

∀k ∈ [m] and ∀h �= k, respectively.
Then, according to the literature around SVDD [10], the

objects xk
i with αkk

i > 0 and αkh
i > 0 are called support vectors

(SVs) for the class k.
By definition, the radius Rk is the distance from the center ak

of the hypersphere to any of the SVs of class k with Lagrange
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multipliers strictly minor than the parameters Ck{·}. Therefore,

R2
k =

∥
∥ϕ(xk

s)− ak
∥
∥2 =

(
ϕ(xk

s) · ϕ(xk
s)
)

− 2

nk∑

i=1

αkk
i

(
ϕ(xk

s) · ϕ(xk
i )
)

+ 2
∑

h �=k

nh∑

i=1

αkh
i

(
ϕ(xk

s) · ϕ(xh
i )
)

+

nk∑

i,j=1

αkk
i αkk

j

(
ϕ(xk

i ) · ϕ(xk
j )
)

− 2
∑

h �=k

nk∑

i=1

nh∑

j=1

αkk
i αkh

j

(
ϕ(xk

i ) · ϕ(xh
j )
)

+
∑

h �=k

nh∑

i,j

αkh
i αkh

j

(
ϕ(xh

i ) · ϕ(xh
j )
)

(11)

for any SVs ϕ(xk
s) of class k with 0< αkk

i <Ckk or 0< αkh
i <

Ckh, for h �= k.
To test an object t, it is necessary to calculate its distance

from the center of the hypersphere k, i.e.,

dk
.
= ‖t− ak‖2

=
(
ϕ(t) · ϕ(t)

)
− 2

nk∑

i=1

αkk
i

(
ϕ(t) · ϕ(xk

i )
)

+ 2
∑

h �=k

nh∑

i=1

αkh
i

(
ϕ(t) · ϕ(xh

i )
)

+

nk∑

i,j=1

αkk
i αkk

j

(
ϕ(xk

i ) · ϕ(xk
j )
)

− 2
∑

h �=k

nk∑

i=1

nh∑

j=1

αkk
i αkh

j

(
ϕ(xk

i ) · ϕ(xh
j )
)

+
∑

h �=k

nh∑

i,j

αkh
i αkh

j

(
ϕ(x)hi · ϕ(xh

j )
)

(12)

a test object t is accepted by the following criterion:
1) If dk≤R2

k and dk>R2
h ∀h �=k, then t belongs to class k;

2) If dk≤R2
k and dh<dk ∀h �=k, then t belongs to classh;

3) If dk>R2
h ∀h, then t is unclassified.

That is, the distances between all samples in each class and
the center should be smaller than the radius of the corresponding
hypersphere and the distances between all samples in each class
and the centers of other classes should be larger than the radius
of the corresponding hypersphere. And if a new sample belongs
to more than a hypersphere, the sample is assigned to the class
corresponding to the minimum distance. In any other case, the
sample is unclassified.

Remark III.1: In order to obtain a more compact form of the
Lagrangian L and to clarify that the problem is quadratic, we
define these quantities for all k ∈ [m]

αk .
=
[
αk1,αk2, . . . ,αkm

]�
, α

.
=
[
α1,α2, . . . ,αm

]�

yk =
[
yk1 yk2 . . . ykn

]�
,

where yki =

{
+1 if yi = k

−1 if yi �= k
∀i ∈ [n].

Defined then, for all k ∈ [m]

Φk
.
=
[
ϕ(xk

1) ϕ(xk
2) . . . ϕ(xk

n)
]
, (13)

Dk
.
= diag{yk1 , yk2 , . . . , ykn}, (14)

Kk
.
=Φ�

k Φk, (15)

and Ki,j =K(xi,xj) = ϕ(xi)
�ϕ(xj), i ∈ [n], j ∈ [n], is the

kernel matrix which satisfies the Mercer’s theorem [21]. Then,
let them be

Hk
.
= 2DkKkDk,

fk
.
=Dkdiag(Kk).

Finally, defining

H
.
=

⎛

⎜
⎜
⎝

H1

H2
. . .

Hm

⎞

⎟
⎟
⎠ , f

.
=

⎡

⎢
⎢
⎣

f1
f2
. . .
fm

⎤

⎥
⎥
⎦

we obtain that the Lagrangian L (9) can be rewritten as

L=−1

2
α�Hα+ f�α, (16)

i.e., L is a quadratic form that can be easily maximized with a
quadratic optimizer.

