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Abstract

The “model-preference” account of default reasoning recently proposed by Selman and
Kautz overcomes many limitations of previous default formalisms, as it has a strong
model-theoretic flavour and provides a formal justification for the limited cognitive load
that default reasoning seems to require of human beings. In this paper we describe L(D¥),
a non-standard proof system for model-preference default reasoning; L(D7) is non-
standard in the sense that rules have a global (instead of the usual local) character, and
that it deals with proofs of the minimality of object level theories rather than with proofs of
the theoremhood of formulae. Nonetheless, L{Dt) retains the essential character of a proof
system, namely, the independence of provability from the order of application of the rules,
and may thus prove a useful tool for the integration of this model-preference default
reasoning with other forms of reasoning that are typically dealt with proof-theoretically.

1 Introduction

Default reasoning plays an important role in everyday practical reasoning. Agents, be they natural or
artificial, typically face situations in which they have to act and take decisions on the basis of a body of
knowledge that is far from being an exhaustive description of the domain of discourse; their lack of such
a description is a direct consequence of the limited capacity of their physical repositories of knowledge,

of the limited throughput of their channels of communication with the external world (e.g. the visual

1 Current address: Department of Computer Science, University of Toronto, M5S 1A4 Toronto,
Ontario, Canada. E-mail: fabrizio@ai.toronto.edu



apparatus), and, above all, of the fact that the processes involved in the acquisition of knowledge (both
from external sources -- e.g. books -- and internal ones -- e.g. speculative reasoning) are
computationally demanding and time consuming. .

Nevertheless, action and decision-making is often so complex to require more than the knowledge
the agents actually possess; this forces them to make up with the limited coverage of their knowledge
bases (KBs) by means of “default” assumptions which are brought to bear in the reasoning task. As the
name implies, “assumptions” are items of knowledge endowed with an epistemic status that is far from
being solid: that is, they can be invalidated by further reasoning or by future acquisition of empirical
data. These phenomena are well-known in cognitive science, and their lack of resemblance with
deductive patterns of reasoning has sometimes been taken to imply that a great deal of human
reasoning does not conform to the canons of “logic” and hence escapes attempts at formalization
(Johnson-Laird 1983).

Doubtless, the overall effectiveness of human action in the face of incomplete information testifies
to the effectiveness of this modality of reasoning: in fact, humans are much quicker at creating
surrogates of missing knowledge than at actually acquiring that knowledge in a more reliable way,
either through reasoning or empirical investigation, and have the ability to.come up with plausible
surrogates, surrogates that in most occasions turn out to be accurate predictions of the actual reality.
Once these surrogates have been created, humans are much quicker at reasoning on the resulting
exhaustivé, albeit “epistemically shakier”, description of the domain of discourse than they would be had
they to rely on the smaller part of this description that they trust as being accurate tout court. These
observations are at the heart of the recent interest that the KR community has shown in vivid
knowledge bases (Levesque 1986, 1988; Etherington ef al. 1989), i.e. exhaustive descriptions of the
domain of discourse consisting of collections of atomic statements2. Reasoning on these KBs, which
may be considered as “analogues” of the domain being represented, is easily shown to be efficient.

It is precisely in the face of the above-mentioned empirical considerations that the bad
computational properties of current formalisms that attempt to account for default reasoning (such as
the formalisms based on Circumscription (McCarthy 1980; 1986) or on Autoepistemic Logic (Moore 1985;
Konolige 1987)) are particularly disturbing: arguably, a formalism for default reasoning not only should
characterize the class of conclusions that agents draw in the presence of incomplete information, but
should also possess radically better computational properties than formalisms accounting for reasoning

tasks at which humans are notoriously inefficient (such as e.g. classical logic in the case of deductive

2 In formally introducing vivid KBs Levesque (1988) actually situates his discussion in the
framework of the first order predicate calculus; hence, for him a vivid KB is “a collection of ground,
function-free atomic sentences, inequalities between all different constants (...), universally quantified
sentences expressing closed world assumptions (...) over the domain and over each predicate, and the
axioms of equality” . As our discussion will be situated in the framework of the statement calculus, we
will take this definition of vivid KBs instead.



reasoning).

