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HIGHLIGHTS 

• Smart devices give new perspectives for the assessment of cardiometabolic risk in daily 

life settings. 

• Using Structural Equation Models, a three-variable clinical model based on 

anthropometry, glycolipid factors and vascular function, is defined.  

• Sensor measurements about anthropometry, skin auto-fluorescence and endothelial 

function are taken on subject face using the sensors of the Wize Mirror system. 

• By means of Self Organizing Maps, our measures are able to identify subjects at-risk in 

good agreement with clinical evaluation.  
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Abstract

Objective: Cardio-metabolic risk assessment in the general population is of paramount importance to reduce diseases
burdened by high morbility and mortality. The present paper defines a strategy for out-of-hospital cardio-metabolic
risk assessment, based on data acquired from contact-less sensors.
Methods: We employ Structural Equation Modeling to identify latent clinical variables of cardio-metabolic risk,
related to anthropometric, glycolipidic and vascular function factors. Then, we define a set of sensor-based measure-
ments that correlate with the clinical latent variables.
Results: Our measurements identify subjects with one or more risk factors in a population of 68 healthy volunteers
from the EU-funded SEMEOTICONS project with accuracy 82.4%, sensitivity 82.5%, and specificity 82.1%.
Conclusions: Our preliminary results strengthen the role of self-monitoring systems for cardio-metabolic risk preven-
tion.
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1. Introduction1

Cardiovascular disease (CVD) represents the world’s2

leading cause of death [1]: the World Health Organi-3

zation estimates 23.6 million deaths by 2030. Prevent-4

ing CVD is therefore a main global challenge. In this5

view, cardio-metabolic (CM) risk refers to those factors6

that may increase the likelihood of developing vascu-7

lar events or diabetes. CM risk involves traditional fac-8

tors included in risk calculators used in clinical practice9

(e.g., arterial hypertension, dyslipidemia, and smok-10

ing) and emerging risk factors (e.g., abdominal obesity,11

inflammatory profile, and ethnicity) [2]. Noteworthy,12

most factors can be reduced by improving individual13

lifestyle.14

The identification of at-risk subjects in the general15

population is of paramount importance to prevent the16
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development of overt disease and of co-related com-17

plications, which bear social and economical conse-18

quences [3, 4]. A key issue is to provide people with19

tools for self-assessing risk factors [5]. Recently, great20

attention has been paid to eHealth and mHealth appli-21

cations [6]. Smart devices give new perspectives to CM22

risk prevention in every-day life settings: prevention is23

expected to evolve towards smart, individual and proac-24

tive strategies particularly focused to lifestyle improve-25

ment.26

In this paper, we define a strategy for CM risk as-27

sessment for primary prevention in the general pop-28

ulation. Our strategy leverages on statistical model-29

ing, data analysis and advanced sensor-based monitor-30

ing technology, and can be implemented as part of a31

non-invasive monitoring system placed at home or other32

daily-life settings, such as gyms and chemist’s shops. A33

reliable at-home monitoring system for CM risk would34

reduce the number of people in care offices (decreasing35

the burden on medical professionals), and increase ad-36

herence with individually-tailored prevention actions.37

Our approach consists of two pathways. First, we de-38

fine a clinical model of CM risk factors, based on up-39
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List of acronyms used in the paper.

