

Monitoring the Registro .it Anycast DNS

L. Deri, M. Martinelli, D. Puliero, S. Ruberti, L. Vasarelli

TECHNICAL REPORT
IIT TR-07/2022

 Page 1 of 13

Table of contents
Index Errore. Il segnalibro non è definito.

Introduction 2

Registro .it Anycast Nodes 3

Netnod Anycast Monitoring 5

Data Collection 6

Data Processing 8

Detecting Metric Anomalies 9

Alerting Subsystem 10

Traffic Dashboards 11

References 13

 Page 2 of 13

Introduction

Registro .it [1] is the Registry of .it Internet domains, where .it is ISO 3166-1 code representing the

country code Top Level Domain (ccTLD) assigned to Italy.

The use of anycast [2] addressing is the best solution to use in order to deploy a resilient and distrib-

uted DNS system, able to deliver low response time, and be robust to DDoS (Distributed Denial of

Service) attacks. Currently the Registro .it runs DNS unicast nodes at selected locations and two

different DNS anycast clouds: one has been developed by Registro .it and is fully managed by it; the

other one is provided by a third party company which, at the time of this document, is named Netnod.

Netnod complements the Registro .it nodes by adding many international locations on vantage points

not served directly by Registro .it authoritative nameservers.

Due to the above architecture, monitoring the anycast DNS nameservers requires two different solu-

tions. This is because:

Registro .it operated nodes are fully under its control and thus it is possible to access DNS server logs

that contain detailed information about the DNS traffic, or dissect DNS packets for maximum ob-

servability.

Netnod instead provides access logs at 1-minute granularity, that contain a summary of the traffic

exchanged by each node. Such logs are accessible through a REST API and are formatted in XML.

The rest of this document describes the two anycast monitoring solutions that have been developed

by Registro .it, and positions them in terms of features and reported data.

http://registro.it/
http://registro.it/

 Page 3 of 13

Registro .it Anycast Nodes

Home-grown nodes operated by Registro .it are based on the DNS BIND server software that serves

client requests through the anycast network operated by Registro .it. The DNS traffic is monitored

using the Elastic stack and in particular by the Packetbeat [2] component that is deployed in the same

node where DNS BIND runs. But there are some cases where Packetbeat operates on a different

server and receives a mirror of the DNS traffic. In both cases, it has full visibility of the DNS traffic

(at the IP level), correlates DNS requests/responses and pushes data, in form of JSON documents,

into the local Elasticsearch database. Queries are then accessible through the Kibana user interface,

that enables the creation of powerful dashboards on top of the collected metrics.

Packetbeat has been selected as it is an open source application; that means it can be adapted as

necessary. In particular, due to the unique architecture of the Registro .it, the application has been

modified in order to push to Elastic additional information. In particular, a key metric used to under-

stand the effectiveness of a DNS server, is the query source. As .it DNS nameservers are deployed at

IXPs, traffic can originate from peering LANs or from the Registro .it transit connections. Creating

statistics on this information, can help Registro .it to request peering to entities with a large volume

of queries for which there is no a peering relationship. In order to do that, at each node the .it anycast

http://registro.it/
Microsoft Office User
Correggere i nomi dei software

Unknown Author
Abbiamo usato sempre l’italiano “Registro .it”, cambiamo questo o mettiamo ovunque “.it Registry”?

 Page 4 of 13

router marks IP packets using the IPv4/v6 TOS (Type of Service) byte: peering traffic has been

marked with TOS 0x28 and transit with TOS 0x30.

Then we have coded a Go code patch for Packetbeat (the source code is available at https://patch-

diff.githubusercontent.com/raw/elastic/beats/pull/29071.diff), in order to export the IP TOS field into

the JSON message sent by Packetbeat to Elasticsearch. This new field is automatically detected in

the data index of Kibana, and thus available in the dashboard components with no change required.

Thanks to this change, all Packetbeat instances deployed at the .it anycast DNS nodes are now able

to report peering vs. transit traffic statistics in the generated dashboards.