These considerations have lead researchers to look with special interest at formalizations of
default reasoning that emphasizé computational tractability. In their recent paper “The complexity of
model-preference default theories” (hereafter [MPD]), Selman and Kautz (1988) d‘escribe DH,*, a
tractable system for performing inferences on acyclic theories of Horn defaults; in this system a vivid,
complete KB may be obtained in polynomial time starting from an incomplete one and from an acyclic
theory of Horn defaults. This tractability result accounts for what both intuition and empirical evidence
suggest us, namely, that in order to obtain KBs upon which subsequent reasoning can be carried out
efficiently, humans use a reasoning method that is itself efficient.

The framework described in [MPD], quite similarly to other recent proposals (Shoham 1987;
Brown & Shoham 1989), has the added appeal of possessing a strong model-theoretic flavour3. In this
paper we attempt to complete the picture by describing L{D*), a proof theory for D, the most general
system described in [MPD] of which D#,* is a tractable subset?. Quite surprisingly, L{D) turns out
also to be a proof theory for D+ (and for the other subsets of Dt that are discussed in [MPD]); this
happens essentially because L{D%) has no logical axioms and because the above mentioned subsets are
obtained from DT simply by restricting the representation language®. L{D+) is non-standard in
nature, because of two quite different reasons:

Q it must account for the global character of default reasoning, i.e. for the fact that the complete
KB, and not single items of it, has to be brought to bear in order to infer a conclusion. When
defaults are involved, the relation of logical consequence is not a relation between two formulae,
but a relation between the whole KB and a formula. We want to emphasize the fact that globality
is inherent in the endeavour of default reasoning, and is not a feature of our specific approach to
it;

O unlike in more standard proof theories, the minimality of a theory (see below) has to be proven
rather than the theoremhood of a formula. Again, concern with a property of a whole theory (i.e.
KB) rather than one of a single formula is another aspect of the above mentioned globality.

Nonetheless, L{D%) retains the essential character of a proof system, that is, the independence of the

notion of provability from the order of application of the rules. This is also its most interesting feature,

3 A semantics for Selman & Kautz's model-preference default systems that fully embraces the
model-theoretic credo is described in (Sebastiani 1990).
4 In this paper we will implicitly rule out from consideration the system D, as its lack of

commitment to any specificity ordering between defaults (see below) makes it the least interesting
among the systems of [MPD]; arguably, the presence of D in [MPD] is only instrumental to the
establishment of the complexity results. The other systems discussed in [MPD], DH* and DH,*, are

restrictions of Dt to the Horn case and to the Horn Acyclic case, respectively.

5 Quite similarly, resolution is a proof theory both for classical propositional logic and for Horn
propositional logic.



the one which makes it a viable alternative to the graph-theoretic approaches to model-preference
reasoning that are proposed in [MPD]. In fact, while a graph-theoretic approach seems the more
natural choice for dealing with model-preference reasoning in isolation, the unifying framework of
proof theory is probably the most sensible choice when its integration with other forms of reasoning
(being these mostly dealt with proof-theoretically) is considered.

This paper is organized as follows. In order to make it self-contained, in Section 2 we give a brief
overview of Dt; this overview is not completely faithful to the original system described in [MPD] in that
it incorporates the modifications that have been suggested in (Sebastiani 1989) in order to make D+
behave correctly in the presence of both certain information and “defeasible” (default) information. In
Section 3 we spell out the proposed proof system in detail and describe in which ways L{D*) departs
from more traditional ones. In Section 4 we apply L(D*+) to a specific problem in default reasoning,

namely one that involves reasoning about inheritance hierarchies. Section 5 concludes.

2 An overview of Selman & Kautz's system o+

Roughly speaking, the idea around which the systems of [MPD] revolve is that the import of a default d
= o — g is to make a model (that is, an exhaustive specification of what the domain of discourse is like)
where both « and ¢ are true be preferred to another model where o is true but g is not. By
combining the effects of the preferences due to the individual defaults, a set of defaults identifies a set of
“maximally preferred” models; as any model identifies one and only one vivid KB, maximally preferred
models are meant to represent possible ways in which the agent may “flesh out” his body of certain
knowledge by the addition of defeasible knowledge. For instance, according to a set of defaults such as
{od = b, b — c}, the model where a, b and ¢ are all true would be a maximally preferred model.