IV. MULTICOUNTERFACTUAL VIA HALTON

SAMPLING (MUCH)

A dataset D can be described by a subset of modifiable
features u and a subset of nonmodifiable features z. As a
consequence, an observation x ∈ D can be defined as

x=
(
u1, u2, . . . , up, z1, z2, . . . , zq

)
∈ R

p+q=N

Multiclass classification. A multiclass classifier (e.g., MC-
SVDD) is applied to obtain m classification regions defined
as follows:

Si
.
= {x ∈ R

N : ‖x− ai‖2 ≤R2
i , ‖x− aj‖2 ≥R2

j ;

j ∈ [m]; j �= i}
(17)

where R2
i , R

2
j ,ai,aj represent the radii and the centers of the

spheres, as defined in Section III.
Counterfactual search. Once the m classification regions

are defined, the search for a counterfactual explanation of an
observation xfi = (u, z)fi ∈ Si, called factual, consists of de-
termining the minimum joint variation Δu∗ of the modifiable
variables to obtain the closest observation

x
cfj
fi

.
= (u+Δu∗, z)

cfj
fi

(18)

that belongs to class Sj different from the original class
Si. Specifically, Δu∗ is estimated by solving the following
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minimization problem: for all j ∈ [m], j �= i

min
Δu∈Rp

d
(
xfi , (u+Δu, z)

cfj
fi

)
(19a)

subject to
∥
∥
∥(u+Δu, z)

cfj
fi

− aj

∥
∥
∥
2

≤R2
j (19b)

∥
∥
∥(u+Δu, z)

cfj
fi

− ak

∥
∥
∥
2

≥R2
k, (19c)

with k ∈ [m] and k �= j,

where d is the selected distance metrics (e.g., the Euclidean
norm), (19b) constraints x

cfj
fi

to lie inside Sj and (19c) con-

straints x
cfj
fi

to lie outside all the regions Sk �= Sj . It is worth
noting that, for each factual xfi ∈ Si, we can find a set CFi

=

{xcfj
fi

| j ∈ [m]; j �= i} of m− 1 counterfactual explanations,
that is, one for each class j different from i. In other words,
for a set of factuals Fi ⊆ Si, we obtain a set of counterfac-
tual explanations CFi

with size (m− 1)|Fi|. Similarly, we
can introduce the notation Cj

Fi
to indicate the set of all the

counterfactuals belonging to class j and generated from class
i, namely, Cj

Fi
= {xcfj

fi
| xfi ∈ Si}.

A. Numerical Solution

Since each Sj theoretically includes an infinite set of real
points, a numerical approximation is necessarily introduced
whereby counterfactual explanations are sought in a sampled
region obtained by applying quasi-random Halton sampling
[22] that is a low discrepancy sequence generator; other gen-
erators (e.g., Sobol) may be applicable in this sampling step.
Since counterfactual explanations are searched among a finite
set of points, the availability and minimality of each explanation
depend on the density of the sampling. However, the higher the
number of points in the sampled region, the higher the com-
putational cost. As a consequence, a tradeoff between accuracy
and runtime must be reached.

Counterfactual explanations are extracted for each factual ob-
servation belonging to each class. Once a factual xfi ∈ Fi, i ∈
[m], is defined, the algorithm returns the set of counterfactuals
CFi

, i.e., each counterfactual explanation x
cfj
fi

, j ∈ [m], j �= i.
The first step of the MUCH algorithm2 (Algorithm 1) is the
classification of data. In this work, data are classified by MC-
SVDD, which defines m closed classification regions Si, i ∈
[m]. The MC-SVDD algorithm is trained on Dtr and validated
on Dvl, each belonging to the same probability distribution of
the data, recovering the best classification after hyperparameter
tuning. Then, for each region Si a randomly sampled region S̃i

is constructed: this region is the one designated to the numerical
search for counterfactuals of class j �= i, i.e., for each factual
xfi , the respective counterfactual related to the class j �= i, xcfj

fi

is searched in S̃j . Among all points in the sampled region S̃j ,
the one that minimizes the distance d w.r.t factual xfi is chosen.
The distance d plays a key role in the search for counterfactuals

2https://github.com/AlbiCarle/MUCH.git

Algorithm 1 MUCH

1.1 Dataset D is divided in training set Dtr

and validation set Dvl.
1.2 A classifier is trained on Dtr and
validated on Dvl, getting S1, S2, . . . , Sm.
1.3 A set of factuals related to the class i,
Fi, is chosen.

