
A Case Study in Formal Analysis
of System Requirements

Dimitri Belli and Franco Mazzanti(B)

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo” CNR,
Via G. Moruzzi 1, 56124 Pisa, Italy

{dimitri.belli,franco.mazzanti}@isti.cnr.it

Abstract. One of the goals of the 4SECURail project has been to
demonstrate the benefits, limits, and costs of introducing formal meth-
ods in the system requirements definition process. This has been done,
on an experimental basis, by applying a specific set of tools and method-
ologies to a case study from the railway sector. The paper describes the
approach adopted in the project and some considerations resulting from
the experience.

Keywords: Critical systems of systems · Formal methods · Standard
interfaces · Systems modeling language · Railway signaling system

1 Introduction

The railway infrastructure is constituted by a large, heterogeneous, and dis-
tributed system with components that are on board, trackside, centralized,
crossing regional and national borders, managed by different authorities, and
developed by different providers. Not surprisingly, the current trend is to stan-
dardize the requirements of the various system components together with their
interfaces (see, e.g. EULYNX [22]). Standardization is expected to increase mar-
ket competition, reduce vendor lock-in, and promote the reduction of long-term
maintenance costs. However, to produce the desired outcomes, the defined stan-
dard requirements for the various system components must be precise, i.e., not
suffer from ambiguous interpretation issues, and correct, i.e., not give rise to
interoperability problems and not suffer of inconsistencies or missing points.
The current state of the art is based on the use of natural language require-
ments possibly associated with SysML/UML graphical artifacts [41–45]. Such a
choice is not risk-free because natural language and SysML/UML are usually not
rigorous enough to allow a precise system specification [13,23]. One of the goals
of the 4SECURail [3] project is to observe the impact of the integration of formal
methods inside the requirements definition process. This has been achieved with
the definition of a “Demonstrator”, i.e., an example of requirements construction
process based on formal methods, and its application to a case study selected
from the railway signaling sector [1].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Masci et al. (Eds.): SEFM 2022 Collocated Workshops, LNCS 13765, pp. 164–173, 2023.
https://doi.org/10.1007/978-3-031-26236-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26236-4_14&domain=pdf
http://orcid.org/0000-0003-1491-6450
http://orcid.org/0000-0003-4562-8777
https://doi.org/10.1007/978-3-031-26236-4_14

A Case Study in Formal Analysis of System Requirements 165

2 The Case Study and Demonstration Process

The 4SECURail case study is derived from the communication layers specified
by UNISIG-39 [21] and UNISIG-98 [20], describing the establishment, supervi-
sion, and management of the RBC1-RBC communication line used to support
the RBC-Handover protocol. The full system can be modeled as a set of four
UML state machines interacting with other three state machines modeling other
parts of the execution environment (see Fig. 1). In our modeling, we introduced
an additional abstract “Timer” component that allows the various components
to proceed in parallel but in a constrained way with respect to their relative exe-
cution speed. The requirements of the Communication Supervision Layer (CSL)
and Safe Application Intermediate Sub-Layer (SAI) components are defined in
natural language, and their initial specification can be found in Deliverable D2.3
[3]. The 4SECURail demonstrator process (see Fig. 2) begins with the analysis
of the natural language descriptions of the requirements and with the construc-
tion of an operational SysML/UML model of the system components. The UML
designs are complemented by an explicit and precise set of assumptions on the
characteristics of inter-state machine communications. We make a restricted use

RBC_User_1 RBC_User_2

I_SAI C_SAI

initiator side called side

C_CSLI_CSL

EuroRadio/CFM levels

envenv

env

T
i

m
e
r

Fig. 1. The 4SECURail case study structure

Rigorous Natural Language
Requirements

+
Rigorous Diagrams

Initial Natural Language
Requirements

+
Informative Pictures

Formal Model
+

Formal Properies

INPUT OUTPUT

update

translate

read

abstract

check
semiformal SysML/UML

operational model

Fig. 2. The 4SECURail demonstrator process

1 Radio Block Centre.

166 D. Belli and F. Mazzanti

of the features provided by UML so that the design has a clear and simple
semantics allowing, with a low effort, its mechanical translation into the differ-
ent notations used for formal analysis. This paper focuses on the presentation
of the adopted approach for the translation of the SysML/UML models into the
formal notations supported by three different verification frameworks, namely
UMC [8–10], ProB [28,33], and CADP [24,31]. For all the details of the formal-
ization and analysis process, we refer to the project deliverables [3].