However, the systems in [MPD] also account for the fact that a more specific default (i.e. one with
a more specific antecedent) should override a less specific one, and they do so by “inhibiting”, where a
contradiction would occur, the preference induced by the less specific default; for instance, this prevents
a set of defaults such as {a = 6,6 — ¢, ab— —-¢,a~b — -¢} to generate maximally preferred

models where a and ¢ are both true.

The first thing we need to do in order to introduce D+ formally is to describe what the language
for representing knowledge in Dt is. Let P = {p;, pa, ..., pn} be a finite set of propositional letters and
L be the language of literals built from P (a literal being a propositional letter p or its negation -p).
We define a default d to be an expression of the form a — g, where ¢ is a literal and «is a set of

literals®. We will also use the standard definition of a model for L as a function M: P --> {True,

6 For notational convenience we will omit to draw braces in antecedents of defaults. Hence we will
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False}; accordingly, we will say that M satisfies a theory T of L (written as M |=T)iff M assigns
True to each literal in T, negation being evaluated with respect to M in the standard manner?.

The above-mentioned specificity ordering between defaults is captured by postulating that, given a
set of defaults D, a default d = @ — ¢ in D is blocked at a model M iff there exists a default &’ in D
such that ’=aUB— ~q and M I= U . A default d = @ = g is then said to be applicable to
a model M iff M |= « and d is not blocked at M. If d is applicable at M, the model d(M) is defined
as the model which is identical to M with the possible exception of the truth assignment to the
propositional letter occurring in ¢, which is assigned a truth value such that d(M) I=gq.

Naturally enough, a preference ordering induced on models by a set of defaults D may at this
point be defined. Given a set of defaults D and a theory 7', the relation “<+” is defined to hold between
models M and M’ that both satisfy T (written M <+ M’) iff there exists d in D such that d is
applicable to M and such that d(M) = M’. The relation “<” is defined as the transitive closure of
“<4” 8

Finally, we will say that a model M is maximally preferred (or maximal) with respect to a set of
defaults D and a theory T iff for all models M’ either M’< M is the case or M < M’ is not the case.

We will illustrate the way Dt works by way of an example®.

Example Let P ={e,b,¢,d},D ={a—b,b—>c¢, ab— -c,a-b — -c,a-c— -d}, T= {d}.
-abecd, -a-bed, ab-~cd and ~a~b-cd are all and the only maximal models and all and the only intended
models10. Note that if 5 — ¢ had not been blocked at ab-cd, then abed would have been maximal too,

contrary to intuitions. The example is represented graphically in Figure 1.

write e.g. ab — —¢ instead of {a, b}— —c.

7 In this paper, unlike in [MPD], we will not deal with theories including connectives other than
negation; hence, a theory T will just be a set of literals which do not contain both a propositional letter
p and its negation. Besides being less in keeping with the philosophy of vivid KBs, the commitment of
[MPD] to arbitrary theories brings about some unintuitive behaviour, as first noted in (Boddy et al. 1989).

8 [MPD] defines "<" to be the reflexive transitive closure of "<+"; that this is redundant may be
seen by inspecting the way "<" is used in the definition of maximal model. Also, the requirement that
both models satisfy T is the key modification introduced in (Sebastiani 1989) and allowing a correct
interaction between certain and defeasible knowledge.

9 In the drawings of the following examples, rectangles will denote models represented the obvious
way (e.g. a~bed will represent the function that assigns True toa,c and d and False to b). Arrows
will represent “<+” relationships. Slashed arrows will represent what would have been “<+”
relationships unless a blocking had occurred. Also, we will omit drawing arrows corresponding to
simple loops (i.e. arrows starting and ending in the same model) as they do not contribute in supporting
the maximality or non- of a model. Models that do not satisfy 7" will also be omitted for similar reasons.