2 CFi
= [ ]

3 for xfi = (u, z)fi ∈ Fi

3.1 Cfi = [ ]
3.2 for j ∈ [m], j �= i
3.2.1 Sample quasi-randomly S̃j

3.2.2 dji = d
(
xfi , S̃j|z=zfi

)

3.2.3 x
cfj
fi

=min(dji )

3.2.4 if
(
xfi ∈ Si & x

cfj
fi

∈ Sj

)

3.2.4.1 Cfi =Cfi ∪ {xcfj
fi

}
3.2.5 end
3.2.6 CFi

=CFi
∪Cfi

3.3 end
3.4 end
4 return CFi

as changing the distance may change the returned counterfactu-
als. The most natural choice of distance is the distance induced
by the classification kernel

d(x,y) = k(x,x)− 2k(x,y) + k(y,y).

The reason for this choice is motivated by the fact that the
topology defined by the kernel in the classification affects the
relationship between the points in the sampled regions, hence,
keeping the same distance relationship would help the algorithm
find the best counterfactual explanation.

Denoted with n the number of points, with d the number of
features, and with m the number of classes, the computational
cost of MC-SVDD, that is, O(MC-SVDD) is estimated con-
sidering the two most expensive computations: the solution of
the quadratic programming problem to compute the Lagrangian
multipliers and the kernelization, i.e., the computation and stor-
age of the kernel matrix. The time complexity for solving a
quadratic programming problem is generally in the order of
O(K3) to O(K4), where K is the number of variables, that
is, the number of Lagrange multipliers (αkk and αkh) and the
variability is due to the type of optimizer that can be cho-
sen. The number K depends on the number of samples and
classes, specifically:

1) αkk: there are n1 + n2 + · · ·+ nm Lagrange multipliers
for each class k. These are associated with the data points
that belong to class k;

2) αkh: there are n1n2 + n1n3 + · · ·+ n1nm + n2n3 +
· · ·+ n2nm + · · ·+ n(m−1)nm Lagrange multipliers for
each pair of classes (k, h).

https://github.com/AlbiCarle/MUCH.git
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Thus, the total number of Lagrange multipliers K can be
calculated as follows:

K = (n1 + n2 + · · ·+ nm)

+ (n1n2 + n1n3 + · · ·+ n1nm

+ n2n3 + · · ·+ n2nm + · · ·+ n(m−1)nm)

The computational cost for kernelization, instead, varies
from kernel to kernel [23]. Focusing on the linear kernel, the
cost for building the Gram matrix can be estimated in O(n2)
but it rises in complexity when a polynomial kernel (O(n2p),
where p is the degree of the polynomial) or a Gaussian kernel
(O(n2g), where g takes into account the complexity brought
by the exponential function and the Euclidean distance)
are considered. In any case, however, the kernelization cost
does not overcome the computational cost for the solution
of the quadratic optimization problem, making the overall
complexity of the algorithm estimable only with the cost to
compute the Lagrangian multipliers (i.e., O(K3) or O(K4)).
In accordance with [5], the computational cost related to
the counterfactuals search, for each set of factuals Fi, is
O
(
max

(∑
j �=i qj , |Fi|max

(
D,

∑
j �=i s̃j

)))
, where O(qj)

is the computational cost of the random sampling of S̃j [24],
O(D) is the computational cost for the computation of the
distance d [25] and O(s̃j) is the computational cost of the
research of the minimum of the vector of distances relative
to the jth random sampling (S̃j) [26]. So, considering all m
classes, the computational cost of the counterfactuals search,
O (SCF), can be estimated in

O
(
m
(
max

(∑

j �=i

qj , |Fi|max
(
D,

∑

j �=i

s̃j

))))
.

Finally, the total computational cost of MUCH can be estimated
with O (MUCH) =O (max(MC-SVDD, SCF)). The complete
procedure for the generation of a set of explanations is summa-
rized in Fig. 1.