3 The Formal Modeling

The first notation used to model the case study is the KandISTI/UMC frame-
work developed by the Formal Methods && Tools (FMT) Laboratory2 at ISTI-
CNR in Pisa. This notation allows us to define a system as a set of UML state
machines, expressed in a simple textual form3 to explore the possible system
evolutions, and to verify branching time properties on it. Despite its still pro-
totypical status, this framework has been chosen as the first target since it fits
well the needs of fast design prototyping. The resulting graph describing the
system evolutions can be analyzed or saved in the form of a Doubly Labeled
Transition System (L2TS), where the user has the choice to specify which kind
of information should be associated with the L2TS edges and nodes. This infor-
mation may include the UMC transition label, the outgoing events generated
by the effects of a transition, the value of some state variables, or any other
custom flag associated with the transition firing. The second notation is the B
language accepted by the ProB tool. ProB is an animator, constraint solver,
and model checker for the B-Method developed by the Institute for Software
and Programming Languages of the Heinrich-Heine University in Germany. The
B-method-based tool appears to be one of the most widely used tools for the for-
mal development and analysis of railway-related systems [7]. The third notation
is the LNT [16] language of the CADP [24] framework. CADP is an advanced
process algebra-based toolset that leverages Labeled Transition Systems (LTS)
theory to support compositional verification, system minimization, animation,
and testing. The LNT notation has an imperative style of process descriptions
that is well-suit to the description of the behavior of UML state machines.

In UMC, a system is defined as a static instantiation of a set of state machines
from their template defined as a Class definition. The event pool associated with
a state machine can be qualified as FIFO or RANDOM queue, and in our case,
we rely on the UML FIFO default choice. The behavior of a UMC state machine
is described by a set of rules in the form:

Transition_Label:
SourceStates -> TargetStates {Trigger [Guard] / Effects}

2 https://fmt.isti.cnr.it.
3 UMC is freely accessible online at http://fmt.isti.cnr.it/umc and a detailed descrip-

tion of the syntax can be found in http://fmt.isti.cnr.it/umc/DOCS/sdhelp.html.

https://fmt.isti.cnr.it
http://fmt.isti.cnr.it/umc
http://fmt.isti.cnr.it/umc/DOCS/sdhelp.html

A Case Study in Formal Analysis of System Requirements 167

In ProB, our encoding models a system as a single B Machine that includes
the local state and the behavior of all the UML state machines constituting
the system. The main difference between the ProB model and the UMC/LNT
models is that in ProB, the UML event pools are modeled by global variables
manipulated by the (atomic) state machine operations, while in UMC and LNT
the event pools are handled locally inside each state machine, and their manip-
ulation occurs via synchronizations or message exchange. A UML transition of
a state machine is mapped on a ProB OPERATION, appropriately conditioned
with respect to the trigger and guard, and performing the specified effects. The
sending of an event is explicitly modeled with the insertion of data into a FIFO
buffer modeling the event pool of the target state machine.

In the LNT encoding, a state machine is represented by an LNT process, and
the various LNT processes are composed in parallel, appropriately synchronizing
the sending/accepting actions. Each process executes a loop inside which several
alternatives are non-deterministically possible. These alternatives model either
the condition and effects of the triggering of state machine transitions, or the
unconditioned acceptance in the event pool of incoming events. Also in this case,
the event pool of the state machine is explicitly modeled as a FIFO buffer in the
local state of the process.

Figure 3 shows one of the natural language requirements for the initiator CSL
subsystem, while Fig. 4 shows the graphical layout of the state machine diagram
of the CSL system component on the initiator side of the communication line. We
can see how the requirement R4 is modeled by the corresponding transition in
the state machine diagram. Figure 5 shows, from left to right, the encoding of the
R4 transition for UMC, ProB, and LNT. Clearly, the executable model contains
more implementation details than the abstract UML design shown in Fig. 4,
which just describes the system requirements in a semi-formal notation acting as
a bridge between the natural language and the executable/formal notations. The
colors in the figure help to see the matching of the various information present
in each encoding. We can see that the transition label in UMC becomes the
operation name in ProB, that the change of state is modeled in ProB and LNT
by the change of the value of a variable, and that signaling-related operations
are modeled in ProB and LNT as explicit operations on lists/tuples. An essential
consequence of using a UML subset (e.g., no composite states, no parallel states,
no deferred events, no competition between triggered and completion transitions)
is that it becomes rather easy to implement a mechanical translation from the
UMC encoding to the ProB and LNT notations.