CVD Cardiovascular disease

CM Cardiometabolic

ML Machine Learning

SEM Structural Equation Modeling

SOM Self Organizing Maps

DT Decision Trees

RF Random Forests

k-NN k-Nearest Neighbour

RHI Reactive Hyperemia Index

BMI Body Mass Index

LDL Low-Density Lipoprotein

HbA1c Hemoglobin A1c

AGE Advanced Glycation End-products

fRBC fraction of Red Blood Cell Count

UV Ultraviolet

LED Light Emitting Diode

MSI Multispectral Imaging

SE Standard Error

RMSEA Root Mean Square Error of Approximation

SRMR Standardized Root Mean Residual

CFI Comparative Fit Index

TLI Tucker-Lewis Index

to-date clinical knowledge and standard clinical prac-40

tice. Then, we define a set of measurements closely re-41

lated with clinical risk factors, which can be evaluated42

at home through non-contact sensors. We demonstrate43

that our sensor-based measurements can recognize at-44

risk subjects, and provide a proof-of-concept for a per-45

sonalized strategy for risk prevention.46

To define the clinical model of CM risk, we collect47

clinical data on a population of 68 healthy subjects,48

and carry out Confirmatory Factor Analysis via Struc-49

tural Equation Modeling (SEM) [7]. The analysis con-50

firms the presence of three latent variables correspond-51

ing to different risk categories, namely, risk related to52

anthropometric factors, glycolipid function, and vascu-53

lar function. SEM is gaining momentum in disciplines54

such as psychology, social and economic sciences, and55

also medicine [8], as a technique to analyse conceptual56

models and quantify the relationships among a network57

of factors. As opposed to black-box machine learning58

techniques, SEM explains how single factors contribute59

to intermediate latent variables and to the final risk out-60

come.61

After defining the clinical model, we select a set of62

sensor-based measurements which are closely related63

to the latent variables of the clinical model, and which64

can be evaluated non-invasively in the context of self-65

monitoring at home. The measurements are taken on fa-66

cial features, according to a semeiotic model of CM risk67

[9]. We show that the sensor-based measurements have68

significant correlation with the latent variables from69

clinical parameters. Therefore, they can be used in place70

of clinical parameters for non-invasive self-monitoring71

at home. Furthermore, we use statistical analysis and72

Self Organizing Maps (SOMs) to show that our mea-73

surements are able to identify subjects at-risk, thus sup-74

porting the development of self-monitoring systems that75

warn individuals about the onset of CM risk, enable76

them to act on individual risk factors, and trigger medi-77

cal examination when needed.78

Remarkably, our CM risk monitoring strategy is ex-79

plainable by design: as our sensor-based measurements80

correlate with latent clinical variables identified via81

SEM, they inherit the interpretability of the underlying82

clinical model.83

To sum up, our main contributions are:84

• defining a clinical model of CM risk. While there85

are many studies on CM risk factors, our study86

of associations via SEM analysis can contribute87

to shed light on the multifactorial etiology of CM88

risk;89

• defining sensor-based measurements that corre-90

late with clinical parameters and that can be91

non-invasively acquired at home or other out-of-92

hospital settings;93

• demonstrating that sensor-based measurements are94

able to identify at-risk subjects, in good agreement95

with clinical evaluation;96

• a proof-of-concept about the potential of integrat-97

ing a multi-sensing platform with proper data mod-98

eling strategies, for the definition of CM risk in-99

dicators in the context of personalized monitoring100

and primary prevention in the general population.101

The paper layout is as follows. Section 2 discusses102

the state of the art about CM risk assessment. Sec-103

tion 3 introduces the dataset. Section 4 describes the104

SEM model based on standard clinical data and the105

sensor-based measurements. Section 5 provides results106

about the SEM model estimation and its consistency107

with clinical evaluation of CM risk, the correlation of108
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sensor-based measurements with SEM latent variables,109