B. Counterfactual Quality

As reported in a recent review by Guidotti [4], counterfac-
tual explanations should fulfill a set of ideal properties and
adherence to these properties shall be assessed, for a set of
factuals, in terms of appropriate evaluation metrics such as
availability, actionability, similarity, discriminative power, and
plausibility. Availability measures the number of counterfactu-
als actually returned by the counterfactual explainer for each
class and it can be measured as the ratio between the number
of counterfactuals of class i, i.e., |CFi

| and the total number of
factuals of class i, i.e., |Fi|. Actionability measures the ability
of counterfactual explanations to vary only modifiable features
and it is calculated, for each class i, as the ratio of the number
of constrained features and the total number of nonmodifiable
features, i.e., |z|. Similarity evaluates the average distance (e.g.,
Euclidean) between each factual in Fi and the corresponding
counterfactual explanations in CFi

. In order to be similar, the
distance between these two points should be lower than a fixed
threshold ε. To evaluate similarity, data points were normalized
between 0 and 1 and the computed distance was compared to the

Fig. 1. Diagram of the counterfactual explanations extraction procedure.

maximum theoretical distance in the standardized modifiable-
feature space (i.e.,

√
|u|) and represented in terms of average

and 95% confidence interval (C.I.). Discriminative power [4],
[27] measures the ability to distinguish points of the factual
class in Si from counterfactuals in CFi

. It was estimated in this
study by evaluating the accuracy of a k-nearest neighbor (KNN)
classifier trained on a dataset including the counterfactuals in
CFi

and real data points in Si. Discriminative power was then
computed as the average test accuracy obtained with fivefold
cross validation. Finally, plausibility measures the ability of
Cj

Fi
to be representative of the reference population (i.e., real

data) of class j. Plausibility was computed as the Hellinger
distance between counterfactuals of class j generated from class
i and the training set distribution for each class j ∈ [m] (the
lower the better). In a multiclass classification problem, such
as the one considered in this article, where |CFi

|> 1 for all
i ∈ [m], each evaluation metric can be considered as the average
value obtained across the m− 1 set of counterfactuals.

V. APPLICATIVE EXAMPLE: THE FIFA DATASET

A. Dataset Description and Classification

FIFA is one of the most famous football videogames in the
world. The FIFA dataset3 includes latest edition FIFA attributes
related to more than 17 000 players from different football
leagues. In this study, a subset of 50 attributes were selected
from the initial set of 89 attributes. Specifically, the attributes
related to the player’s physical and athletic characteristics were
retained, whereas those not relevant (e.g., team and graphical
visualization) were discarded. Besides age, height, and weight,
the selected attributes can be summarized in three main cate-
gories: mental, physical, and technical Skills. These attributes

3Retrieved [November 2022] from https://www.kaggle.com/datasets/
cashncarry/fifa-23-complete-player-dataset

https://www.kaggle.com/datasets/cashncarry/fifa-23-complete-player-dataset
https://www.kaggle.com/datasets/cashncarry/fifa-23-complete-player-dataset
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TABLE I
CLASSIFICATION PERFORMANCE: FIFA DATASET

%OUT ACC F1-SCORE Cohen’s Kappa

Training 0.59% 78.03% 73.08% 0.71

Test 1.25% 77.50% 72.99% 0.70

depict different aspects of the player’s individual abilities and
they are usually represented in terms of rating, on a scale from
1 to 100. Moreover, the main attributes can be combined in
six fundamental attributes, namely, pace (55% sprint speed,
45% acceleration), shooting (ability to score: 45% finishing,
20% shot power, 20% long shots, 5% penalties, 5% position-
ing, 5% volleys), passing (capability to successfully pass the
ball to other teammates: 35% short passing, 20% vision, 20%
crossing, 15% long passing, 5% curve, 5% free kick accuracy),
dribbling (50% dribbling, 35% ball control, 10% agility, 5%
balance), defending (ability to intercept the ball and mark the
opponent: 30% marking, 30% sliding tackle, 20% interception,
10% heading accuracy, 10% sliding tackle), and physical (50%
strength, 25% stamina, 20% aggression, 5% jumping). These
key attributes can be directly derived from the others, and for
this reason, only the 44 secondary attributes were considered
as input features. The classification task consisted in predict-
ing the correct player’s position among four possible classes:
midfielder (MF), defender (DE), forward (FO), and goalkeeper
(GK). To obtain a balanced dataset, 2000 records were extracted
for each player’s position (8000 records in total). The dataset
was splitted in training set (70%) and test set (30%). The pa-
rameters of MC-SVDD were optimized by performing a cross
validation on the training set, as explained in Section III.