Requirement R4:
When in the NOCOMMSconnecting state a is received, the initiator CSL

 moves to COMMS state, sends a RBC_User_connect_indication to the RBC and starts both
 the send and receive timers.

Fig. 3. The R4 requirement for the initiator CSL in natural language

168 D. Belli and F. Mazzanti

ISAI_disconnect_indication

COMMS

receive timer expired /
ISAI.SAI_disconnect_request &

RBC.RBC_User_disconnect_indication

- /
ISAI.SAI_Connect_request

start connection timer;

 /
RBC.RBC_User_connect_indication

start send and receive timer

NOCOMMS
ready

connection
timer expired

NOCOMMS
connecting

NOCOMMS
 wait

ISAI_disconnect_indication /
RBC.RBC_User_disconnect_indication

R1

R2

R3

R4

R5

R6

R7
send timer expired /

ISAI.SAI_DATA_indication(Life-sign)
RBC_User_Data_request(userdata) /
ISAI.SAI_DATA_request (userdata)

R8
R9

ISAI_DATA_indication(saidata)
[saidata != lifesign] /
restart receive timer;

RBC_User_Data_request (saidata)

R10
ISAI_DATA_indication(saidata)

[saidata = lifesign] /
restart receive timer

R11

Initiator CSL

Fig. 4. The state machine diagram of the CSL component on the initiator side

process ICSL [..] is
...
 var mybuff: ICSL_BUFF, ... in
 loop
 select
 -- R4_ICSL

only if
mybuff /= nil

and

 and
STATE = NOCOMMSconnecting

then
 RBC_User_Connect_indication;

 connect_timer := max_connect_timer;
 receive_timer := 0;
 send_timer := 0;

mybuff := tail(mybuff);
 STATE = COMMS

end if
 []
 ...
 end select
 end loop
 end var
end process

MACHINE SYS
 ...
OPERATIONS
 ...
R4_ICSL =
PRE

ICSL_buff /= [] &
&

 ICSL_STATE = NOCOMMSconnecting
THEN

IRBC_buff := IRBC_buff <-
 RBC_User_Connect_indication;
 ICSL_connect_timer :=
 ICSL_max_connect_timer;
 ICSL_receive_timer := 0;
 ICSL_send_timer := 0;

 ICSL_buff := tail(ICSL_buff);
 ICSL_STATE = COMMS
END;
 ...
END;

Class ICSL is
 ...
Behaviour
 ...
R4_ICSL:
NOCOMMSconnecting -> COMMS
 { /

RBC.IRBC_User_Connect_indication;
 receive_timer := 0;
 connect_timer := max_connect_timer;
 send_timer := 0; }
 ...
end ICSL;

Fig. 5. UMC, ProB, and LNT encoding of the R4 ICSL transition

All these three notations, moreover, natively support data type operations
on lists or tuples that can be exploited in an equivalent way to handle FIFO
buffer operations. The final effect of the transformations is the generation of
formal models with almost the same readability as the first UMC model; also,
the original comments present in the UMC code are preserved in the generated
ProB and LNT encodings. Because of the strict budget and timing constraints
of the project, our goal has been limited to the translation of the set of features
currently used in our models. Still, the set of supported features can surely be
further extended (e.g., by allowing sequential composite states and constrained
forms of parallel states).

A Case Study in Formal Analysis of System Requirements 169

The CADP environment allows saving the statespace of an LNT model in the
simple textual .aut [14] format (as an LTS whose labels denote communication
actions). The ProB tool saves the full statespace of a model in textual format
which can be easily mechanically converted into the .aut format (as an LTS
whose labels denote the triggered operation names). Finally, also the UMC envi-
ronment allows saving the statespace of a model in the .aut format, permitting
the user to specify which information to encode in the LTS labels (communica-
tion actions or transition labels, or both). The strong equivalence of the three
models can therefore be easily checked with tools like mCRL2 ltscompare [38]
or CADP bcg cmp [15]. While defects in the code of the translators can often
immediately be put in evidence by just the observation of the size of the gener-
ated state spaces, the formal LTS comparison of the .aut representations allows
observing also one of the specific execution traces that are at the root of the
dissimilarity. This proved to be very useful during the testing of our translators.

