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Criticality reportedly describes brain dynamics. The main critical feature is the presence of scale-
free neural avalanches, whose auto-organization is determined by a critical branching ratio of neural-
excitation spreading. Other features, directly associated to second-order phase transitions, are: (i)
scale-free-network topology of functional connectivity, stemming from supra-threshold pairwise cor-
relations, superimposable, in waking brain activity, with that of ferromagnets at Curie temperature;
(ii) temporal long-range memory associated to renewal intermittency driven by abrupt fluctua-
tions in the order parameters, detectable in human brain via spatially distributed phase/amplitude
changes in EEG activity. Herein we study intermittent events, extracted from 29 night EEG record-
ings including pre-sleep wakefulness and all phases of sleep, where different levels of mentation and
consciousness are present. We show that while critical avalanching is unchanged, at least quali-
tatively, intermittency and functional connectivity, present during conscious phases (wakefulness
and REM sleep), break down during both shallow and deep non-REM sleep. We provide a theory
for fragmentation-induced intermittency breakdown and suggest that the main difference between
conscious and unconscious states reside in the backwards causation, namely on the constraints that
the emerging properties at large scale induce to the lower scales. In particular, while in conscious
states this backwards causation induces a critical slowing down, preserving spatiotemporal correla-
tions, in dreamless sleep we see a self-organized maintenance of moduli working in parallel. Critical
avalanches are still present, and establish transient auto-organization, whose enhanced fluctuations
are able to trigger sleep-protecting mechanisms that reinstate parallel activity. The plausible role of
critical avalanches in dreamless sleep is to provide a rapid recovery of consciousness, if stimuli are
highly arousing.

PACS numbers: 87.19.L-, 87.10.-e, 05.40.Fb, 87.18.-h

I. INTRODUCTION

Consciousness is a product of brain activity, but, para-
doxically, it is maintained stable when the activity itself
is not stationary [1]. Conversely, physiological break-
down of consciousness is associated with sleep phases
whose recorded brain activity (e.g. via EEG) is sta-
tionary or quasi stationary. Can this neurophysiologi-
cal paradox be settled using the notion of second-order
phase transitions [2]? Systems undergoing these tran-
sitions do indeed possess a stable feature, i.e. a corre-
lated giant cluster among the many system’s components,
when the system is affected by fluctuations at all scales
(critical point). Brain criticality during awake resting
state has been envisaged by both the neuroscience and
the complexity-science communities [3, 4], and this hy-
pothesis has been corroborated by the finding of critical
avalanches [5], i.e. domino-like cascades of neural fir-
ings, with scale-free properties in terms of the number of
neurons involved. Neural avalanches, namely excitations
spreading among neurons, resemble the sand-pile model
of Self-Organized Criticality (SOC) [6]; however, current
models predict avalanches as a phase transition between

excitation quenching and excitation explosion, at a criti-
cal “branching ratio” ρ = 1 (see e.g. the work of Vespig-
nani and Zapperi [7]), where ρ is the control parameter
associated to the sum over the nearest neighbors in a net-
work of the probabilities that an excitation spreads there.
Another remarkable finding is the scale-free structure of
brain functional connectivity [8], with a remarkable co-
incidence with criticality models: Functional Magnetic
Resonance Imaging (fMRI) of brain activity and a Mon-
tecarlo of the Ising model for ferromagnetism at the Curie
temperature share the same network topology for supra-
threshold voxel-voxel (or spin-spin) pairwise correlation
network.

At a critical point we have the presence of circular cau-
sation among different structure and time scales, lead-
ing to rescaling relations, that reduce the many degrees
of freedom into well orchestrated dynamics of the or-
der parameter. The causation is circular because while
auto-organization moves from the lower to the higher
scales (onward causation), the emerging modes impose
constraints on the lower ones (backwards causation).
This hierarchical interplay intuitively explains the frac-
tal properties of the renormalization group relations.
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This fractal, integrated, unitary dynamics, fits the fringe-
focus, low-information, serial properties of consciousness
[9]. Furthermore, criticality means infinite susceptibil-
ity i.e. a large response to stimuli, hence responsiveness.
This is ultimately caused by the exploitation of long-
range correlations already present in absence of external
fields [2]. This, in turn, reflects extended dynamical co-
herence of the local order parameter, that, at any time,
spans a large portion of the system. This ever-changing
emergent mode is the aforementioned giant cluster [10].

Can this latter property be associated to the global
workspace [11], the commonly adopted heuristics for con-
sciousness? The global workspace is commonly described
as a serial function selecting information out of massively
parallel activity. A positive answer to the posed question
is suggested by some fairly recent papers [12] that proved
that order-parameter fluctuation dynamics affecting the
critical giant cluster obey Type-I intermittency [12], i.e.
a serial process with power-law-tailed waiting-time dis-
tributions between crucial events [13]. A fractal renewal
process, namely the stochastic counterpart of Type-I in-
termittency, was recently reported by our group for hu-
man EEG resting-state wakefulness activity [14].