10 We will call an “intended model” a model which our intuition suggests should be a maximal
model. A model-preference default system will thus be empirically satisfactory iff for every set of
defaults D every intended model is also a maximal model and viceversa.
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3 A proof system for model-preference default reasoning

Before introducing L{Dt) in formal detail we will sketch the basic ideas that underlie it in order to give
the reader a feeling for what we are after. |

As mentioned above, L£{D*) will not be concerned with proving the theoremhood of a formula. Let
us recall that in more traditional proo'f systems the notion of theoremhood of a formula may be seen as
the proof-theoretic counterpart of the model-theoretic notion of validity, i.e. truth in all models. As we
have seen above, there is no notion of validity in D+ (apart from the “trivial” one imported from classical
logic, i.e. the one that does not take the import of defaults into account). The key semantic notion for us
is that of a theory identifying a model which is maximal with respect to the given input data, i.e. to a
theory T and a set of defaults D; hence, L{DF) will bé concerned with proving the proof-theoretic
counterpart of this notion, that, as such a theory will have a “minimal” number of models (namely, a
single model)1l, we will call “minimality of a theory” wrt <T', D>.

Acc'ording to our framework, the construction of a proof will roughly consist of the synthesis of a
sequence of progressively larger theories T =Ty, Ty, ..., Ty.r , where n is the cardinality of the
alphabet, % is the cardinality of T, and each T,; is obtained through the application of an inference
rule that adds to T; a literal that is guaranteed not to contain propositional letters that already appear
in T;. The proof ends when the cardinality of the most recently obtained theory equals n; this theory
will contain 7 literals made out of the n propositional letters of the alphabet, and will hence be a vivid

KB12, We will call a theory obtained in this way a minimal theory.

11 Strictly speaking, a theory can also have zero models (iff it is inconsistent); however, we will
disregard this case here.

L To be consistent with the definition given in (Levesque 1988), it is the set of positive literals



The literal that is being added to T'; to yield a theory T';,; will usually be the consequent of a
default d = ¢ — g in D that is relevant to the most recently obtained theory T;; here “relevant” means
that its antecedent « is a subset of T; and is not a subset of the antecedent of any other default in D.
Alternatively, this literal may be the result of a nondeterministic expansion (a “ﬂeshing out” operation)

of T;, which must take place whenever no more defaults are relevant to T;.

After having reached a general feel for what L{D+) is like, we are ready to delve into its formal
specification. We will start by defining what a “step” in a proof is.

Let us recall that in more traditional proof systems a step is, roughly, either an axiom or a
formula that follows from the application of an inference rule to one or more of the preceding steps.
Instead, given the global character of default reasoning, L{D") steps will have to be global descriptions
of the state of advancement of the proving process. Therefore, at the very least, a step will have to
contain a description of what the most recently obtained theory is; in particular, we will see that the last
step of a proof will consist exactly of a (minimal) theory. However, as we have previously anticipated,
the set of actions that can possibly be taken at a given stage in the proof depends on the existence of
defaults that are relevant to the most recently obtained theory. Hence, for better convenience, an L(D+)
step will also typically contain a description of what the defaults that might possibly be relevant to the

most recently obtained theory are, and of what the ones that might become relevant in the future are.13

Definition A step of an L{D+) proof is either a theory T, or a pair <T', D> where T is a theory and D
is a set of defaults, or a triple <7, D, X > where T is a theory and D, X are sets of defaults. B

In the definition above, D is the set of “active” defaults, i.e. the ones that are potentially relevant to the
most recently obtained theory, while X is the set of “idle” defaults, i.e. the ones that, although not
relevant to the most recently obtained theory, might turn out to be relevant at future stages of the proving
process. Note that, unlike in classical proof theories where steps are always formulae of the language,
here steps do not all belong to the same syntactic type. Also, notice that although n-£ theories are
constructed during a proof, this does not mean that the number of steps in a proof is n-k because, as we
will see below, only two inference rules out of six build a new theory; in fact, the number of steps in a

proof is always larger than n-k%.

belonging to T, that can be called a vivid KB; for the pui'poses of this paper we will be able to overlook
the distinction.