Table I shows the best MC-SVDD training and test classi-
fication performance obtained by selecting a Gaussian kernel.
Specifically, the performance is evaluated in terms of classi-
fication accuracy, macroaveraged F1-score (i.e., the mean of
F1-scores computed by class), Cohen’s kappa coefficient [28]
(i.e., the level of agreement between ground truth and predicted
values) and the percentage of unclassified points (i.e., points ly-
ing outside all m SVDD regions). Accuracy and macroaveraged
F1-score are satisfactory as the both are above 72%; moreover,
there is no presence of overfitting as these values remain stable
even when the model is applied to test data. The percentage
of unclassified points is really small, meaning that the regions
identified by MC-SVDD are able to enclose almost all points
and the presence of anomalous points in the dataset is limited.

As it can be noticed from Fig. 2, classes DE, FO, and GK
can be accurately classified. On the contrary, class MF is more
difficult to discriminate. Indeed, the single class F1-score on the
test set is more than acceptable when considering DE, FO, and
GK (i.e., 84.78%, 79.24%, and 100%, respectively), whereas
it is noticeably lower when considering MF (27.96%). This is
due to the fact that points in the MF class are easily confused
with those in DE and FO classes as the characteristics of MF
players are, in practice, intermediate between those of DE and
FO players. It can also be observed that GK are perfectly distin-
guishable from footballers in other game positions, because of
the peculiar skills that this kind of player must demonstrate.

Fig. 2. Chord diagram representation of the confusion matrix corresponding
to the classification of the FIFA testing dataset.

For completeness, the MC-SVDD classification performance
obtained with different kernels (i.e., linear and cubic polyno-
mial) is presented in Section II of the supplementary material.

B. Multicounterfactual Generation

1) Setting: To evaluate the MUCH approach, a set of coun-
terfactuals are generated starting from a set of points belonging
to the test set. Specifically, given a player belonging to the
chosen factual class and the corresponding set of attributes, the
algorithm aims to find a counterfactual in each of the other
classes, that is, to find the minimal changes in the player’s
attributes able to change his preferable position. Once Fi has
been defined, a sufficiently large set of candidate counterfactu-
als are obtained by sampling 10 000 points for each of them− 1
MC-SVDD regions using Halton sampling (see Section IV-A).
As already mentioned, Fi is a set of test data points, but the
corresponding counterfactuals explanations do not necessarily
belong to the original dataset. Indeed, counterfactuals explana-
tions as returned by the proposed algorithm are plausible com-
binations of features sampled inside the classification regions.
Thus, the proposed approach is categorized as exogenous [4].

Age and height were considered as nonmodifiable features,
hence they were constrained during counterfactual search. Ac-
tually, counterfactuals have been accepted within a certain tol-
erance δ (i.e., δ =±2 cm for height) in order to ensure their
availability. Obviously, the smaller the delta, the greater is the
probability that the algorithm will not return a counterfactual
(i.e., lower availability), especially as the number of nonmodi-
fiable variables increases.

2) Knowledge Extraction: Table II lists the properties of
the sets of counterfactuals (as defined in Section IV-B) ob-
tained for each different class of factuals Fi. The discrimina-
tive power for the different classes appears to be high, that
is, above 95%. This indicates that counterfactuals, although
searched at a minimum distance, are easily distinguishable from
points belonging to the factual class. The highest discriminative
power is computed with factuals belonging to the GK class,
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TABLE II
AVAILABILITY (%), SIMILARITY (MEAN% AND C.I.%), DISCRIMINATIVE