Many authors have identified in sleep the principal
function to study, to understand consciousness. Indeed,
dreamless sleep is the only physiological state character-
ized by unconsciousness, and therefore neural correlates
of consciousness (NCC) must be absent there. The aim
of this paper, focusing on some differences in critical fea-
tures between conscious and unconscious states, is to pro-
vide a heuristics that connects criticality and conscious-
ness. In other words, studying whether and how critical
features can be considered NCCs, and how they break
during dreamless sleep will also clarify some aspect on
brain criticality during wakefulness. Thus, we will focus
on the differences between conscious states, namely wake-
fulness and REM sleep (by consensus a phase where most
conscious dreaming occurs) on the one side, and uncon-
scious Non-REM (NREM) sleep, both the shallow-sleep
N2 phase and the deep-sleep N3, on the other side.

Seriality, hence criticality, seems to break during
NREM sleep. Recent studies have shown parallel modu-
larity in NREM sleep with respect to wakefulness or REM
sleep [15, 16]. Nevertheless, the situation is not so clear:
studies on fMRI and EEG data have recently shown
that long-range moduli or pathways are maintained from
wakefulness to NREM sleep. These structures include
traveling neural activity in response to sensory stimuli
[17], local and global scale-free avalanches [16, 18], and
fMRI default modes [19]. Therefore, the brain, admit-
tedly a critical system in awake resting state, cannot be
simply represented, during sleep, via increase or decrease
of some control parameter, i.e., by a drift from the criti-
cal to a subcritical or to a supercritical regime. This ex-
planation would not be compatible, in the supercritical
hypothesis, with the presence of NREM parallel activity,
or, in the subcritical case, with long-range connections
or critical avalanches.

In addition, the precise fine tuning required by a
second-order phase transition has been questioned, and
proposed solutions either rest on an order-parameter
feedback onto control parameter (a common explanation
of SOC), or on a critical-point stretching, due to brain-
architecture-based quenched disorder [20]. Finally, a re-
cent paper connects the two aforementioned approaches
of SOC and envisages some feedback by which wakeful-
ness brain activity avoids branching-process criticality,
posing itself on a slightly subcritical regime very close
to the critical one [21]. It is however known that criti-
cal features (anomalous diffusion, critical slowing down,
double-scale relaxation, weak ergodicity breakdown, non-
Gaussian behavior) are typical of pericritical states (ei-
ther slightly sub- or super-critical), also in more com-
plex thermodynamical conditions like glass transitions
and turbulence.

A recent alternative approach consists in focusing on
dynamical criticality instead of statistical criticality. The
authors of [22] have shown that the dynamical model re-
sulting from a linear regression of multi-channel data in
monkeys display vicinity of bifurcation points only dur-
ing wakefulness, with identical enhancement of dynam-
ical stability in two kinds of anesthetics that otherwise
produce opposite spectral modifications. Although the
presence of marginal stability is connected with statisti-
cal criticality [12], this connection is still unclear [23].

Here we do not attempt a theory for brain criticality,
and we do not even clarify in which sense brain is critical,
supercritical or subcritical during conscious or uncon-
scious states. We try however to focus on the differences
between onward and backwards causation, the former be-
ing a mechanism for auto-organization and complexity
emergence, the other for critical slowing down and for
maintenance of global (meta)stability. Both these prop-
erties are possibly present in both conscious and uncon-
scious states, with, we conjecture, differences mainly in
the backwards causation process.

We adopt the following perspective to describe sleep
unconsciousness [16]: The different milieu of neurotrans-
mitters in NREM sleep may not change the local com-
plex, supposedly critical, thermodynamical behavior, by
a change in the control parameter, but with some mecha-
nism that protects parallel activity in segregated moduli.
One of these mechanisms is the well known phenomenon
of evoked neural bistability (very large deflections in
the EEG signal called evoked K-Complexes): The same
spreading (avalanching) excitations, that in wakefulness
would result in consciousness, trigger, during sleep, a
massive neural reset, i.e. a fall of many neurons in an
hyperpolarized state (electrical silence), abolishing any
synaptic and network activity [17, 24]. The K-Complex
phenomenon, caused by the opening of some K+ chan-
nels, is more general and can take place spontaneously,
i.e., without a precise stimulus triggering. Such neural
hyperpolarization, lasting a few hundreds of millisecond,
is at the basis of all NREM low-frequency (< 1Hz) ac-
tivity, termed Sleep Slow Oscillation. Remarkably, the
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occurrence of such oscillation is regularly preceded by
integrative cortical excitations [24]. As a result, auto-
organization caused by synaptic communication can take
place at a local level, and even spread to larger territo-
ries, but cannot be globally maintained. The presence of
possibly conflicting independent mentations, may not be
compatible with a unitary scene or gestalt.

In this paper we prove that hypothesizing some mecha-
nism that keep brain activity fragmented when the fluctu-
ations are high (a signal of a serial giant cluster emerging)
explains the differences that we find in critical features
when passing from wakefulness or dreaming (REM sleep)
to NREM sleep. The outline of the paper is as follows. In
Section II we review how intermittency can be tested, in
particular how the corresponding metastability suggests
the identification of temporal point processes (events)
and how these events can be used to unravel temporal
long range correlations. We will confirm that intermit-
tency is lost in NREM sleep, and complete the analysis
of our research group, providing results for shallow sleep.
We will then show how fragmentation, correlated to neu-
ral bistability, is able to explain the reported results. In
Section III we will shift focus from temporal to functional
complexity. We will review already reported results on
fractal clusters/avalanches that, although a critical fea-
ture, fail in being a consciousness correlate. We will
then define, starting from events, a functional connec-
tivity based on extended-time-window cross-correlations
and describe it as a NCC. Section IV is devoted to a final
discussion.