As Elastic is a powerful albeit heavy system, it cannot be used for long term statistics (for example

more than 30 days), as it would require the deployment of a complex clustering system at every DNS

anycast site. For this reason, long terms metrics are kept on another system based on Munin software

[4], an open source system and network monitoring application, that exports summaries through a

Python script querying directly the BIND statistics channels and writes them on a database named

RRD (Round Robin Database) [5]. These metric databases had been configured in the past to store

data for just a few years. For this reason, an ad-hoc utility has been developed in order to modify the

database structure and extend the metric storage to 10 years, while preserving existing data.

Luca Vasarelli
Aggiungere riferimento

 Page 5 of 13

Netnod Anycast Monitoring

Netnod anycast DNS nameservers are deployed at IXPs and traffic originates only from peering

LANs.

Monitoring Netnod-powered anycast DNS servers has been implemented by Registro .it from scratch

by developing custom code able to collect monitoring information made available by Netnod and

pushing metrics to a timeseries databases [6] and top queries to a columnar SQL [7] database as

depicted below.

When an error condition (e.g. a node is down or a traffic anomaly is detected) an alert is sent to

Telegram, a popular messaging application, that will then send alerts to network administrators. Fi-

nally, Grafana, a popular system for creating dashboards, will then access data stored in databases in

order to create a dashboard.

The following sections describe in details the various components and report how they work
internally.

Dario P
Specificherei che nel caso del servizio fornito da Netnod le query analizzate sono solo quelle ricevute tramite le LAN di peering dei vari IXP.

 Page 6 of 13

Data Collection

All Netnod information can be fetched via REST API from the following endpoint:

https://www.netnod.se/dsc/api/v1/dsc/$node/$YEAR_MONTH_DAY_HOUR

where

• $node is a 3 letter abbreviation of the Netnod site that hosts the DNS server. To date the list
includes AMX, AMZ, ANK, ASH, ASU, BAH, BKK, BNX, BTS, CCP, CHI, CMX, COL,
CPH, DBI, DEX, ECX, FIX, FMT, GOT, GUA, GYE, HKX, JAK, JAX, JBT, JNB, JPP,
KUL, LIM, LJU, LNX, LUL, LUX, MEX, MIA, MIX, MNP, MTV, MTY, NIX, ORG, PIX,
PNH, PRT, QTR, RIX, RKV, ROX, SAO, SDL, SIN, SOX, SPB, STH, TAI, THI, TLL, TOK,
ULA, WEL, WIE, YYC. Each node has a corresponding human-readable label (e.g. WIE
corresponds to Vienna, Austria) that is then used in dashboards.

• $YEAR_MONTH_DAY_HOUR (specified in YYYYMMDDHHMM format) instead
represents the hour for which we want to retrieve monitoring data. Time is specified according
to the UTC timezone and at any point in time the system cannot be queried for data older than
two hours with respect to the current time.

Data is specified in XML format. As each file contains one hour, the XML file is divided in 60 “one

minute” sections. Each section contains several blocks that include information such as top queries,

TCP vs UDP queries distribution, top client queries etc. All data is in clear text with the exception

that IP addresses have the least significant byte set to zero in order to implement a lightweight

anonymisation facility. Below you can find an example of a section of an XML file that contains top

X clients queries.

 <array name="client_subnet" dimensions="2" start_time="1651561200"
stop_time="1651561260">
 <dimension number="1" type="All"/>
 <dimension number="2" type="ClientSubnet"/>
 <data>
 <All val="ALL" count="1734">
 <ClientSubnet val="101.7.8.0" count="19"/>
 <ClientSubnet val="114.71.100.0" count="6"/>
 <ClientSubnet val="117.16.191.0" count="4"/>
 <ClientSubnet val="121.194.9.0" count="4"/>
 <ClientSubnet val="122.129.122.0" count="1"/>
 <ClientSubnet val="124.158.186.0" count="3"/>
 <ClientSubnet val="128.112.128.0" count="1"/>
 <ClientSubnet val="128.112.129.0" count="4"/>
 <ClientSubnet val="128.119.10.0" count="3"/>
 <ClientSubnet val="128.122.0.0" count="3"/>
 <ClientSubnet val="128.135.249.0" count="2"/>
 <ClientSubnet val="128.146.1.0" count="4"/>
 <ClientSubnet val="128.195.199.0" count="2"/>