the clinical evaluation of CM risk, and the recognition110

of at-risk conditions by SOMs. Conclusions are drawn111

in Section 6.112

2. State of the art113

2.1. Cardio-metabolic risk indicators114

Several validated risk charts are reported in the med-115

ical literature [14–20]. Most risk scores use standard116

CVD risk factors (age, sex, smoking, blood pressure and117

cholesterol); some also incorporate advanced markers118

on metabolic or homeostasis processes. As opposed to119

existing risk scores that tend to capture specific features,120

the risk model in the present paper is multi-faceted, as121

it takes into account the whole spectrum of CM risk,122

including both CVD and type2-diabetes.123

A recent survey [21] debates the use of CM risk124

scores in clinical practice on the basis of clinical out-125

comes. While the use of risk charts in sporadic visits126

by specialized medical professional may have a lim-127

ited positive effect, we hypothesize that a continuous128

and personalized assessment may guarantee a thorough129

monitoring of risk factors and a timely delivery of alerts.130

Several solutions have been devised so far for the re-131

mote monitoring of chronic patients [10, 22, 23], while132

few attempts target CM risk prevention in healthy sub-133

jects [11]. None of these works has yet defined a per-134

sonalized risk assessment tool.135

In this paper, we present a proof-of-concept for136

a personalized preventative solution based on self-137

monitoring, through measurements computed at home138

via contact-less, non-invasive sensor measurements.139

Table 1 compares our proposal with the works dis-140

cussed in this section.141

2.2. Machine learning for cardio-metabolic risk assess-142

ment143

Recent works have tried to improve the accuracy of144

existing CM risk scores via Machine Learning (ML).145

The authors of [12] frame risk prediction as a classi-146

fication problem and compare three ML methods with147

the HellenicSCORE, on a dataset that comprises demo-148

graphic, metabolic and biometric variables. The ML149

methods are k-Nearest Neighbours (k-NNs), Decision150

Trees (DTs) and Random Forests (RFs). ML meth-151

ods do not outperform the HellenicSCORE. The authors152

also comment on k-NNs and Random Forests classifiers153

being not easily intelligible, and making it hard to ex-154

plain classification results. On the other hand, Deci-155

sion Trees are easier to understand, yet more simplistic156

when compared to the other models. Another study [13]157

investigates whether ML can improve the accuracy of158

risk prediction within a large general primary-care pop-159

ulation. The authors compare the prediction accuracy160

of the ACC/AHA index [24] against logistic regression,161

Random Forests, gradient boosting machines, and artifi-162

cial neural networks (ANN). The results show ML algo-163

rithms outperform the ACC/AHA index. Nonetheless,164

the best performance is obtained by an artificial neural165

network, which suffers from the so-called “black-box”166

effect, despite the use of explanatory visualization tech-167

niques.168

On the contrary, we model CM risk to be explain-169

able by design, thanks to the use of SEM, a data-driven170

approach suitable to identify latent variables and their171

influence in an easily interpretable way.172

2.3. SEM techniques173

SEM is a technique to discover pathways of associ-174

ations between latent and observed variables, by tak-175

ing into account collinearities in the data. We refer the176

reader to [7] for a comprehensive description.177

Khodarahmi et al [25] use SEM to assess the as-178

sociation of adherence to a healthy-eating index with179

socio-demographic factors, psychological characteris-180

tics, and CM risk factors among obese individuals.181

Lewlyn et al. [26] reveal via SEM the positive asso-182

ciation of cigarettes smoked per day, alcohol consumed183

per week, and diastolic blood pressure with hyperten-184

sion and coronary heart disease. Shakibaei et al. [27]185

use SEM to investigate the integration of standard med-186

ical data to assess CM risk in clinical settings.187

SEM techniques have been proven effective and ro-188

bust on datasets of relatively small size. Another major189

advantage of SEM is that it can be used when no su-190

pervisory information is available on the data, as in our191

context.192

3. Dataset193

To set up the clinical model of CM risk, and then194

test the sensor-based self-monitoring strategy, we col-195

lected data about a population of 75 volunteer subjects196

in overall healthy conditions. Being healthy does not197

exclude the presence of potential CV risk factors, and198

we aim indeed at primary prevention in the general pop-199

ulation. In particular, our population was chosen on the200

basis of lack of physical and mental disease at least for201

6 months before enrollment; care was taken to exclude202

subjects under any sort of medical treatment or previ-203

ous autoimmune or neoplastic disease and specifically204
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Table 1: Positioning our proposal within the state of the art. Top: with respect to delivered output and target population. Bottom: with respect to
methodological aspects and reference clinical indicators.

Reference Delivered output Target

[10] Decision Support System Chronic patients, Follow up

[11] Digital platform Chronic patients, Secondary prevention

Ours Multisensory platform, CM Risk model Healthy subjects, Primary prevention

Reference Methods Reference clinical indicators Target

[12] k-NN, DT, RF HellenicSCORE Primary prevention

[13] Logistic Regression, RF, ANN ACC/AHA index Primary prevention

Ours SEM, SOM Novel, multi-faceted clinical model of CM risk Primary prevention

Table 2: Clinical parameters for CM risk assessment and their statistics, grouped by risk factors.

Male (30) Female (38) Total P-value

Anthropometric factors

Body Mass Index Class

<25 23.3% 36.8% 30.9%

0.27825 to 29.9 50.0% 31.6% 39.7%

>30 26.7% 31.6% 29.4%

Waist Circumference (cm) 25 to 29.9 50.0% 31.6% 39.7% 0.001

Hip Circumference (cm) 25 to 29.9 50.0% 31.6% 39.7% 0.787

Fat Mass 25 to 29.9 50.0% 31.6% 39.7% 0.001

Glycolipid factors

Cholesterol Levels mean ±sd 195.8 ±33.1 200.2 ±42.6 198.3 ±38.5 0.645

LDL (mg/dl) mean ±sd 122.1 ±28.7 122.3 ±32.9 122.2 ±30.9 0.974

Glucose (mg/dl) mean ±sd 95.3 ±12.4 88.5 ±9.8 91.5 ±11.5 0.140

HbA1c (mmol/mol) mean ±sd 36.6 ±3.5 36.4 ±4.0 36.5 ±3.8 0.875

Triglycerides mean ±sd 117.8 ±61.3 92.6 ±47.9 103.7 ±55.2 0.061

Vascular function Reactive Hyperemia Index mean ±sd 2.1 ±0.5 2.4 ±0.7 2.3 ±0.6 0.118