II. TEMPORAL COMPLEXITY AS A
CORRELATE OF CONSCIOUSNESS

A. Temporal point processes

Complex systems are characterized by metastable
states, i.e. dynamical states that are not real thermo-
dynamical equilibria, but are quasi stable for a dura-
tion much longer than the transition periods from one
metastable state to another. These transition periods
can be considered, at a first approximation, as a succes-
sion of temporal point processes, or, in other words, of
events. As said, metastability is associated with inter-
mittency in the case of critical systems. As a confirm
of this fact, recent fMRI studies on brain activity have
highlighted that a smart identification of events is able
to account for almost all information that a complex sig-
nal can carry [25]. Limitations of this strategy obviously
lay in the proper identification of events. On the other
hand, here we provide (in Appendix) some rigorous re-
sults that can turn into strengths the weaknesses of this
approach. We prove that the detected indices are ro-
bust with respect to spurious events (non-crucial events
that are randomly wrongly identified as events) and to
a random selection of them (events randomly not iden-
tified). Finally we refer to literature on “pseudoevents”,

namely observable events which are not crucial, but are
caused by undetectable (or simply undetected) genuine
crucial events. From a modelling point of view, in the
cases when undetectable genuine events trigger regular
or quasi deterministic processes [26, 27] or slowly modu-
late the parameters of some stochastic activity [28, 29],
the anomaly of complexity indices extracted by the pro-
cedures described herein (long-range correlations) have
been analytically and numerically proven to be robust,
even though event identification provides a more reliable
measure of the underlying complexity indices when deal-
ing with limited statistics [30].

Intermittency can be tested via different techniques.
Our approach is to extract events called Rapid Transi-
tion Processes (RTPs) [31] from the EEG signal, and
to use them to construct pseudo-random walks. The
anomalous statistics of the walk is a measure of long-
range autocorrelation of the original signal. RTPs, i.e.
temporal instants where one or more EEG channels have
an abrupt change in frequency, amplitude or phase, can
be extracted via Hilbert transform and are, in princi-
ple, the best possible choice to look for intermittency,
as they mark a birth/death process of moduli of brain
activity, so they should correlate with changes in infor-
mation content, hence with crucial events [32]. Finally, a
scaling analysis on constructed walks is able to assess in-
termittency even in the presence of superimposed Poisson
events (noise or identification of spurious events) [33].

B. DFA analysis of avalanche events

Original signals are the same of Ref. [16], i.e. 29 whole-
night 128-channels EEG recordings, manually annotated
for cycles and phases (sampling rate 250Hz, referenced
to apex, re-referenced to mastoids to extract pseudo-
monopolar signals, RTPs extracted as in Ref. [16]). All
subjects signed informed consent according to local ethi-
cal committees. Fig. 1 shows a grand-average Detrended
Fluctuation Analysis (DFA) [34] for the diffusion stem-
ming from a process of counting how many multi-channel
RTPs occur in temporal windows of varying duration t.
For details on data and on how average DFA is imple-
mented we refer to Ref. [16]. The presence of long-
range correlations (Fd(t) ∝ tα with α > 0.5) is apparent
(and superimposable) for wakefulness and REM sleep.
NREM sleep displays an asymptotic α = 0.5, with a dif-
ference between shallower sleep (phase named N2, with
background EEG activity in the theta band, with K-
Complexes and spindles) and deeper phase N3, also called
Slow Wave Sleep (SWS, with background slow activity
in the delta band): The asymptotic regime is attained
earlier for SWS in comparison to N2, correlating with a
higher rate of SSO events (in average 1 every 3 s in SWS
and every 20 s in N2).

We recall (see e.g. [14]) that a simple formula connects
α to a renewal process with a waiting-time distribution
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FIG. 1: (Color online) DFA analysis. Asymptotic time range
in the DFA computed for multi-channel RTP counting process
applied to different sleep phases (cycle I). Pre-sleep wakeful-
ness, shallow sleep, slow wave sleep and REM sleep are re-
spectively indicated with open red squares, filled green circles,
blue filled up triangles and purple open down triangles. Red
continuous and green dashed lines are eye guides for slopes
α = 0.75 and α = 0.5, respectively.

ψ(t) asymptotically decaying as t−µ, namely

α =

 µ/2 for 1 < µ < 2;
2− µ/2 for 2 ≤ µ < 3;
1/2 for µ ≥ 3.

(1)

Eq. (1) states that µ = 3 signals the passage to anoma-
lous to standard diffusion for the counting process, and
therefore, according to literature on complexity (see e.g.
[14]) signals the breakdown of long-range correlations (in-
finite correlation time). Fig. 1 tells that this transition
from infinite to finite memory is mirrored by the physi-
ological transitions from conscious to unconscious states
(and vice-versa).

The reported results are partly expected, as some liter-
ature has pointed out similar results, including our group
of research [16]. The reason why we reported them is to
keep the paper self contained, and, more important, to
show lack of complexity even in shallow sleep (phase N2),
which is often overlooked in literature on NCCs, and not
present in Ref [16]. Adopting the hypothesis that con-
sciousness is a function that is either present or absent,
Fig. 1 shows that N2, the filled circle curve, displays
H = 0.5 only in the asymptotic regime. Notice that
infinite correlation time is indeed an asymptotic prop-
erties, and is necessary for a deviation from H = 0.5
in the asymptotic regime. In summary, the presence of
genuine (untruncated) long range autocorrelations is a
robust neural correlate of consciousness.