4 Hints on the Formal Analysis

The tool diversity adopted in the project allows us to analyze the system from
different perspectives: e.g., state-based linear time properties with ProB, event-
based branching time properties with CADP, state- and event-based properties
with UMC, information hiding and model reductions with CADP. Because of the
parametricity of the system and the presence of several wide-range parameters
in communications, formal analysis can only be done by reasoning on selected
scenarios where the system parameters are fixed and the environment compo-
nents have a desired stimulating behavior. Several examples of these scenarios
are shown in [37] and described in Deliverable D2.5 [3]. Linear (or lazo-shaped)
counterexamples or reachability proofs from UMC and ProB can be displayed
in a friendly way as sequence diagrams. Due to the complexity of the issue, for
more details on the subject, we refer to the final project deliverable D2.5 [3] and
the presentations in [11,35,36].

5 Related Works

The goal of the 4SECURail Demonstrator is to show a possible way to improve
the quality of standard specifications by exploiting formal methods. The project
Formasig [53] has a very similar goal, which is the development of a formal
method allowing railway standardization projects to formally verify standardized
interfaces. Also in the case of Formasig, the starting point is the EULYNX natu-
ral language specification enriched with SysML artifacts. The Formasig approach
aims to translate these EULYNX SysML models, developed with the commer-
cial PTC framework [47], into the process specification language mCRL2 [25,39]
for formal analysis. Several other Shift2Rail [48] projects have investigated the
use of formal methods for the analysis of signaling systems like ASTRAIL [29],
which focuses on a survey of the available tools on this subject, and PERFORM-
INGRAIL [30] (still in progress) more centered on ERTMS [19] moving block

170 D. Belli and F. Mazzanti

specifications. The impact of the adoption of formal methods during railway-
related software development has been studied in Shift2Rail projects X2RAIL2
and X2RAIL5 (in progress). Unfortunately, not all the produced material in
these last projects is publicly available. Many studies investigate the formal ver-
ifications of UML models (e.g. [12,26,27,34,40,46]). Because of the ambiguity,
variability, and complexity of the OMG UML documents, all these efforts appear
as particular personal interpretations of specific UML subsets, without reaching
the goals of providing UML with precise and widely recognized semantics. We
have focused our effort on the model checking techniques provided by ProB for
Event-B specifications. An alternative approach, based on theorem proving to
develop formally verified refinements, is supported by Atelier-B [17] and Rodin
[5]. When using Rodin the input models can also be derived by UML-B [18,49,51]
designs. A fragment of our case study, i.e., the SAI communications levels, has
also been specified and verified, as a spin-off of the project [6], using UPPAAL
[54]. Hugo [32,52] is another interesting example of formal methods diversity that
still uses UML state machines as a starting point while exploiting UPPAAL and
Spin [50] for formal analysis.

6 Conclusions

The effort described in this short paper is just a fragment of the overall activity
performed inside the project and does not describe many other points analyzed
or discussed in the project deliverables. Among these, an analysis of the cost and
benefits from the point of view of Infrastructure Managers for the use of formal
methods, the reasons for choosing UMC, Prob, and LNT as reference platforms,
the reasons and difficulties implied by the choice of using UML as starting point
of the analysis process, the relation between the natural language requirements
and the semi-formal and formal artifacts, the kind of easily understandable feed-
back that the formal analysis can give to the initial standard interface designer.
Some of these themes have also been touched in [11,35,36]. The experience
gained in the experimentation has confirmed that a simplified version of UML
is a viable choice for the modeling of requirements. A simplified UML can be
the base for rigorous, clear, and easy to understand designs that can be mapped
more directly with natural language requirements, and that can be translated
into still understandable formal notations. A second confirmation coming from
our experimentation is that the exploitation of formal methods diversity, i.e.,
multiple translations of the same specification into different formal notations,
allows from one side to reduce and detect as early as possible the introduction
of encoding errors, and from the other side the widening of the available formal
analysis techniques and tools. The project deliverables, the generated models,
the verified scenarios, and the source code of the translators are publicly available
from Zenodo repositories [2,4,37].

A Case Study in Formal Analysis of System Requirements 171

Acknowledgements. This work has been partially funded by the 4SECURail project
(Shift2Rail GA 881775). The content of this paper reflects only the author’s view and
the Shift2Rail Joint Undertaking is not responsible for any use that may be made of
the included information.