13 The recording of relevant defaults might not prove strictly necessary; consequently, its
elimination might allow to cut down the number of rules of the proof system from the current six to
four; however, the conditions on the applicability of the remaining rules would then be much more
complicated, which is the reason why for the moment being we will stick to the formulation described in
this paper.



We are now ready to define what a proof and what a minimal theory are.

Definition A proof in L{D*) is a sequence of m steps (m=3) such that: 1) the first step is a pair <7,
D> where T is a theory and D is a set of defaults ; 2) the m-th step is a theory T, ;; 3) for all i=2,
..., m, the i-th step is the result of the application of one of the inference rules to the j-th step, for some
J=1, ..., i-1; 4) n is the cardinality of the alphabet and % is the cardinality of 7' B

Definition A minimal theory wrt <T, D>, where T is a theory and D is a set of defaults, is the last
step of a proof in L{D*) whose first step is <T, D>. ]

We may now proceed to describe, one by one, the rules of inference that will be the constituents of
L(D*). In this section we will use the following abbreviations. We will feel free to write ~q; and actually
mean p; in case q; = -p;, and —p; in case q; = p;. Also, we will say that two consistent theories T';
and Ty are incompatible when q; € T; and -~q; € T} for some i=1, ..., n (i.e. when their union is
inconsistent). We will also use the abbreviations T, D™ and X™ to indicate the 7, D and X
components of step m, respectively. ,

The first rule we encounter is S, which is actually the first rule to be applied in a proof.

<T, D>

<T,D, {}>

S (“Start”) creates an empty set X of “idle rules”; at each step m the set X™ of idle rules will consist of
rules that are not relevant to T (because their antecedent is not a subset of 77) but that are also not
“ruled out” by it (i.e. the negation of their consequent is not in 7™), so that further additions of literals to
T™ might render them applicable at a future stage of the proof. Note that, since by definition the first
step of a proof must be a pair <7', D> and since, as it will soon be clear, S is actually the only rule that
can be applied to such a pair, S is always the first rule to be applied in a proof. Note also that neither S
nor any other rule return a pair <7, D>: this means that S is never applied other than to the first step.

<T,D, (>

T
where the cardinality of T is n

QED (“Quod Erat Demonstrandum”) is applied to a step m such that the cardinality of 7™ is equal to



the cardinality of the alphabet: semantically speaking, this means that the extension of 7™ is a set
consisting of a single model, and that the proof is virtually completed: we only need to get rid of D™ and
X™ in order to comply with requirement 2 of the definition of “proof”. Note that, since the last step of a
proof must be a theory, and since QED is the only rule that returns solely a theory 7, the last rule to be
applied in a proof is always QED. Conversely, since there will be no rules with solely a theory T as
antecedent, QED is only applied as the last rule of a proof.

The next and last four rules we encounter are applied to a triple <7, D™, X™> to yield a triple
<Tm+l pm+l xXm+ls  Given the properties of rules S and QED, all rule applications apart from the

first and the last in a proof will involve one of these four rules.

<T, {dl’ ceey di’ veey dp},X>

<T, {db very di-l’ di+1’ veey dp},X>
whered; =0 —gq
and either o and T are incompatible
or {g} and T are incompatible

orge T

R (“Remove”) removes permanently from D™ a default that could never be used in the proof, either
because its antecedent could never be a subset of T+ for any /20 (this is the case when a and T™
are incompatible), or because its consequent could never be added to T™+! for any [20 (this is the case
when {g} and T™ are incompatible), or because its consequent will always be an element of 7™+ for all
[20(this is the case when g € T™). Notice that application of this rule is necessary to empty D™ and

consequently let the F rule (see below) be triggered when appropriate.

<T, {dl, aeey di, cery dn_}, {xl, ceey xn}>

<T, {dl, eeey di-l» di+1’ veey dn}, {x1, veey Xy di}>
whered;=a—¢q
and ¢ is not a subset of 7'

and a and T are not incompatible
and {g} and T are not incompatible
and it is not the case thatge T

I (“Idle”) moves a default which is not relevant to 7 (i.e. a is not a subset of 77), but might turn out

to be relevant at some future stage of the proof, from the set D™ of active defaults into the set X™ of idle



defaults.