C. Brain-dynamics fragmentation abolishes
complex intermittency

The described transition can be theoretically modeled
by means of a functional fragmentation in brain dynam-
ics, in line with NREM-sleep fragmentation reported in
recent literature [15].

1. The theoretical framework

We adopt the hypothesis that, during NREM sleep,
disconnected complex subsystems coexist, each with fluc-
tuations driven by a renewal process. The different sub-
systems are taken mutually independent. From time to
time an event from a particular region is able to in-
duce communication between subsystems and trigger a
global event. This is exactly the way in which the global
workspace is numerically implemented in artificial intelli-
gence [35]. However, during NREM sleep we hypothesize
that this global event, instead of eliciting consciousness,
triggers a massive reset of many subsystems. Here for
simplicity we model a global reset for all subsystems.

We now use renewal theory [36] to show that this
breakdown of the system unitarity quenches long-range
auto-correlations in the global fluctuations so that α =
0.5. Let us assume a number Nd of domains each driven
by a renewal process described by a survival probability
Ψ(τ) that for τ → ∞ decays as (Ti/τ)µi−1 where Ti is
a time scale marking the onset of the inverse-power-law
asymptotic. The simplest possible form,

Ψi(τ) =

(
1 +

τ

Ti

)1−µi
, (2)

makes the treatment analytical for all times in the case
where all Ti = T and µi = µ, corresponding to the Cox
event rate [36] ri(τ) = ai/(1 + biτ), with µi = 1 + ai/bi
and Ti = 1/bi. The global process is described by the su-
perposition of Nd independent processes. Let us first de-
rive a global index making the crude assumption that the
first event in any domain resets the whole system. This
hypothesis, sufficient for having renewal global events,
can be relaxed for a more realistic model, as later shown.
Imagining that all processes are equal (ai = a, bi = b)
and prepared at time t = 0 the Cox rate at time t reads

r(t) =

Nd∑
i=1

ri = Nd
a

(1 + bt)
, (3)

corresponding to a global Ψ(τ) of the form (2) with the
same T and with a global index µG given by

µG = 1 +Nd
a

b
= 1 +Nd(µ− 1). (4)

Notice that in general, according e.g. to [37], the lo-
cal values of µ are larger than 2. Therefore a mini-
mal fragmentation yielding just only two separate re-
gions (Nd = 2) is already sufficient to give µG > 3,



5

hence α = 0.5. In general the domains may have dif-
ferent complexity indices, nevertheless it is possible to
perform an exact treatment in the asymptotic limit. In
the limit t � T = maxi(Ti), it is possible to drop the
1 in the denominator of (2), yielding ri(t) ' ai/bit and

thus, defining µG = 1 +
∑Nd
i=1 ai/bi, we have

r(t) ≈ 1

t

Nd∑
i=1

ai
bi

=
µG − 1

t
(5)

⇒ Ψ(t) = CT exp

(
−
∫ t

T

dt′r(t′)

)
= CT

(
T

t

)µG−1

(6)

where CT = exp[−
∫ T

0
dtr(t)]. We have therefore demon-

strated that the renewal process stemming from a global
resetting due to the first event of N parallel renewal pro-
cesses with complexities µi yields a global complexity

µG =

Nd∑
i=1

µi −Nd + 1, (7)

larger than 3, hence yielding α = 0.5, for Nd ≥ 2 if all
µi ≥ 2, or for larger Nd in case 1 < µi ≤ 2.

2. A generalization towards a modeling of the Global
Workspace

The result can be generalized to be adherent to the
theoretical description of the global workspace. It is as-
sumed [35] that due to the serial activation of the global
workspace, not every peripheral fluctuation gets the at-
tention of the global workspace, but there must be a fil-
ter, so that only large fluctuations are taken care of, one
at the time. Since, according to our heuristics, we are
dealing with independent critical phenomena, we know
[12] that macroscopic fluctuations are described by an
intermittent process, and we have already assumed that
waiting times between large fluctuations are statistically
independent. We assume that, among these fluctuations,
only the largest ones can spread, so they get to conscious-
ness in wakefulness, while in sleep, using, the same cluster
connectivity [16], are able to produce a spreading SSO.
This means that only a selection of events are globally
resetting. We now show that Eq. (7) holds true also for
the resulting waiting time distribution of the large fluc-

tuations ψ
(L)
i (t). Let us assume a random selection of

events, with probability pi. For the sake of simplicity let
us omit the subscript i in the following treatment, with-
out loss of generality. The effective survival probability

Ψ(L)(t) =

∫ ∞
t

dt′ψ(L)(t′) (8)

can be written as

Ψ(L)(t) =

∞∑
n=0

(1− p)n
∫ t

0

dt′ψ(n)(t
′)Ψ(t− t′), (9)

where here the subscript n in ψ(n), written between

parentheses, does not refer to the n-th region. ψ(n) is

defined as the waiting time distribution density of the
n-th event. Eq. (13) should be read as follow. Ψ(L)(t)
is, according to (8), the probabilty that at time t the
globally resetting event has not happened yet. It may
happen that a arbitrary number of sub-threshold events
have occurred, hence the sum over this infinite number of
possibilities. These must be weighted with the probabil-
ity of the last event being the n-th, given by the Laplace
convolution of ψ(n) (in turn an n-times convolution of
ψ with itself) with Ψ, and the fact that occurred events
were under threshold, namely with the term (1− p)n.