POWER (%), AND PLAUSIBILITY OF COUNTERFACTUALS GENERATED FROM

FIFA DATASET, FOR DIFFERENT FACTUALS CLASSES

FIFA

Factual Class MF DE FO GK

C1 Class DE MF MF MF

Availability 100.00% 100.00% 100.00% 100.00%

Similarity (Mean) 21.73% 21.38% 21.39% 40.14%

Similarity (C.I.)
13.49% 12.74% 13.48% 35.80%
29.96% 30.02% 29.31% 44.48%

Plausibility 0.068 0.003 0.002 0.002

C2 Class FO FO DE DE

Availability 100.00% 100.00% 100.00% 100.00%

Similarity (Mean) 23.35% 24.05% 24.34% 38.21%

Similarity (C.I.)
15.80% 16.94% 16.65% 34.11%
30.89% 31.17% 32.04% 42.31%

Plausibility 0.026 0.005 0.058 0.151

C3 Class GK GK GK FO

Availability 100.00% 100.00% 100.00% 100.00%

Similarity (Mean) 40.13% 36.66% 37.60% 41.48%

Similarity (C.I.)
30.65% 27.71% 28.45% 36.95%
49.61% 45.62% 46.75% 46.01%

Plausibility 0.123 0.088 0.082 0.050

Discriminative Power 95.58% 98.27% 98.89% 99.84%

TABLE III
EXAMPLE OF FACTUALS (xMF, xFO, AND xGK) AND RELATED

COUNTERFACTUAL EXPLANATIONS (xDE
MF, xDE

FO , AND xDE
GK).

IMPROVEMENTS IN FUNDAMENTAL SKILLS ARE SHOWN IN BOLD

Example 1 Example 2 Example 3

xMF xDE
MF xFO xDE

FO xGK xDE
GK

Pace 89.30 74.66 86.65 71.36 39.35 53.43

Shooting 61.3 51.32 72.60 52.37 16.20 35.79

Passing 52.15 50.05 62.45 52.75 19.80 39.51

Defending 50.40 62.44 44.90 66.44 10.60 64.99

Dribbling 65.75 53.46 84.25 63.26 12.20 47.68

Physical 67.20 60.13 63.85 61.18 43.20 62.73

which, as previously mentioned, has peculiar characteristics.
The algorithm successfully returned all counterfactuals (100%
availability), demonstrating a sufficiently dense sampling of the
MC-SVDD regions. Similarity values are also satisfactory, with
average values between 21% and 42%, depending on the factual
class. Lastly, the low plausibility values (i.e., � 1) indicate that
the counterfactuals are close to the real distribution of the class
they aim for.

The goal of the analysis is to identify which types of players
are most characterized in their role and how different train-
ing plans can help specialize in a different role. For example,
Table III lists three examples of factuals belonging to class MF,
FO, and GK and the corresponding counterfactual explanations
belonging to class DE. These examples quantify the changes
that specific players, trained for a specific role, would have to
make in terms of fundamental characteristics to transition to the

DE class. In particular, in example 1 the transition from the spe-
cific MF player to DE is described by higher defending skills,
almost unchanged passing and physical abilities, and lower
values of the remaining attributes. Likewise, the FO player in
example 2 should increase the training of defending attributes
and lower the other fundamental skills to become DE. Finally,
the GK player in example 3 needs to improve its defending
skills to transition to the DE role, but in a significantly greater
amount with respect to the previous two examples. Besides, the
GK player under consideration should also focus on improv-
ing all the other fundamental skills. In all the three examples
reported, pace, defending, and physical attributes are the most
relevant attributes for the DE class. Each counterfactual expla-
nations provide insights related to a specific input observation,
however, it can be extremely useful to consider the overall trend
of changes required by the counterfactual explanations of the
entire test set. Fig. 3 analyzes the average behavior of the DE
role, showing a spiderplot for each attribute category. It should
be noted that the GK class differs significantly from the other
classes. This is not surprising, since GK role requires different
skills compared to other roles. Concerning mental attributes, DE
shows higher marking abilities than MF and FO. Moreover, DE
positioning ability is similar to that of MF but remarkably lower
than that of FO, whereas interceptions capabilities of DE are
slightly higher than those of MF and FO. The remaining mental
abilities present comparable values among DE, FO, and MF
players. Physical attributes, instead, remain barely unchanged
when considering DE, FO, and MF players. The only exception
is the fact that DE and MF have on average greater balance
than FO. Technical skills present different distributions when
focusing on different classes of footballers. For example, DE
short passing and long passing abilities are similar to those
of MF and significantly higher than those of FO. Moreover,
DE has higher values for both standing and sliding tackles
than MF and FO. Intuitively, DE possesses worse abilities than
FO when considering attributes strictly related to the attack
phase including shot power, long shot, penalties, crossing, and
finishing. Lastly, regarding the six fundamental attributes, on
average DE, FO, and MF present comparable values in terms
of pace, physical, and dribbling abilities. Intuitively, DE players
have higher defending abilities w.r.t MF and FO, and passing
abilities intermediate between those of FO and MF. Reason-
ably, shooting capabilities are slightly lower than those of MF
and strongly lower than those of a FO. After similar analysis
of FO and MF spiderplots,4 the following conclusion arises.
Workouts should be common on most abilities and strongly
differentiated in target roles. For example, DE should focus on
tackles and interceptions, FO on shooting and finishing, and MF
on passing. Other attributes, such as physical, aggressiveness,
and dribbling, do not impact the specialization. Although such a
conclusion may appear intuitive, it may be of extreme interest
to help experts (e.g., athletic coaches) in the selection of the
target variables.