<T, D = {db veey di’ eeey dn},X>

<Tuy {q}, {dz, veey di-l: di+1: veey dn} UX, {} >
where d; = a—q
and ais a subset of T
and {g} and T are not incompatible

and there is no proper superset §of « such that 3 — -q € D

A (“Apply”) applies a default d; which is most specific for 7™, i.e. it adds its consequent to 7™,
removes d; from D™ (because it would no more be useful) and moves all defaults from the set of idle
defaults X™ into the set of active defaults D™ (because their antecedents might be subsets of 77U {g}).

<T, 3, X>

<Twlgd, \J G, - A2r-1) > G » ks 1)s -+ Gnfmp™ i)} 0>
for all defaults dj=qgq), ..., Inmy™ i € Xandforallk=1,..,m;
where neither p; nor -p; belong to T'

F (“Flesh out”) nondeterministically adds either p; or -p; to 7™ if T™ does not already contain either
p; or =p; and moves all defaults from the set of idle defaults X into the set of active defaults D™.
However, if ¢; is added to 7™, for any default d; of form gz, - Un(mp™ ~qi (where 7 is any
permutation over the alphabet) which originally belonged to X™, F adds to D™ all contrapositives of
dj, that is, all defaults d;of form qu(z), -, Qu@h-1) » 9i » Qr(hel)s - In(mp™ ~n(k) forallk =1, ..,
mj; this is done in order to make sure that further F applications will be consistent with the defaults
that have not yet been discarded.

Having terminated the description of the inference rules, our job is completed by the following

definition.

Definition We define the logic L(D*) of Model Preference Defaults as the proof system which is
composed of the six rules S, QED, R, I, A, F. B

Notice that L{D+) does not have anything corresponding to what, in more traditional proof systems, are

logical axioms. In fact, if we followed the parallel between the theoremhood of a formula and
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minimality of a theory wrt <D, T>, the notion corresponding to valid formulae would be that of a theory
which is always minimal, irrespective of what D and T are. Quite obviously, there is not such a
theory: as in model-preference default reasoning we are interested in finding one of the possibly many
theories that are minimal wrt <D, T>, if there existed one theory which were always minimal this

kind of reasoning would be a non-problem.

4 An example

In this section we will illustrate the way L(Dt) works on a specific example, against which the
reader will be able to check the actual behaviour of the rules described above. We will start by describing
an instance problem <7, D> and by finding out, by means of the usual graph-based method originally
proposed in [MPD], all its maximal models. We will subsequently go on to apply L{D*) to the same
instance problem <7, D> in order to check the equivalence of the two problem-solving methods. In
order to gain a better understanding of the behaviour of L{D¥), this time we will not be content with
finding a single minimal theory, but will go on to find all minimal theories of <T, D>. It will in fact
turn out that these theories are all and the only theories denoting the maximal models found with the
graph theoretic method.

Example Let P ={a,b,¢,d},D ={d—¢,b—=c,d—*-a,c—d, -a—d}, T={a}. This is a
typical example of an inheritance hierarchy, i.e. a set of defaults whose preconditions are sets with a
single element; in recent times these hierarchies have been widely investigated also from a formal point
of view (see e.g. Touretzky et al. 1987; Selman & Levesque 1989). The example is represented

graphically in Figure 2.

Figure 2

a~b-cd a~p-c-d
abc-d i a-bce-d l
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Here ab-ecd, ab-c~d, a-bed, a-b-c~d, and abed are all and the only maximal models (and are also all
and the only intended models). We will be interested in showing that all and only the corresponding
theories are minimal according to L(D*). The need to find all minimal theories will compel us to

explore the proof tree exhaustively. For convenience of presentation, in Figure 3 we detail the proof tree.

@ bcd Figure3:

-4 ab-c~d

1
2

a-bed
/
2
1 e il —d a-b-c~d
S(O—>(c) =t
2
v 6 a~b~c~d
Cr—( () =
: 1 G(p) @red
2 e a-b-c-d
5
LD
2 e a-bed
6
1 °
(=)
2 e a~b-c-d
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In the tree-based representation of all possible proofs with respect to <7, D> each path represents a
proof, and the nodes it traverses represent literals added to the theory T during the process. When a
multiplicity of simple arrows depart from a node, they indicate that at that stage in the proof an F
(“Flesh-out”) rule had to be used; the multiple paths departing from the node represent the various
nondeterministic expansions that could be performed at that stage. Solid arrows indicate that an A
(“Apply”) rule had to be (deterministically) applied.