For t→∞, a first approximation reads (see Appendix
for a derivation)

lim
t→∞

Ψ(L)(t) =
Ψ(t)

p
. (10)

As T denotes the time scale after which the function be-
comes indistinguishable from an inverse power law, Eq.
(18) means that a random selection induces a rescaling

of the transient time scales of the form T → Tp
1

1−µ . In
fact, for dimensional reasons, lim

t→∞
Ψ(t) = (T/t)

µ−1
.

III. STRUCTURAL COMPLEXITY:
AVALANCHES AND FUNCTIONAL

CONNECTIVITY

A. Avalanches

Fig. 2 shows, for the different sleep phases, the proba-
bilty density P (N) of avalanche sizes N namely the prob-
ability to have N simultaneous (within a time tolerance
of ∆t = 4.0ms) events in N different electrodes.

These results have already been presented in a previ-
ous work [16], where it was stated that there were no
difference in the distributions. This may be at odd with
a similar result recently appeared in a recent work [38].
Therein, authors find some significance in the small de-
viations among phases. According to the non-parametric
Kolmogorov-Smirnov test, differences of the cumulative
distributions should be described by the D-statistics if
they belong to the same stochastic model. A difference,
for the degrees of freedom used herein, has to be larger
than approximately 0.02 to be significant. We do in fact
find significant differences, in line with the mentioned
work [38]. Visually, however, the density functions are
remarkably similar, with differences that seem to corre-
late with a numerosity difference (trivially the time spent
in N2 is much larger than the time spent in REM sleep
in the first cycle). Remarkably, the avalanching of the
different phases here reported are numerically similar to
those reported in Ref. [38]. Notice however that herein
we adopt a different choice of event. This either means
that a large deflection in intracranial activity correlate
with an EEG RTP, or, alternatively, that some fractal
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FIG. 2: (Color online) Probability density function P(N) of
the number of concurrent events for different stages, limited to
the first sleep cycle. Concurrency is defined within a tolerance
time ∆t, i.e. adopting the prescriptions of previous works
[5, 14, 37]. Point legend as in Fig. 1: Pre-sleep wakefulness,
shallow sleep, slow wave sleep and REM sleep are respectively
indicated with open red squares, filled green circles, blue filled
up triangles and purple open down triangles.

temporal dynamics lead to deflections in both signals,
and that the kind of analyses that we adopt are robust
with respect to the arbitrarity of event definition.

In synthesis, although with some small difference, there
is no qualitative change in avalanches in the different
phases of sleep. This means that the emerging prop-
erty of scale-free avalanches are not sensitive to the neu-
robiological differences between conscious and uncon-
scious states. This leads to conjecture that RTP co-
incidences exploit the anatomic pathways that, elicited
during NREM sleep, can sustain the temporary forma-
tion of large clusters, before some protection mechanism
occurs to prevent further integration. This is in line with
a recent work [17], showing that early sensory processing
is not changed during NREM sleep, probably due to the
fact that are projected to cortical sensory areas by the
thalamus.

B. Degree distribution

In this subsection we try to keep together some appar-
ently contradictory pieces of evidences collected thus far.
How is it possible, for instance, that sensory process inte-
gration is maintained during NREM sleep, spreading to
large cortical territories [17] and, in the same, modular
parallel activity is preserved [15, 47]? We conjecture that
the integration caused by sensory processing elicits the
onward causation responsible for scale-free avalanches.
However, since this process favors the emergence of a
global mode, we may have two alternative outcomes. In
the one case, sleep is protected by some mechanism and

10
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FIG. 3: (Color online) Average degree distribution Pav(k)
for different sleep phases (cycle I). Point legend as in Fig.
1: Pre-sleep wakefulness, shallow sleep, slow wave sleep and
REM sleep are respectively indicated with open red squares,
filled green circles, blue filled up triangles and purple open
down triangles. Green dashed and red continuous lines are
eye guides for exponential exp(−k/3) and inverse-power law
∝ 1/k1.1, respectively.

a new kind of backwards causation is able to reinstate
parallel modular activity; in the other case, we have an
awakening and the emerging of conscious behavior.

Let us focus on the first outcome alternative, i.e. the
subject keeps sleeping. What should we expect that our
structures of events show? If modularity is protected,
the backwards causation of NREM-sleep does not slow
down the dynamics of the giant cluster, but resets the
system, renewing all subsystems. Therefore we can ex-
pect that avalanches do not have memory of the preced-
ing ones. At variance, in slowed-down systems, like the
Ising model at Curie temperature, for an extended time,
structurally correlated spins are also temporally corre-
lated. This has been made popular by recent works [8],
that showed a scale-free topology of spin-spin autocorre-
lation network, and showed a remarkable similarity with
fMRI voxel-voxel network for brain activity during wake-
fulness.