 Page 7 of 13

 <ClientSubnet val="128.197.253.0" count="2"/>
 <ClientSubnet val="128.200.200.0" count="1"/>
 <ClientSubnet val="128.223.60.0" count="2"/>
 <ClientSubnet val="128.230.21.0" count="2"/>
 <ClientSubnet val="128.238.1.0" count="1"/>
 <ClientSubnet val="128.239.60.0" count="2"/>
 <ClientSubnet val="128.32.206.0" count="13"/>
 <ClientSubnet val="129.105.49.0" count="2"/>
 <ClientSubnet val="129.108.9.0" count="1"/>
 <ClientSubnet val="129.137.96.0" count="1"/>
 <ClientSubnet val="129.171.150.0" count="1"/>
 <ClientSubnet val="129.171.64.0" count="3"/>
 <ClientSubnet val="129.22.104.0" count="1"/>
: </array>

The reader can immediately realise that data is grouped and thus it is not possible to perform low-

level statistics or answer questions such as “what queries has been issued by host a.b.c.d”.

In order to monitor nodes availability (e.g. some might be under maintenance or unavailable for other

reasons), the downloader component takes into account and keeps track of some issues:

• Nodes unavailable

• (i.e. the download fails)

•

• Nodes with no data
(i.e. node up but probably not serving data and thus with an empty XML).

• Nodes with partial data
(i.e. some nodes report no traffic for specific XML sections).

Based on the issue reported, the downloader component reports the error immediately (e.g. download

failed) or forwards the downloaded file to the parsing component. In case of failure, the failure time

is reported so it can be used in alerts.

 Page 8 of 13

Data Processing

The parsing component, written in Python, is responsible for interpreting the XML file just down-

loaded and extracts the various sections that contain traffic statistics.

In each section there are two types of data:

• usage metrics (e.g. number of queries), that is a numerical value that needs to be store on the
timeseries database.

• top X statistics (e.g. top X queries), that instead need to be stored on the SQL database.

Grafana is already used in Registro .it for data visualization and therefore we have decided to also

use it in this project. For this reason, we have selected some databases that are natively accessible by

Grafana without coding custom extensions that might be error prone to maintain as the various com-

ponents change versions over time.

The databases we chose are:

• InfluxDB for storing timeseries.

• ClickHouse for storing non-numerical data.

Both databases are open source and require no license or node clusters to operate at the scale request

by this project. These databases have been selected as:

• InfluxDB is a popular database used for very long time in the monitoring industry that is
robust and efficient.

• ClickHouse is a very fast columnar database able to store billion of records in very little space.

Both databases are not designed to be ingested with individual data. This means that the parser tool

creates some temporary files where data is stored and then imported in batches. InfluxDB files are

written using the native Line protocol format, whereas ClickHouse files in SQL.

The processing tool is invoked after the downloader completion and it parses all the successfully

downloaded files. At the end of the processing, metrics and data are appended to temporary files

stored on the filesystem. When all the downloaded files have been processed, a new component im-

ports the data into the two databases and then deleted the temporary files.

These steps are repeated once an hour, triggered by the crontab facility.

 Page 9 of 13

Detecting Metric Anomalies

Numerical metrics (e.g. number of queries per hour) are checked both against value thresholds and

comparing them with past values. In order to limit the number of reported issues, the system uses

only the lower threshold set to zero but there is no upper-bound for top numerical values.