4https://github.com/AlbiCarle/MUCH/blob/main/SpiderImages/
FIFA_SpiderPlots.pdf.

https://github.com/AlbiCarle/MUCH/blob/main/SpiderImages/FIFA_SpiderPlots.pdf.
https://github.com/AlbiCarle/MUCH/blob/main/SpiderImages/FIFA_SpiderPlots.pdf.
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Fig. 3. Each spiderplot represents the variation of the average of the factuals (dashed line) and counterfactuals (solid line) for DE class for each attribute
category: (a) mental; (b) physical; (c) technical; and (d) fundamental skills. The value scale ranges from 0 to 100, and the output classes colors are the same
as those used in Fig. 2 (MF: red, DE: blue, FO: green, and GK: yellow).

VI. CHARACTERIZATION ON ADDITIONAL DATASETS

This section discusses the performance of the proposed
approach on a set of frequently referenced multiclass open
source datasets, including the IRIS dataset5 and the Stellar
Classification Dataset—SDSS17 dataset.6 These experiments
help demonstrate that the approach can potentially scale well
to tabular datasets of different size and different nature (i.e.,
physical measurements in the IRIS and SDSS17 datasets vs
simulated play in the FIFA dataset). The IRIS dataset con-
sists of 150 observations related to peculiar characteristics of
three different iris species (i.e., Setosa—1, Versicolor—2, and
Virginica—3). Data records are equally balanced in terms of
classes and records of the Setosa species are linearly separable
from the others.

The Stellar Classification dataset includes 100 000 records
of three type of objects (i.e., galaxy—1, star—2, and
quasar—3) described by different spectral characteristics.
Every observation consists of 17 input features, however only

5Retrieved [Dec 2022] from https://www.kaggle.com/datasets/uciml/iris
6fedesoriano. Stellar Classification Dataset—SDSS17. Retrieved [Dec

2022] from https://www.kaggle.com/fedesoriano/stellar-classification-dataset-
sdss17

TABLE IV
CLASSIFICATION PERFORMANCE: IRIS AND STELLAR DATASETS

IRIS Stellar Classification

ACCtr 95.24% 93.83%

OUTtr 0.00% 0.01%

ACC 97.78% 92.11%

OUTts 0.00% 0.02%

Macroaveraged F1-SCOREts 97.78% 94.18%

Cohen’s Kappas 0.97 0.88

Canonical Machine Learning Models

Decision Tree

ACCts 99.54% 94.83%

Macro F1
SCOREts

99.00% 94.75%

Random Forest

ACCts 99.32% 96.00%

Macro F1
SCOREts

99.99% 95.92%

Gradient Boosting

ACCts 99.39% 94.00%

Macro F1
SCOREts

99.29% 93.75%

Support Vector Machine

ACCts 98.00% 92.00%

Macro F1
SCOREts

75.00% 69.00%

https://www.kaggle.com/datasets/uciml/iris
https://www.kaggle.com/fedesoriano/stellar-classification-dataset-sdss17
https://www.kaggle.com/fedesoriano/stellar-classification-dataset-sdss17
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TABLE V
AVAILABILITY (%), SIMILARITY (MEAN% AND C.I.%), DISCRIMINATIVE POWER (%),

AND PLAUSIBILITY OF COUNTERFACTUALS GENERATED FROM IRIS AND STELLAR

CLASSIFICATION DATASETS, FOR DIFFERENT FACTUALS CLASSES

IRIS Stellar Classification

Factual Class 1 2 3 1 2 3

C1 Class 2 1 1 2 1 1

Availability 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Similarity (Mean) 33.93% 28.77% 49.93% 39.14% 16.15% 14.91%