In Fig. 3 we test this topological feature of criticality.
Starting from the extracted point processes (RPTs), we
define a pairwise correlation, for each EEG channel pair,
as follows

Cij =
#(events in channel i AND channel j)√

#(events in ch. i)#(events in ch. j)
, (11)

where # stands for the cardinality and AND means the
presence of simultaneous events (i.e. belonging to the
same avalanche). Eq. (11) approximates the correlation

function 〈ξiξj〉/
√
〈ξ2
i 〉〈ξ2

i 〉 when the ξ’s are signals of zero
value, assuming the value 1 at the time of the RTP event.
Pairwise correlation matrices are transformed in dichoto-
mous adjacency matrices Aij through thresholding. We
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choose a threshold = 0.5, but results are robust with re-
spect of other threshold choices. We then compute the
degree distribution P (k) (probability for an electrode to
correlate with k others) for the different nights and sleep
stages.

Segments pertaining to the same phase and night were
glued together to compute the relative symmetric adja-
cency matrix Aij = θ(Cij − 0.5) (θ is the Heaviside step
function) stemming from (11) with threshold 0.5. The
unnormalized degree distribution was calculated as F (k),
i.e. the number of lines with k ones. F (k) is averaged
over the 29 nights and normalized, i.e.

Pav(k) =
〈F (k)〉∑
k〈F (k)〉

. (12)

The degree distributions averaged over all nights,
Pav(k) of Fig. 3, show a long-range network topology
during wakefulness or REM sleep that breaks down into a
short-range topology in unconscious sleep (the maximum
degree is around 20, both for N2 and SWS). Although
data are not clear enough to support a transition from
scale-free to random networks, guides to the eye of Fig.
3 seem to support this intriguing hypothesis. The dif-
ference in the degree distribution between the conscious
and the unconscious states is nevertheless clear, with a
larger number of highly connected nodes during conscious
states. A Kolmogorov-Smirnov test supports the classi-
fication between conscious and unconscious states.

We stress that the very fact that we find a difference
rules out the null hypothesis that event coincidences are
simply caused by volume conduction, in case this effect
is purely linear, i.e., independent of the frequency. Some
caution must be exerted for low frequencies (< 12Hz),
where volume attenuation seems to be lower, particularly
around 9Hz [39]. This may account for more extended
coherence in relaxed pre-sleep wakefulness. Notice how-
ever that (i) the curves of N2 and SWS are both short
range, but have very different spectral component, espe-
cially in the mentioned band. Moreover, assuming that
coherence is due to volume conduction for unconscious
states, should have been reflected in the cluster analysis
of Fig. 2, which, as mentioned, is remarkably similar to
the same analysis on deep intracranial recordings [38].

IV. CONCLUDING REMARKS

In this paper we have studied brain-activity critical fea-
tures through event identification. The identification of
events has the advantage of efficiently compressing a con-
tinuous signal by connecting time-series analysis with in-
formation theory. Indeed, information increases when the
determinism is broken, i.e. when signals display unpre-
dictable changes. Coincidences of such changes in many
EEG electrodes mark an increase in network information.
Moreover, coincidences are not likely to occur by chance.

We have discussed the strengths and limitations of
this approach. We have shown that consciousness and

sleep unconsciousness have similar critical features in
terms of cluster/avalanches connectivity (see Fig. 2), in
turn remarkably similar to that reported in other studies
where events were differently extracted, namely identi-
fying large excursions of local field potentials measured
via intracranial depth recording in epileptic patients [38].
This, in our opinion, means that, while event selection is
somewhat arbitrary, different choices provide similar re-
sults. Alternatively, one can think of a common origin of
both kinds of events, as well as of others.

Another feature of brain criticality is the presence of
long-range correlations. We decided to adopt a popular
technique to unravel infinite-memory effects, namely the
Detrended Fluctuation Analysis. We recovered the estab-
lished fact that infinite memory is only present in con-
scious states, and not in NREM sleep [40]. Our analysis
is performed on the events coincidences only, instead of
the multi-dimensional continuous signal. Remarkably, we
showed infinite-memory breakdown also for shallow sleep,
which shares the temporal-complexity scale-free proper-
ties typical of consciousness for long transient times be-
fore the asymptotic truncation.

The core of the paper is the heuristics exposed in Sub-
section IIB. We showed that one way of explaining the
breakdown of infinite memory is a fragmentation of brain
activity, without making any assumption on a substantial
deviation from criticality, at least from a thermodynamic
point of view. Notice that imposing a deviation from crit-
icality (either subcritical or supercritical, far from crit-
icality) would have the straightforward consequence of
providing system fragmentation (entropy becomes exten-
sive). This, however, may be at odds with the presence
of preserved scale-free integrative excitations. We proved
that a re-parallelizing reset of the system into indepen-
dent components, triggered by large (integrative) fluc-
tuations can explain both the maintaining of scale-free
avalanches and the breakdown of infinite memory. The
reason of the emergence of such mechanism, present dur-
ing NREM sleep only, is beyond the scope of the paper.

We then tested our heuristics by studying extended-
time cross-correlations. For genuine critical systems, i.e.
with circular causation and critical slowing down, the
scale-free network generated by these cross-correlations
is expected to be long lasting, like the fMRI critical net-
work of the works of Fraiman and Chialvo’s group [8].
On the other hand, assuming the presence of a neural
reset should result on more random adjacency matrices.
This has been in fact verified with the new experimental
analysis described in Subsection IIIB.