The proofs so summarized in the proof tree are detailed in the following table. Each row
represents a step in a proof, and is identified by a number (x/y) in the first column; this is to be
interpreted as saying that this is the x-th step of all proofs corresponding to paths in the proof tree
whose identifier starts with y. For example, step 12/4 is the 12-th step of the proofs identified by paths 41
and 42. In the i-th step the following columns represent the 7% D! and X! components, while the last

column gives information as to which rule is applied to which piece of information.

# T D X Rule applied
1/- {a} {d—c, b—=~¢, d——a, ¢—d, ~a—d}

2/- {a} {d—c¢, b—=¢, d—=a, c—d, —a—d} -- S

3/- {a} {b~=¢, d—=a, c—d, —a—d} {d—c} I (d—c)
4/- {a} {d—-a, c—d, ~a—d} {d—c¢c, b—-c} I (b—-c)
5/- {a} {c—d, —a—d} {d—c, b~} R (d—-a)
6/- {a} {-~a—d} {d—c, b—=c, c—d} I(c—d)
7/- {a} g {d—c, b—=c, c—d} R (=a—d)
8/1 {a, b} {d—¢, b—-c, c—d} g F (b)
9/1 {a, b, ~c} {d—c, c—d} { A (b—-¢)
1071 {a, b, —c} {c—d} il R (d—¢)
11/1 {a, b, =c} 0 i R (c—d)
1211 {a, b, ¢, d} 0 0 F(d)
13/11  {a, b, —c¢, d} - - QED

Notice that a sequence of interleaved applications of R and I (e.g. steps 3/- to 7/-)
produces a result that is independent of the particular order in which these rules are
applied, because the result of each application does not affect the applicability of the
others. Without loss of generality we will then be able to consider a proof as a
representative of a whole class of different proofs obtained by shuffling the order of
applications of R and I.

1212 {a, b, —c, ~d} {0 { F(-d)
1312 {a. b, ~c, ~d) - - QED
8/2 {a, =b} {b—-c, d—c, c—d} 0 F (=b)
9/2 {a, -b} {d—e¢, c—d}) 0 R (b—=c)
10/2 {a, -b} {c—d} {d—c} I(d—c)
112 {a, =b} { {d—c, c—d} I(c—d)

-13-



12/21 {a, -b, c} {d—e¢, c—d} { F(c)
1321 {a, =b, ¢} {c—d} 0 R (d—c)
1421  {a, =b, ¢, d} 0 .0 A (c—d)
1521 {a, -b, ¢, d} - - ~ QED
1222  {a, =b, —~c} {d—c, c—d, ~c—~d} { F (=c)
1322  {a, =b, —c} {c—d, ~¢c—-d} g R (d—c)
1422  {a, =b, —c} {=c—-d) g R (c—d)
1522 {a, -b, ¢, =d} g ¢ A (mc—-d)
1622 {a, =b, —c, =d} - -- QED

Step 12/22 features an interesting case of full-fledged application of F, with a default
(namely, ~¢—-d) which did not originally belong to D being added to it in order to
ensure the coherency with D of further applications of F.

12/23
13/23
14/23

12/24
13/24
14/24
15/24
15/24

8/3
9/3
10/3
11/3
12/3
13/3

8/4
9/4
10/4
11/4
12/4
13/41
14/41

13/42
14/42

8/5
9/5
10/5
11/5
12/5
13/51
14/51

{a, =b, d}
{a, =b, c, d}
{a, b, ¢, d}

{a, -b, ~d}
{a, =b, ~d}
{a, -b, ~d}

{a, =b, —¢, ~d}
{a, =b, ¢, ~d}

{a, c}
{a, c}
{a, c}
{a, ¢, d}
{a’ “‘b! c? d‘)
{a, -b, ¢, d}

{a, —c}
{a, —~c}
{a, ~c}
{a, —c}
{a, —c, ~d}
{a, b, =c, ~d}
(a’ b) =, -‘d}

{a7 _1b’ ﬂc’ “'d}
{a, -b, ¢, =d}

{a, d}
{a, d}
{a, c, d}
{a, ¢, d}
{a, ¢, d}
{a, b, ¢, d}
{a, b, c,d}

{d—c, c—d}
{c—d}

{d—c¢, c—d, =d—~c}
{e—d, ~d—-c}
{(=d—=c)