References

1. 4SECURail: Project Deliverable D2.1 (2020). https://www.4securail.eu/
Documents.html

2. 4SECURail: Deliverabled of WorkStream 1 (2022). https://zenodo.org/record/
5807738

3. 4SECURail: Project Deliverables (2022). https://www.4securail.eu/Documents.
html

4. 4SECURail: Translation Tools (2022). https://zenodo.org/record/5541350
5. Abrial, J., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:

an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010). https://doi.org/10.1007/s10009-010-0145-y

6. Basile, D., Fantechi, A., Rosadi, I.: Formal analysis of the UNISIG safety appli-
cation intermediate sub-layer. In: Lluch Lafuente, A., Mavridou, A. (eds.) FMICS
2021. LNCS, vol. 12863, pp. 174–190. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-85248-1 11

7. ter Beek, M.H., et al.: Adopting formal methods in an industrial setting: the rail-
ways case. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS,
vol. 11800, pp. 762–772. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30942-8 46

8. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76(2), 119–135 (2011). https://doi.org/10.1016/j.scico.2010.07.002

9. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: States and events in Kan-
dISTI. In: Margaria, T., Graf, S., Larsen, K.G. (eds.) Models, Mindsets, Meta:
The What, the How, and the Why Not? LNCS, vol. 11200, pp. 110–128. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-22348-9 8

10. ter Beek, M.H., Gnesi, S., Mazzanti, F.: From EU projects to a family of model
checkers. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Systems.
LNCS, vol. 8950, pp. 312–328. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-15545-6 20

11. Belli, D., Fantechi, A., et al.: The 4SECURail approach to formalizing standard
interfaces between signalling systems components (2022). Paper Accepted as Poster
Presentation at Transport Research Arena Conference (TRA). https://doi.org/10.
5281/zenodo.7225869

12. Bouwman, M., Luttik, B., van der Wal, D.: A formalisation of SysML state
machines in mCRL2. In: Peters, K., Willemse, T.A.C. (eds.) FORTE 2021. LNCS,
vol. 12719, pp. 42–59. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
78089-0 3

13. Broy, M., Cengarle, M.V.: UML formal semantics: lessons learned. Softw. Syst.
Model. 10(4), 441–446 (2011). https://doi.org/10.1007/s10270-011-0207-y

14. CADP: AUT format man page. https://cadp.inria.fr/man/aut.html
15. CADP: bcgcomp format man page. https://cadp.inria.fr/man/bcg cmp.html

https://www.4securail.eu/Documents.html
https://www.4securail.eu/Documents.html
https://zenodo.org/record/5807738
https://zenodo.org/record/5807738
https://www.4securail.eu/Documents.html
https://www.4securail.eu/Documents.html
https://zenodo.org/record/5541350
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/978-3-030-85248-1_11
https://doi.org/10.1007/978-3-030-85248-1_11
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1016/j.scico.2010.07.002
https://doi.org/10.1007/978-3-030-22348-9_8
https://doi.org/10.1007/978-3-319-15545-6_20
https://doi.org/10.1007/978-3-319-15545-6_20
https://doi.org/10.5281/zenodo.7225869
https://doi.org/10.5281/zenodo.7225869
https://doi.org/10.1007/978-3-030-78089-0_3
https://doi.org/10.1007/978-3-030-78089-0_3
https://doi.org/10.1007/s10270-011-0207-y
https://cadp.inria.fr/man/aut.html
https://cadp.inria.fr/man/bcg_cmp.html

172 D. Belli and F. Mazzanti

16. Champelovier, D., Clerc, X., et al.: Reference Manual of the LOTOS NT to
LOTOS Translator (Version 5.8) (2013). https://cadp.inria.fr/ftp/publications/
cadp/Champelovier-Clerc-Garavel-et-al-10.pdf

17. Clearsy: Atelier B. https://www.clearsy.com/outils/atelier-b/
18. Dghaym, D., Dalvandi, M., Poppleton, M., Snook, C.: Formalising the hybrid

ERTMS level 3 specification in iUML-B and Event-B. Int. J. Softw. Tools Technol.
Transf. 22(3), 297–313 (2019). https://doi.org/10.1007/s10009-019-00548-w