In synthesis, a new kind of self-organized criticality
emerges in sleep unconsciousness. We no longer have a
thermodynamical feedback of the order parameter on the
control parameter, like that envisaged e.g. in Ref. [38].
The feedback corresponding to sleep unconsciousness is
rather dynamical: Auto-organization that, e.g. caused
by sensory processing, emerges in the cortex, is naturally
accompanied with large fluctuations that, in turn, trig-
ger a massive neural reset. One mechanism able to do
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this is the Sleep Slow Oscillation [24], but it may not be
the only one. Other mechanisms are probably hidden in
some not yet well understood functional role of theta and
sigma activity [41], or in other thalamo-cortical oscilla-
tion [42]. It is however certain that consciousness-related
downwards causation is destroyed by SSOs, that reset the
system after a process of organization.

Subcortical patternization is probably the general
mechanism by which the cortex is prevented from global
intercommunication during unconscious sleep. Spindles
(and activity in the sigma band in general), typical of
shallow sleep (N2), are direct markers of thalamo-cortical
entrainment. This entrainment may give the false im-
pression that the system is globally integrated in a super-
critical state. In fact, cortico-cortical activity is dimin-
ished with respect to wakefulness, at least in terms of fir-
ing rate [41, 43], so one may, on the contrary, be tempted
to cast the cortex into a subcritical state. Anyway, we
conjecture that sensory stimuli, involving the thalamus,
weaken thalamic patternization and allow critical organi-
zation in the transient regime, before parallelism is again
re-established.

In SWS the cellular mechanism is somewhat differ-
ent. The delta rhythm is preserved and actually in-
creased when thalamic driving is absent [44]. However,
it is tempting to conjecture that, even without subcorti-
cal driving, the quasi periodic activity of alternation of
bursting and silence [45, 46] may be a limit cycle of the
self-organized complex dynamics herein exposed.

Future work will be devoted in studying why K-
Complexes are not always evoked, or, in other words,
why neural reset is not always required to protect sleep.
It is possible that very slow fluctuations may induce an
alternation of large and small network global excitabil-
ity [42]. In the presence of low levels of excitability, a
spreading excitation may not make be capable of estab-
lishing a level of integration so large as to trigger neural
bistability.

This paper does not attempt to describe the role of
anatomy in the described mechanisms. We however men-
tioned that transient auto-organization can be the con-
sequence of natural stimuli. On the other hand, Ref.
[47] describes how a transcranial magnetic impulse, sent
to premotor cortical areas, triggers excitation spreading
(quenching) in conscious (unconscious) states. In other
words, excitation is not sufficient, per se, to trigger crit-
ical avalanches in NREM. It is however plausible that
avalanches are favored if they take place exploiting the
presence and directionality of the circuits that usually
process information during wakefulness.
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Appendix: Robustness of µ for random
selection/deletion

We recall from main text that the effective survival
probability can be written as

Ψ(L)(t) =

∞∑
n=0

∫ t

0

dt′ψn(t′)(1− p)nΨ(t− t′), (13)

where here the subscript n in ψ
(L)
n is the waiting time

distribution density of the n-th event. Eq. (13) should

be read as follow. Using f̂(s) =
∫∞

0
exp(−st)f(t)dt as

our notation for the Laplace transform, we can rewrite
(13) as

Ψ̂(L)(s) = Ψ̂(s)

∞∑
n=0

[
ψ̂(s)(1− p)

]n
, (14)

where we used the property

ψn(t) =

∫ t

0

ψn−1(t′)ψ(t− t′)dt′, (15)

with the condition ψ0(t) = δ(t), a Dirac delta, so that, by

induction ψ̂n(s) = [ψ̂(s)]n. We make use of the properties
of Laplace transform of integral functions, namely

Ψ̂(s) =
1− ψ̂(s)

s
, (16)

and use the formula of geometric series, to get

Ψ̂(L)(s) =
1− ψ̂(s)

s

1

1− (1− p)ψ̂(s)
(17)

For t→∞, i.e. s→ 0, as a first approximation we get

Ψ̂(L)(s) ≈ 1− ψ̂(s)

sp
⇒ lim

t→∞
ΨL(t) =

Ψ(t)

p
; (18)

as, for dimensional reasons, lim
t→∞

Ψ(t) = (T/t)
µ−1

, where

T denotes the time scale after which the function become
indistinguishable from an inverse power law, Eq. (18)
means that a random selection induce a rescaling of the
transient time scales of the form

T → T

p
1

µ−1

. (19)

This result can be made more rigorous with the use of
a Tauberian theorem. This reads

ψ̂(s) ≈ 1− Γ(2− µ)(sT )µ−1 − θ(µ− 2)〈t〉s, (20)

where the steplike Heaviside function θ means that the
last term has to be considered only if µ ≥ 2, where 〈t〉 =



9∫∞
0
tψ(t)dt <∞. Plugging Eq. (20) into Eq. (17) yields

for 1 < µ < 2

Ψ̂(L)(s) ≈ T Γ(2− µ)(sT )µ−2

(1− p)Γ(2− µ)(sT )µ−1 + p
, (21)

whose inverse Laplace transform reads

Ψ(L)(t) ≈
Eµ−1

[
−p

(1−p)Γ(2−µ)

(
t
T

)µ−1
]

1− p
, (22)

where Eα(z) is the Mittag-Leffler function, which obeys
the asymptotic property

lim
t→∞

Eα(z) =
1

zΓ(1− α)
, (23)

yielding again Eq. (18). The rigorous Eq. (22), tells us
that for µ < 2 the Mittag Leffler function is expected to
show independently of the detailed form of ψ(t).