those with known systemic hypertension, hypercholes-205

terolemia, diabetes. Subjects with increased body mass206

index alone were not excluded keeping in mind that the207

category of healthy obese exist. In 68 enrolled subjects208

full data were available for the present study. At base-209

line, all subjects underwent a complete medical history.210

Then, a physical examination followed. The data anal-211

ysed in this paper were collected once for each subject.212

The characteristics of the study population and the data213

collected are described in Appendix A.214

Our working hypothesis is that CM risk can be de-215

scribed in terms of three main risk factors: anthropo-216

metric factors, glycolipid factors, and vascular function.217

Table 2 reports the set of clinical parameters used in the218

present study for CM risk assessment and some basic219

statistical values, with the parameters grouped accord-220

ing to the three risk factors above mentioned:221

• Antropometric factors: four anthropometric pa-222

rameters that are sensible to obesity and over-223

weight, and that are commonly used in clinical224

practice;225

• Glycolipidic factors: abnormal lipid metabolism226

and hyper-glycaemia, which are recognized CM227

risk factors;228

• Vascular function: the Reactive Hyperemia In-229

dex (RHI) measured by pulse amplitude tonome-230

try [28], to measure endotelial dysfunction, which231

is a major physio-pathological mechanism corre-232

lated with CM risk factors, leads towards coro-233

nary artery disease, and is involved in several dis-234
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ease processes (e.g. hypertension, hypercholes-235

terolemia, and diabetes).236

4. Methods237

Section 4.1 describes our modeling strategy to de-238

fine latent variables on top of the clinical measurements239

listed in Table 2. Then, Section 4.2 defines the sensor-240

based counterparts for the clinical latent variables, to be241

computed in the context of CM risk self-monitoring.242

4.1. Identifying latent variables in CM risk243

In terms of SEM, a model of CM risk can be based244

on a set of linear equations that relate observed clinical245

parameters to latent variables representing different risk246

components [7].247

As observed above, we focus on CM risk related to248

anthropometric factors, glycolipid factors, and vascu-249

lar function. Since for vascular function we have a sin-250

gle observed parameter (RHI), no latent variable is in-251

troduced. For the other two risk components (anthro-252

pometric and glycolipidic), we model the relations be-253

tween observations and latent clinical variables as in254

Figure 1, by defining the two latent variables:255

• Anthropometric factors variable, depending on256

Body Mass Index (BMI), Waist Circumference,257

Hip Circumference, and Fat Mass;258

• Glycolipidic factors variable, depending on LDL259

Cholesterol level, Glucose, Glycated hemoglobin,260

and Triglycerides.261

Using the notation in Table 3, we denote with {λi}
4
i=1

and {γi}
5
j=1 the clinical parameters, with Λ and Γ the cor-

responding latent variables. Therefore, we can write the
following structural equations:

λi = bi + ciΛ + εi, i = 1, . . . , 4

γ j = d j + e jΓ + ε j, j = 1, . . . , 5

where bi, ci, d j, e j are the model coefficients and εs are262

noise terms.263

In Section 5 we estimate the model coefficients by264

fitting the model to the population described above, and265

analyse how the single observed variables (correspond-266

ing to clinical parameters) contribute to each latent risk267

factor.268

4.2. Non-invasive self-monitoring of CM risk via269

sensor-based measurements270

We propose a set of sensor-based measurements as271

counterparts for the two latent clinical variables (anthro-272

pometric and glycolipidic factors variables) and for the273

Table 3: Symbol convention for SEM modelling

Variable name Latent Variable Measurement

Anthropometric factors Λ

BMI Class λ1

Waist Circ. λ2

Hip Circ. λ3

Fat Mass λ4

Glycolipidic factors Γ

Cholesterol Levels LDL γ2

Glucose γ3

HbA1c γ4

Triglycerides γ5

vascular function parameter (RHI). The measurements274

can be non-invasively evaluated via a self-monitoring275

device. We use the multi-sensing system developed in276

the context of the European project SEMEOTICONS.277

The system is called Wize Mirror, as it has the ap-278

pearance of a mirror to easily fit into daily-life settings279

(Figure 2). The Wize Mirror includes a 3D acquisi-280

tion module with a low cost depth sensor for face de-281

tection, reconstruction, and morphometric analysis; and282

a multispectral imaging (MSI) module with five com-283

pact monochrome cameras with band-pass filters at se-284

lected wavelengths and two computer-controlled LED285

light sources [29]. Three prototypes of the Wize Mirror286

were deployed in three clinical sites (Pisa, Milan and287

Lyon), where sensory data were acquired.288

Our sensor-based measurements for CM risk assess-289

ment derive from the face semeiotic model of CM risk290

in [9]. They are listed below, grouped according to the291

three risk categories identified in the previous sections.292

All measurements are non-invasive and contact-less:293

• Anthropometric measurement (Wize Mirror Mor-294

phoE): We compute Wize Mirror MorphoE as the295

maximal length of curves resulting from intersect-296

ing the 3D face surface and a set of spheres cen-297

tered in the nose tip and with increasing radius298

(Figure 3.a). This measure has been shown to cor-299

relate with standard weight-related measurements300

(weight, body mass index, waist and neck cir-301

cumference), and therefore is an indicator of over-302

weight and obesity [30];303

• Glycolipidic measurement (Wize Mirror AGE):304

Wize Mirror AGE quantifies AGE (Advanced Gly-305

cation End-products) deposits of skin tissue, which306

are favoured by metabolic alterations due to dia-307

betes [31]. AGE in sub-cutaneous layer can be de-308

tected via autofluorescence stimulated by UV light309

[32]. We use the technique in [33], based on the ac-310
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Anthropometric factors

BMI

Hip Circ.