Similarity (C.I.)
27.80% 16.89% 38.72% 18.79% 3.72% 2.50%
40.07% 40.66% 61.14% 59.49% 28.58% 27.33%

Plausibility 0.32 0.29 0.17 0.24 0.12 0.04

C2 Class 3 3 2 3 3 2

Availability 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Similarity (Mean) 39.93% 11.83% 19.19% 14.78% 17.40% 38.68%

Similarity (C.I.)
33.92% 1.38% 9.13% 3.25% 6.29% 19.61%
45.95% 22.29% 29.25% 26.31% 28.51% 57.76%

Plausibility 0.32 0.19 0.38 0.03 0.08 0.21

Discriminative Power 100.00% 82.91% 91.99% 95.09% 98.16% 98.10%

a subset of ten features was considered in this experiment.
Both datasets were split in training (70%) and test set (30%).
Table IV shows the training and test classification performance
obtained by applying the MC-SVDD model, as presented
in Section III. Specifically, the classification performance is
summarized in terms of accuracy and percentage of unclassified
points on both training and test sets, macroaveraged F1-score,
and Cohen’s kappa on the test set. Additionally, the MC-
SVDD classification performance has been compared with
state-of-the-art multiclass classifiers, including decision
tree (criterion: “entropy”), random forest (criterion: “gini”,
bootstrap: true), gradient boosting (criterion: “gini”), and
support vector machine (kernel: “Gaussian”). As a result, the
MC-SVDD yields comparable, but slightly lower accuracy and
macroaveraged F1-score values on the test set (i.e., 1%–2%
lower) than the four well-established methods. Table V shows
the main properties of the set of counterfactuals obtained
applying the method presented in Section IV to the two
state-of-the-art datasets. Since class 1 in the IRIS dataset is
linearly separable from the other two classes, counterfactuals
belonging to classes 2 and 3 are very easily distinguishable
from class 1 points. Indeed, the discriminative power for
factual class 1 is 100% for both classes of counterfactuals.

VII. DISCUSSION AND CONCLUSION

This work aims to formalize a multiclass generalization of
an SVDD (MC-SVDD) and extract a set of counterfactual
explanations from the classification results using a multiclass
extension (MUCH) of a previously proposed counterfactuals
explainer [5]. In principle, both OvO and OvR methods can
be used in multiclass classification problems. As previously
stated, the proposed MUCH algorithm is agnostic to the clas-
sifier to be used. Therefore, the difference in counterfactual
extraction using a OvO or OvR method depends only on the
quality of the classification. In a preliminary phase, we have
compared the two approaches, and the OvO approach yielded

lower classification performance on the FIFA dataset (i.e., ac-
curacy of 57% and macroaveraged F1-score of 50% on the test
set), resulting in lower counterfactuals plausibility (details are
reported in the supplementary material). However, the differ-
ence in classification performance is highly dependent on the
selected classification problem. Experiments on three diverse
datasets demonstrate that MC-SVDD is accurate in enclosing
different classes of data points, with a negligible percentage of
unclassified points. As summarized in Table IV and in Section II
of the supplementary material, the classification performance
obtained by applying the proposed MC-SVDD to benchmark
datasets results comparable to that of well-established classi-
fication algorithms (i.e., decision tree, random forest, gradient
boosting, and support vector machine). In addition, MC-SVDD
presents advantages in terms of capability to detect outliers,
error control, and definition of closed regions of data points.

MUCH demonstrated satisfactory performance in terms of
availability, similarity, discriminative power, and plausibility
of the generated counterfactual explanations. This technique
allows us to investigate the changes needed to move from the
original class to a desired target class, as shown in Section V.
Similarly, in cases where it makes no sense to talk about passing
between classes, counterfactual explanations can be used to
characterize a dataset through the analysis of the peculiar char-
acteristics that differentiate one class from another, as shown
in Section VI. Three datasets have been shown as an example,
but obviously the presented approach can be applied in several
domains, such as the medical one, for example, to study the
impact of certain risk factors on the development of one or more
diseases and subsequent preventive strategies. Future studies
will focus in this direction. Moreover, the presented method
should be further extended to handle different kinds of data,
such as text. As a further development, sets of counterfactual
explanations obtained with different AI methods or different
sets of modifiable features can be compared to better understand
the inner logic of various models and exploit local explainability
to address potential model-induced biases.
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