{b—=-c, d—c¢, c—d, c—*=b}
{d—¢, c—d, c—-Db}
{c—d, c—-b}
{c—=b}

{

{b—=c, d—c¢, c—d, =¢c — ~d}
{d—c, c—d, =¢c — -d}
{e—d, -¢ — -d}

{-¢ — -d}

{b—-¢, d—c¢, c—d}
{d—c, c—d}
{c—d, b—=c}

{b—=c}
g
{

.14 -

0
i

OIS | OO | oo

o]

1]
t

<

{b—-c}

fan Y o X cagm ¥ e

F(d)
A (d—c¢)
QED

Notice that the minimality of {a, -b, ¢, d} had been already proven before along path
21 (and will be proven again by means of paths 3 and 52).

F (-d)

R (d—c)
R (¢c—d)
A (=d-—=c)
QED

F(c)
R (b—-e)
R (d—c¢)
A (c—d)
A (c—-b)
QED

F (=c)
R (b—=-c)
R (d—c)
R (c—d)
A(=c— ~d)
F(b)
QED

F (-b)
QED

F(d)
I (b—-c)
A (d—c)
R (c—d)
R (b—-c)
F ()
QED



Notice how the order in which subsequent applications of F are carried out influences
the theories which can be shown minimal in a given subtree: {a, b, ¢, d} has not
turned out to be minimal on paths where the first application of F adds b orec to T
(although & or ¢ do belong to {a, b, ¢, d}) while it has been shown to be minimal by
using d as the first addition.

1352 {a, -b, ¢, d} 0 g F (-b)
14/52  {a, =b, ¢, d} - - QED
8/6 {a, ~d} {b—-c, d—c, c—d, =d—~c} { ; F(-d)
9/6 {a, =d} {d—c, ¢c—d, ~d—-c) {b——c} P (b—~c)
10/6 {a, ~d} {c—d, ~d—-c} {b—+—c} R (d—c)
11/6 {a, ~d} {=d—-c} {b—-c} R (c—d)
12/6 {a, =¢, =d} {b—-c} { A (=d—-e)
13/6 {a, ~¢, ~d} 0 g R (b—-c)
14/61 {a, b, —¢, ~d} 0 0 F(b)
15/61 {a, b, —~c, ~d} - - QED
14/62 {a, —b, —c, ~d} (3 g F (-b)
15/62 {a, =b, —c, ~d} - - QED

Notice how all the theories that we have shown to be minimal correspond to models that
had been shown maximal with the graph-based method, and how all such models
correspond to theories that we have shown minimal.

5 Conclusion

In this paper we have described a formalism for reasoning with default information that attempts to
provide a proof-theoretic alternative to the graph-theoretic reasoning style that was originally proposed
for model-preference reasoning. Although we do not claim that such proof theory should replace tout
court the original graph-based algorithms, we think it brings about some substantial insights into how
model-preference default reasoning can be accomplished by means of proof-theoretic, and hence more
orthodox, tools; it is precisely because of its greater orthodoxy that this approach is especially promising
with respect to the prospective integration of default reasoning and other reasoning patterns.

In order for L{D*) to lay claim of being semantically motivated, we should show its soundness
and completeness with respect to the semantics sketched in Section 2. Soundness would consist of all
minimal theories wrt <7', D> identifying models that are maximal wrt <7, D>, while completeness
would consist of all models that are maximal wrt <7', D> being denoted by theories that are minimal
wrt <7, D>. While we are still investigating the issues of soundness and completeness of L{D+) wrt
D, because of the behaviour that we have observed up to date in testing L{Dt) on several examples we
conjecture that such properties indeed obtain.
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