Waist Circ.

Fat Mass

! 1

! 4

! 3

! 2

Glycolipidic factors

Cholesterol

Glucose

LDL

HbA1c

Observed variables

Tryglicerides

! 1

! 4

! 3

! 2

! 5

Observed variables

Figure 1: Latent clinical variables (ellipses) and their relation to clinical observations (rectangles). εiss are noise terms.

Figure 2: The Wize Mirror prototype.

quisition of multispectral images of the face during311

UV exposure (Figure 3.b);312

• Endothelial Dysfunction measurement (Wize Mir-313

ror ENDO): Our sensor-based measurement Wize314

Mirror ENDO is based on the analysis of mi-315

crocirculatory blood flow after local heating [34].316

Changes in skin fraction of Red Blood Cell Count317

(fRBC) during local heating are related to reactive318

hyperemia and can be used as indicators of en-319

dothelial function [35]. fRBC can be measured re-320

liably using MSI, after heating the face skin to the321

temperature of 39°C for about 10 minutes through322

a computer-controlled heater and an IR thermome-323

ter measuring skin temperature.324

In Section 5.2 we demonstrate our measurements are325

positively correlated with the clinical variables, and that326

they can identify at-risk subjects in our population. The327

ability to discriminate between normal and risk con-328

ditions is assessed via Self-Organizing Maps (SOMs)329

[36]. Details on SOMs are given in Appendix B.330

5. Results331

5.1. SEM model332

Estimation of SEM coefficients333

We estimate the model coefficients on the SEMEOTI-334

CONS’ data-set. The values of the standardized regres-335

sion coefficients are reported in Table 4. The regres-336

sion coefficients show how the single observed vari-337

ables (corresponding to clinical parameters) contribute338

to each latent risk factor. The most important predic-339

tors for the anthropometric factor score were Body Mass340

Index (standardized regression coefficient β = 0.939,341

standard error S E = 0.027, significance p < 0.0001)342

and Hip Circumference (β = 0.829, S E = 0.043,343

p < 0.0001). For the glycolipid factor score the HbA1c344

(mmol/mol) (β = 0.741, S E = 0.093, p < 0.0001), and345

the Cholesterol levels (β = 0.655, S E = 0.098, p <346

0.0001) were the most relevant predictors. The Struc-347

tural Model Fit indices (Root Mean Square Error of Ap-348

proximation, RMSEA; Standardized Root Mean Resid-349

ual, SRMR; Cmparative Fit index, CFI; Tucker–Lewis350

Index, TLI) indicate that the proposed models fit the351

data adequately [37].352

Model evaluation353

To check the consistency of SEM-derived factor354

scores with clinical findings, we test if the factor scores355
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a. b.

Figure 3: a. The set of curves used to compute the Wize Mirror MorphoE, indicative of fatness or obesity. b. Auto-fluorescence map obtained by
UV light exposure. The skin in forehead and cheeks is particularly responsive to the stimulation due to the accumulation of AGEs.

Table 4: Regression coefficient of the SEM model built on top of clinical parameters.

Regression coefficients Fit Indices

Factor Observed variables
Standardized

SE P> |z|
Standardized Regression Coeff.

RMSEA SRMR CFI TLI
Regression Coeff. (95% Confidence Interval)