19. ERA: ERTMS Home Page. https://www.era.europa.eu/activities/european-rail-
traffic-management-system-ertms

20. ERA: UNISIG SUBSET 098 RBC-RBC Safe Communication Interface (2012)
21. ERA: UNISIG SUBSET 039 FIS for the RBC/RBC Handover (2015)
22. Eulynx: The Eulynx initiative. https://eulynx.eu/
23. Fecher, H., Schönborn, J., Kyas, M., de Roever, W.-P.: 29 new unclarities in the

semantics of UML 2.0 state machines. In: Lau, K.-K., Banach, R. (eds.) ICFEM
2005. LNCS, vol. 3785, pp. 52–65. Springer, Heidelberg (2005). https://doi.org/10.
1007/11576280 5

24. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. 15(2), 89–107 (2013). https://doi.org/10.1007/s10009-012-0244-z

25. Groote, J.F., Keiren, J.J.A., Luttik, B., de Vink, E.P., Willemse, T.A.C.: Modelling
and analysing software in mCRL2. In: Arbab, F., Jongmans, S.-S. (eds.) FACS
2019. LNCS, vol. 12018, pp. 25–48. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-40914-2 2

26. Grumberg, O., Meller, Y., Yorav, K.: Applying software model checking techniques
for behavioral UML models. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012.
LNCS, vol. 7436, pp. 277–292. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32759-9 25

27. Hvid Hansen, H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol, J., dos Santos,
O.M.: Automated verification of executable UML models. In: Aichernig, B.K., de
Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 225–250.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 12

28. Heinrich-Heine-Univ.: ProB Project Home Page. https://prob.hhu.de/
29. Horizon 2020: Project AstRail. https://cordis.europa.eu/project/id/777561
30. Horizon 2020: Project PerformingRail. https://cordis.europa.eu/project/id/

101015416
31. INRIA: CADP Web site. https://cadp.inria.fr
32. Knapp, A., Merz, S., Rauh, C.: Model checking timed UML state machines and

collaborations. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol.
2469, pp. 395–414. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45739-9 23

33. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transf. 10(2), 185–203 (2008). https://doi.org/10.
1007/s10009-007-0063-9

34. Liu, S., et al.: A formal semantics for complete UML state machines with com-
munications. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp.
331–346. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38613-
8 23

35. Mazzanti, F., Belli, D.: The 4SECURail formal methods demonstrator. In: Collart-
Dutilleul, S., Haxthausen, A.E., Lecomte, T. (eds.) RSSRail 2022. LNCS, vol.
13294, pp. 149–165. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
05814-1 11

https://cadp.inria.fr/ftp/publications/cadp/Champelovier-Clerc-Garavel-et-al-10.pdf
https://cadp.inria.fr/ftp/publications/cadp/Champelovier-Clerc-Garavel-et-al-10.pdf
https://www.clearsy.com/outils/atelier-b/
https://doi.org/10.1007/s10009-019-00548-w
https://www.era.europa.eu/activities/european-rail-traffic-management-system-ertms
https://www.era.europa.eu/activities/european-rail-traffic-management-system-ertms
https://eulynx.eu/
https://doi.org/10.1007/11576280_5
https://doi.org/10.1007/11576280_5
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/978-3-030-40914-2_2
https://doi.org/10.1007/978-3-030-40914-2_2
https://doi.org/10.1007/978-3-642-32759-9_25
https://doi.org/10.1007/978-3-642-32759-9_25
https://doi.org/10.1007/978-3-642-25271-6_12
https://prob.hhu.de/
https://cordis.europa.eu/project/id/777561
https://cordis.europa.eu/project/id/101015416
https://cordis.europa.eu/project/id/101015416
https://cadp.inria.fr
https://doi.org/10.1007/3-540-45739-9_23
https://doi.org/10.1007/3-540-45739-9_23
https://doi.org/10.1007/s10009-007-0063-9
https://doi.org/10.1007/s10009-007-0063-9
https://doi.org/10.1007/978-3-642-38613-8_23
https://doi.org/10.1007/978-3-642-38613-8_23
https://doi.org/10.1007/978-3-031-05814-1_11
https://doi.org/10.1007/978-3-031-05814-1_11

A Case Study in Formal Analysis of System Requirements 173

36. Mazzanti, F., Belli, D.: Formal modelling and initial analysis of the 4SECURail
case study. In: Proceedings: Models for Formal Analysis of Real Systems (MARS).
EPTCS 355, pp. 118–144 (2022). https://doi.org/10.4204/EPTCS.355.6