The case 2 < µ < 3 is a little more complicated, in the
sense that an exact analytical treatment requires a choice
for ψ(t). However we prove that a Mittag Leffler solution

is stable with respect to random selection/deletion. If
Ψ(t) is a Mittag-Leffler function

Ψ(t) = Eµ−1

[
−
(
t

T

)µ−1
]
, (24)

then

ψ̂(s) =
1

(sT )µ−1 + 1
, (25)

and plugging Eq. (25) into Eq. (17) yields

Ψ̂(L)(s) =
sµ−2Tµ−1

(sT )µ−1 + p
, (26)

whose inverse Laplace transform is

Ψ(L)(t) = Eµ−1

[
−p
(
t

T

)µ−1
]
. (27)
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(2013).

[21] V. Priesemann et al., Front. Syst. Neurosci. 8, 108 (2014).
[22] G. Solovey et al., J. Neurosci. 35, 10866-10877 (2015).
[23] T. Mora, and W. Bialek, J. Stat. Phys. 144, 268-302

(2011).
[24] D. Menicucci et al., Int. J. Psychophysiol. 89, 151-157

(2013); D. Menicucci et al.. PLoS ONE 4, e7601 (2009).
[25] E. Tagliazucchi et al., Front. Physio. 3, 15 (2012).
[26] P. Allegrini, P. Grigolini, P. Hamilton, L. Palatella, G.

Raffaelli, Phys. Rev. E 65, 041926 (2002).
[27] M. S. Mega, P. Allegrini, P. Grigolini, V. Latora, L.

Palatella, A. Rapisarda, S. Vinciguerra, Phys. Rev. Lett.
90, 188501 (2003).

[28] P. Allegrini, P. Grigolini, and B. J. West, Phys. Lett. A
211, 217-222 (1996).

[29] P. Allegrini, F. Barbi, P. Grigolini, and P. Paradisi, Phys.
Rev. E 73, 046136 (2006).

[30] E. G. Altmann, G. Cristadoro, and M. Degli Esposti,
Proc. Natl. Acad. Sci. USA109, 11582-11587 (2012).

[31] A.A. Fingelkurts, and A.A. Fingelkurts, Open Neu-
roimag. J. 2, 73 (2008).

[32] A. A. Fingelkurts, and A. A. Fingelkurts, Brain and Mind
2, 261 (2001).

[33] P. Allegrini, D. Menicucci, R. Bedini, A. Gemignani, and
P. Paradisi, Phys. Rev, E 82 015103(R) (2010).

[34] C. K. Peng et al., Phys. Rev. E 49, 1685 (1994).
[35] S. Franklin, and A. Graesser, Consciousness and Cogni-

tion 8, 285-301 (1999).
[36] D. R. Cox, Renewal Theory, Methuen, London, 1962.
[37] P. Allegrini et al., Front. Physiol. 1, 128:1-9 (2012).
[38] V. Priesemann, M. Valderrama, M. Wibral, and M. Le

Van Quyen, PLoS Comp. Biol. 9, e1002985 (2013).
[39] W. R. Winter, P. L. Nunez, J. Ding, and R. Srinivasan,

Statistic. Med. 26, 3946-3957 (2007).
[40] J.-M. Lee, D.-J. Kim, I.-Y. Kim, K. S. Park, and S. I.

Kim, Medical Engineering & Physics 26, 773-776 (2004);



10

J. M. Zempel et al., Front. Neurol. 3, 76 (2012); T.
Zorick, and M. A. Mandelkern, PLoS ONE 8, e68360
(2013); A. F. Farag, S. M. El-Metwally, and A. A. Morsy,
Automated Sleep Staging Using Detrended Fluctuation
Analysis of Sleep EEG in V. M. Balas et al. (eds.) Soft
Computing Application, Advances in Intelligent Systems
and Computing 195, 501-510, Springer, Berlin, 2013; A.
Goshvarpour, A. Abbasi, and A. Goshvarpour, I. J. In-
telligent Systems and Applications 10, 68 (2013);

[41] T. J. Sejnowski, and A. Destexhe, Brain Res. 886, 208-
223 (2000).

[42] S. Vanhatalo, J. M. Palva, M. D. Holme, J. W. Miller, J.

Voipio, and K. Kaila, Proc. Natl. Acad. Sci. USA 101,
5053-5057 (2004).

[43] E. V. Evarts, J. Neurophysiol. 27, 152-171 (1964); M.
Steriade, Behav. Brain Sci. 3, 465514 (1978);

[44] G. J. Ball, P. Gloor, and N. Schaul, Electroencephalogr.
Clin. Neurophysiol. 43, 346-361(1977).

[45] M. Steriade, D. A. McCormick, and D. A. McCormick,
Science 262, 679-685 (1993).

[46] D. A. McCormick, and T. Bal, Annu. Rev. Neurosci. 20,
185-215 (1997).

[47] M. Massimini et al., Science 309, 2228-2232 (2005).