Anthropometric

Body Mass Index (BMI) 0.939 0.027 0.000 0.885 to 0.993

0.075 0.004 0.935 0.917
Waist Circ. 0.787 0.054 0.000 0.681 to 0.893

Hip Circ. 0.829 0.043 0.000 0.745 to 0.914

Fat Mass (Bod Pod) 0.684 0.071 0.000 0.545 to 0.825

Glycolipid

Cholesterol Levels 0.655 0.098 0.000 0.462 to 0.847

0.098 0.042 0.985 0.963

LDL (mg/dl) 0.643 0.099 0.000 0.448 to 0.838

Glucose (mg/dl) 0.650 0.104 0.000 0.447 to 0.854

HbA1c (mmol/mol) 0.741 0.093 0.000 0.558 to 0.924

Triglycerides 0.565 0.113 0.000 0.344 to 0.786

are able to place the subjects in our population in differ-356

ent CM risk categories. A cardiologist grouped the 68357

subjects into three classes of CM risk: no risk (green),358

mild to moderate risk (yellow), high risk (red). The359

grouping was performed for each of the three latent vari-360

ables: anthropometric, glycolipidic, and vascular func-361

tion. The colorization is based on the clinical parame-362

ters related with risk factor: green if all parameters fall363

within normal limits; yellow if at least one parameter is364

slightly outside the upper limit; and red if at least one365

parameter is well above upper limits. It is worth noting366

that Vascular function has two groups (red and green)367

only. This is due to the fact that a single threshold is368

used in clinical practice for RHI. Fourteen subjects were369

classified as green, fourteen as yellow, and forty as red.370

The box and whiskers plots in Figure 4.a show how371

the latent variables identified via SEM were able to dis-372

criminate subjects in different risk categories. This con-373

firmed the ability of SEM to correctly identify latent374

variables.375

5.2. Evaluation of sensor-based measurements376

Correlation with clinical risk factors377

We analyse the correlation between sensor-based378

measurements and the latent variables from clinical pa-379

rameters.All the three measurements have significant380

positive correlation with their clinical counterparts, with381

p-value less than 10−2. In particular, the anthropomet-382

ric sensor measurement Wize Mirror MorphoE has a383

Pearson correlation of 0.559 with the anthropometric384

clinical factor score; the glycolipidic sensor measure-385

ment Wize Mirror AGE has a Pearson correlation of386

0.349 with the glycolipid clinical factor score; the en-387

dothelial dysfunction sensor measurement Wize Mirror388

ENDO has a Pearson correlation of 0.648 with the en-389

dothelial dysfunction clinical factor score. The corre-390

lation coefficients and their statistical significance for391

all three sensor-based measurements show their suit-392
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a.

b.

Figure 4: a.) Box and whiskers plots for clinical variables (two latent variables and RHI) on the study population. The clinical variables are able
to separate subjects having no risk (green) from subjects with moderate (yellow) or high (red) risk. It worth noting that Vascular function has two
groups (red and green) only, because a single threshold is commonly accepted in clinical practice for RHI. The reader should notice that RHI is
decreasing for impaired endothelial function. b.) Box-plots of sensor-based descriptors (Wize Mirror MorphoE, Wize Mirror AGE, Wize Mirror
ENDO) for risk (red) and no-risk groups (dark green). The dark green group includes both green and yellow group for clinical data

ability in place of clinical parameters for non-invasive393

self-monitoring.394

Usefulness for CM risk self-monitoring395

We investigate whether sensors-based measurements396

are able to assess individual CM risk, and thus trigger397

proper warnings. First, we check whether the sensor398

measurements are able to identify people at risk. As399

we did with clinical factor scores, we analyse box and400

whiskers plots on the study population, for each sensor401

measurement. In order to provide a clear cut separation402

between subjects with and without one or more CM risk403

factors, the sensor-based measurements are categorized404

in two groups only: dark green (including people with405

normal or slightly outside normal values, i.e., includ-406

ing green and yellow subjects in the previous classifi-407

cation) and red (absolutely outside normal range, same408

as in the previous classification). The box and whiskers409

plots of sensor-based measurements are shown in Fig-410

ure 4.b. Median values are significantly different in the411

two groups for all three measurements. Though, some412

overlapping exists between the groups for MorphoE and413

ENDO. This was expected, as our population mainly in-414

cludes healthy subjects, and those with history or cur-415

rent overt cardiovascular diseases and diabetes were ex-416

cluded.417

SOM analysis418

We train 2D Self Organizing Maps on the sensor-419

based measurements Wize Mirror MorphoE, Wize Mir-420

ror AGE and Wize Mirror ENDO. The training is run421

ten times with random weight initialization. We refer422

to a SOM with 7 × 7 units, which is coherent with the423

data set size and exhibits a good compromise between424

data representation and overall accuracy in recognizing425

different risk condition.426

Figure 5.a depicts the distribution of each weight di-427

mension in the network space (weight-plane maps). A428

clear spatial arrangement of weight values has emerged429

after training.430

To assess the discrimination capabilities of the net-431

work in discriminating different risk conditions, we ex-432

amine the distribution of winning units with respect to433

different data categories. As before, we consider dark434

green and red subjects, and evaluate the hit maps for435

the two group. In the left panel of Figure 5.b we have436

the hits map for normal (dark green) subjects, while in437

the middle panel the hit map for at risk (red) subjects438

is shown. The two groups of responder units are rather439

separated and suggest that the network can discriminate440

between the two different risk conditions.441

Using a majority voting scheme [38], we labeled the442

units as representative of the dark green group (lower443

CM risk) and red group (higher risk). The resulting la-444

belling is reported in the right panel of Figure 5.b. Ac-445

8



a.

b.