37. Mazzanti, F., Belli, D.: Formal models of the 4SECURail project (2022). https://
zenodo.org/record/6322392

38. mCRL2: ltscompare man page. https://www.mcrl2.org/web/user manual/tools/
release/ltscompare.html

39. mCRl2: Project Home Page. https://www.mcrl2.org/
40. Ober, I., Graf, S., Ober, I.: Validation of UML models via a mapping to commu-

nicating extended timed automata. In: Graf, S., Mounier, L. (eds.) SPIN 2004.
LNCS, vol. 2989, pp. 127–145. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24732-6 9

41. OMG: Unified Modeling Language, Version 2.5.1 (2017). https://www.omg.org/
spec/UML/2.5.1

42. OMG: Action Language for Foundational UML (Alf) (2018). https://www.omg.
org/spec/ALF/1.1

43. OMG: Semantics of a Foundational Subset for Executable UML Models (2018).
https://www.omg.org/spec/SysML/1.6

44. OMG: Precise Semantics of UML State Machines (2019). https://www.omg.org/
spec/PSSM/1.0

45. OMG: System Modeling Language version 1.6 (2019). https://www.omg.org/spec/
SysML/1.6

46. Pétin, J.F., Evrot, D., Morel, G., Lamy, P.: Combining SysML and formal methods
for safety requirements verification. In: 22nd International Conference on Software
& Systems Engineering and Their Applications, Paris, France (2010). https://hal.
archives-ouvertes.fr/hal-00533311

47. PTC: Windchill Expert Packages. https://www.ptc.com/en/products/windchill/
expert-packages

48. Shift2Rail: now Europe’srail. https://rail-research.europa.eu/
49. Snook, C., Savicks, V., Butler, M.: Verification of UML models by translation to

UML-B. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010.
LNCS, vol. 6957, pp. 251–266. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25271-6 13

50. SPIN: Project Home Page. https://spinroot.com/spin/whatispin.html
51. UML-B: Project Home Page. https://www.uml-b.org/
52. Univ. AUgsburg: HUGO Home Page. https://www.uni-augsburg.de/en/fakultaet/

fai/informatik/prof/swtsse/hugo-rt/
53. Univ. of Twente: Formasig Home Page. https://www.utwente.nl/en/eemcs/fmt//

research/projects/formasig
54. UPPAAL: Project Home Page. https://uppaal.org/

https://doi.org/10.4204/EPTCS.355.6
https://zenodo.org/record/6322392
https://zenodo.org/record/6322392
https://www.mcrl2.org/web/user_manual/tools/release/ltscompare.html
https://www.mcrl2.org/web/user_manual/tools/release/ltscompare.html
https://www.mcrl2.org/
https://doi.org/10.1007/978-3-540-24732-6_9
https://doi.org/10.1007/978-3-540-24732-6_9
https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/ALF/1.1
https://www.omg.org/spec/ALF/1.1
https://www.omg.org/spec/SysML/1.6
https://www.omg.org/spec/PSSM/1.0
https://www.omg.org/spec/PSSM/1.0
https://www.omg.org/spec/SysML/1.6
https://www.omg.org/spec/SysML/1.6
https://hal.archives-ouvertes.fr/hal-00533311
https://hal.archives-ouvertes.fr/hal-00533311
https://www.ptc.com/en/products/windchill/expert-packages
https://www.ptc.com/en/products/windchill/expert-packages
https://rail-research.europa.eu/
https://doi.org/10.1007/978-3-642-25271-6_13
https://doi.org/10.1007/978-3-642-25271-6_13
https://spinroot.com/spin/whatispin.html
https://www.uml-b.org/
https://www.uni-augsburg.de/en/fakultaet/fai/informatik/prof/swtsse/hugo-rt/
https://www.uni-augsburg.de/en/fakultaet/fai/informatik/prof/swtsse/hugo-rt/
https://www.utwente.nl/en/eemcs/fmt//research/projects/formasig
https://www.utwente.nl/en/eemcs/fmt//research/projects/formasig
https://uppaal.org/

	A Case Study in Formal Analysis of System Requirements
	1 Introduction
	2 The Case Study and Demonstration Process
	3 The Formal Modeling
	4 Hints on the Formal Analysis
	5 Related Works
	6 Conclusions
	References