Due to the heterogeneous natures of DNS nodes, using thresholds to trigger alerts when metric X

exceeds value Y was not an option. This is because each node has a different behavior and also be-

cause Netnod, probably due to traffic engineering needs, often redistributes traffic across nodes close

in distance (e.g. Amsterdam 1 and 2). In order to address these issues, the monitoring system uses an

algorithm based on exponential smoothing [8] in order to detect anomalies. This algorithm has been

adapted to the monitoring needs both in terms of smoothing strategy and issue repetition. This means

that:

• The typical confidence bands used in smoothing algorithms have been increased by 20% to
avoid triggering alerts when values slightly exceed the threshold.

• Low values are ignored and not matched for anomalies. This is because some nodes receive
very few queries per minute (< 10) and thus with so little data we can create many false
positives when at minute X you have 2 queries and a minute X+1 4 queries, that is double the
value but still close to noise.

• In order to avoid creating per-minute anomalies that be of no interest as the nature of DNS
traffic is very spiky, we are using learning intervals of one day, and perform per-hour value
checks. This allowed us to reduce the number of alerts and consider anomalous an hourly
interval and not the individual minute.

In summary, an alert is triggered on a metric whenever its value is zero (i.e. no traffic is reported), or

if in the last hour the reported value is falling outside the lower/upper prediction boundaries.

 Page 10 of 13

Alerting Subsystem

In case of failure (e.g. a download failed or an anomalous metric value) an alert is triggered. As the

popular Telegram application is already in use for distributing alerts for other projects, it has also

been used for reporting Netnod .it anycast alerts. At the end of each hourly data, processing alerts, if

any, are reported in Telegram using a bot application we coded, that delivers messages to relevant

people. Below you can see a typical alert log.

The following principles have been applied:

• Alerts are not sent individually (i.e. per node) but per hour in order to reduce the number of
messages.

• As these alerts are stateful (e.g. node X is down, node X is now up again) the system keeps
track of this state change. In the above figure the Jakarta node went down at 1 AM, and back
at 3 AM, and the alerting system reported the duration of the outage.

It is common to see failures in nodes as some of them are (probably) under periodic maintenance. A

typical message is:

ALERT [10/07/22 20:00:00 - 21:00:00] [No traffic: Ashburn SantoDomingo Jakarta Lulea
Paramaribo Singapore StPetersburg][Anomaly: Luxembourg]

that contains

• The alert time.

• List of nodes (if any) with zero traffic reported.

• List of nodes (if any) with anomalies in metric behaviour in the past hour.

 Page 11 of 13

Traffic Dashboards

As already discussed, traffic dashboards have been implemented on top of the Grafana tool. The main

page after login reports on the top right corner the node name that can be changed at any time by

selecting the node in the drop-down menu.

Table information is fetched from ClickHouse whereas non tabular data, such as the geomap of client

queries or traffic metrics, are based on data stored in InfluxDB.

Although reports are per node, each node page also contains a chart (reported above) that includes

the traffic of all active nodes.

 Page 12 of 13

The above image depicts query reports with boundaries. The smoothing algorithm predicts the lower

(green) and upper (yellow) values, and whenever the smoothed value (blue), based on observations

read from Netnod data, exceeds the boundaries an anomaly is detected.

 Page 13 of 13

References

[1] Registro .it, https://www.nic.it

[2] CloudFlare, What is Anycast DNS? | How Anycast works with DNS,
https://www.cloudflare.com/en-gb/learning/dns/what-is-anycast-dns/

[3] Elastic Inc, Packetbeat: Network Analytics Using Elasticsearch,
https://www.elastic.co/beats/packetbeat

[4] https://munin-monitoring.org/

[5] RRDtool - Round Robin Database Tool, https://github.com/oetiker/rrdtool-1.x

[6] Influx Data, InfluxDB Database, https://www.influxdata.com

[7] ClickHouse Inc, Fast Open-Source OLAP DBMS, https://clickhouse.com

[8] Exponential Smoothing, https://en.wikipedia.org/wiki/Exponential_smoothing

https://www.elastic.co/beats/packetbeat

	Table of contents
	Introduction
	Registro .it Anycast Nodes
	Netnod Anycast Monitoring
	Data Collection
	Data Processing
	Detecting Metric Anomalies
	Alerting Subsystem

	Traffic Dashboards
	References