Figure 5: a) Maps of SOM weight components. Darkest colors indicate smallest values while light colors denote largest ones. b) Left: hits map for
green subjects, middle: hit map for Red subjects, right: map labeling as obtained using majority voting.

cording to this labelling scheme, we observe the classifi-446

cation performance detailed in Table 5 below. Accuracy,447

sensitivity and specificity are all larger than 82%, denot-448

ing good recognition capabilities of subjects at risk.449

To evaluate SOM behaviour with respect to size, Ta-450

ble 6 reports the performance for SOMs of varying di-451

mensions, coherent with the dataset size: from 5 × 5 to452

9 × 9 units. While maps with size below 6 × 6 are less453

accurate, maps with dimension 7 × 7 or higher show454

better performance. The 7 × 7 map has a number of455

units which guarantees good accuracy while containing456

the risk of overfitting, given the number of subjects in457

our dataset.458

6. Discussions and Conclusions459

ICT technologies can support efficient strategies460

against the spread of CVD and CM risk, by integrating461

multi-sensing platforms and data modelling to derive a462

personalized evaluation of risk conditions. In this work,463

we use data from the EU project SEMEOTICONS to464

provide a proof of concept of a sensor-based strategy to465

recognize the presence of one or more CM risk factors466

in individuals. The aim is to increase the awareness in467

Table 5: Confusion matrix for risk classification by SOM.

Clinical evaluation Lower risk Higher risk Total

SOM classification

Lower risk 23 7 30

Higher risk 5 33 38

Total 28 40 68

True Positives: 33

False positives: 5

True negatives: 23

False negatives: 7

Accuracy: 0.824 (23+33)/68

Sensitivity 0.825 33/40

Specificity 0.821 23/28

apparently healthy subjects about risk factors for dis-468

eases with high rates of morbidity and mortality. Our469

approach is based on two different pathways. From a470

9



Table 6: Results for risk classification by SOM, according to different
map sizes.

Size Accuracy Sensitivity Specificity

5 × 5 0,676 0,700 0,643

6 × 6 0,779 0,775 0,786

7 × 7 0,824 0,825 0,821

8 × 8 0,838 0,850 0,821

9 × 9 0,853 0,850 0,857

clinical view point, data collected from volunteers are471

used to set a simple model of the main risk factors, rep-472

resented by clinical latent variables. This model is im-473

plemented according to the SEM methodology, which474

is explainable by design, and works well with limited475

data and no supervisory information. The model con-476

sistency with clinical findings is qualitatively reported.477

From the individual monitoring view point, we adopt478

sensor-based measurements of face signs. We demon-479

strate that they are closely related to the latent variables480

of the clinical model, and that they can identify high-481

risk subjects with respect to both single risk factors and482

overall risk.483

Our results are preliminary, due to the limited number484

of sensor-based measurements tested, the use of a pro-485

totype for their acquisition, and the relatively small size486

of the dataset. Nevertheless, our results are promising,487

especially in light of the fact that identifying at-risk sub-488

jects among individuals in overall healthy conditions is489

not an easy task.490

In the future, we plan to include additional sensor-491

based measurements, related to both physical and psy-492

chological aspects relevant to CM risk (e.g., blood pres-493

sure data, pulse-oxymetry, heart rate and heart rate vari-494

ability, facial signs of stress and anxiety). This is ex-495

pected to improve the sensitivity and specificity of our496

risk assessment procedure [39, 40]. Another line of497

research is the stability of the considered analysis to498

sensor measurement faults [41]. Moreover, encouraged499

by the results on the dataset from the SEMEOTICONS500

project, we plan to enlarge the population size. This501

would also allow us to experiment with different data502

analysis and learning techniques.503

Our results show that a sensor-based, non-invasive as-504

sessment of CM risk is feasible for primary prevention.505

Therefore, our findings contribute to strengthen the role506

of technology and data modeling for out-of-hospital in-507

dividual monitoring. In the era of precision medicine,508

the approach we presented may provide “the right treat-509

ment to the right person at the right time”.510

7. Summary table511

• CVD represents the world’s leading cause of death.512

CM risk refers to those factors that may increase the513

likelihood of developing CVD or diabetes.514

• Smart devices give new perspectives for the assess-515

ment of CM risk in every-day life settings.516

• A clinical model of CM risk is derived using the data517

from the population of the EU project SEMEOTI-518

CONS (68 healthy subjects). Using SEM method519

three variable are defined relating to Antropometric520

factors, Glycolipid factors and Vascular function. In521

the same population, sensor measurements related to522

antropometry, skin auto-fluorescence and endothelial523

function are taken on subject face using the sensors524

of the Wize Mirror system [29].525

• The sensor-based measurements have significant pos-526

itive correlation with the latent variables from clinical527

parameters. Using SOMs, our measures are able to528

identify subjects at-risk in good agreement with clin-529

ical evaluation.530
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Appendix A. Dataset547

The data come from an acquisition campaign in548

the context of the EU-funded project SEMEOTI-549

CONS (FP7 Project - SEMEiotic Oriented Technology550

for Individual’s CardiOmetabolic risk self-assessmeNt551

and Selfmonitoring, http://www.semeoticons.eu, GA.552

611516). Volunteers were recruited through local ad-553

vertisements or during an outpatient visit in one of three554

clinical centers (Pisa, Lyon and Milan). Subjects were555

considered eligible according to the following inclu-556

sion criteria: age in-between 25 and 60 years; will-557

ing to participate in the study; overall healthy condi-558

tions, and under no medical treatment at study inclusion.559

As we target primary prevention in the general popula-560

tion, study exclusion criteria were represented by his-561

tory or current overt cardiovascular or cerebrovascular562

disease and/or diabetes. Nevertheless, CM risk factors563

were not assessed before enrollment. Ethical approval564

for the study was received from the Ethics Commit-565

tee for Clinical Trials of Northwestern Tuscany (Study566

n° 213/201, final approval date: 19/11/2015, Name of567

the trial: SEMEOTICONS, ClinicalTrials.gov Identi-568

fier: NCT02818504). Written informed consent was569

signed by all participants prior to study enrolment in570

front of a Medical Doctor. All study procedures were571

designed and conducted in accordance with the tenets572

of the Declaration of Helsinki.573

At baseline, after enrollment all subjects underwent574

a complete medical history. Table A1 reports the clin-575

ical and socio-demographic characteristics of the study576

population (age, gender, clinical history, lifestyle).577

Table A1: Clinical and socio-demographic characteristics of the study
population, made of 30 male and 38 female subjects.

Male Female Total p-value

Age (Mean ±sd) 46.3 ±9.9 45.0 ±10.6 45.6 ±10.3 0.614

Smoker
No 96.7% 81.6% 88.2%

0.055
Yes 3.3% 18.4% 11.8%

Diabetes
No 93.3% 97.4% 95.6%

0.421
Yes 6.7% 2.6% 4.4%

Cholesterol
No 66.7% 78.9% 73.5%

0.254
Yes 33.3% 21.1% 26.5%

Hypertension
No 90.0% 92.1% 91.2%

0.761
Yes 10.0% 7.9% 8.8%

The physical examination consisted of: anthropomet-578

ric parameters (height, weight, waist and hip circum-579

ference); body composition analysis (lean mass and fat580

mass) by an air displacement pletismograph BodPod581

(Cosmed, USA); peripheral venous blood samplings582

(total, HDL and LDL cholesterol, triglycerides, glu-583

cose, insulin, HbA1c, haemoglobin, creatinine); AGEs584

(Advanced glycation end products) assessed by forearm585

skin autofluorescence (AGE reader DiagnOptics Tech-586

nologies, The Netherlands); endothelium-dependent va-587

sodilatation via peripheral arterial tonometry (Endo-588

PAT2000, Itamar Medical Ltd., Caesarea, Israel); heart589

rate recorded by a standard 12-lead ECG; blood pres-590

sure measured non-invasively by a manual sphygmo-591

manometer and averaged over three consecutive mea-592

sures.593

Appendix B. SOM network594

SOMs are unsupervised neural networks having the595

capability to build accurate, but low-dimensional, topol-596

ogy preserving-maps of the input data space [36]. This597

means that similar inputs data tend to excite neighboring598

units in the map. The map space is defined beforehand,599

usually as a finite two-dimensional region where a set600

of nodes mi, i = 1, . . . ,N is arranged in a regular grid.601

Each node is fed by input data xk via a weight vector wi.602

For a given input xk, the output of the network is defined603

by the best matching (or winning) unit mc obtained by:604

c = argmink(||wk − x||)

The weight wc represents the network response and605

is a point in data space.606

During training, nodes in the map space stay fixed,607

while their weight vectors are moved toward the in-608

put data without spoiling the topology induced from609

the map space. During a training epoch all input pat-610

terns are presented to the network. For each pattern,611

the weight of mc unit and neighboring units are adapted612

according to a predefined neighborhood function hck613

(Gaussian is a common choice for h). In this work we614

adopted the batch version of the SOM adaptation algo-615

rithm [36] leading to the adaptation rule:616

wi =

∑
k hcixk∑

k hci

This equation ensures a faster convergence and pro-617

vides more stable results with respect to stochastic adap-618

tation. After training, SOM can build accurate topo-619

graphic representation of the input space catching sig-620

nificant details including possible data clustering. In621

particular, each weight vector can be viewed as a pro-622

totype in data space as it tends to respond to a set of623

“near” input points.624
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