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A B S T R A C T   

The synthesis of silver nanoparticles with controlled physicochemical properties is essential for governing their 
intended functionalities and safety profiles. However, synthesis process involves multiple parameters that could 
influence the resulting properties. This challenge could be addressed with the development of predictive models 
that forecast endpoints based on key synthesis parameters. In this study, we manually extracted synthesis-related 
data from the literature and leveraged various machine learning algorithms. Data extraction included parameters 
such as reactant concentrations, experimental conditions, as well as physicochemical properties. The antibac-
terial efficiencies and toxicological profiles of the synthesized nanoparticles were also extracted. In a second step, 
based on data completeness, we employed regression algorithms to establish relationships between synthesis 
parameters and desired endpoints and to build predictive models. The models for core size and antibacterial 
efficiency were trained and validated using a cross-validation approach. Finally, the features’ impact was 
evaluated via Shapley values to provide insights into the contribution of features to the predictions. Factors such 
as synthesis duration, scale of synthesis and the choice of capping agents emerged as the most significant pre-
dictors. This study demonstrated the potential of machine learning to aid in the rational design of synthesis 
process and paves the way for the safe-by-design principles development by providing insights into the opti-
mization of the synthesis process to achieve the desired properties. Finally, this study provides a valuable dataset 
compiled from literature sources with significant time and effort from multiple researchers. Access to such 
datasets notably aids computational advances in the field of nanotechnology.   

1. Introduction 

Already available on the market, silver nanoparticles (AgNPs) 
embedded into products offer a variety of benefits such as an antimi-
crobial functionalities by eradicating or inhibiting the growth of bac-
teria [1], fungi [2], and viruses [3], as well as the ability to prolong the 
shelf life of products (i.e., food packaging). Their versatility renders 
them valuable in various products’ applications including wound 
dressings [4], medical devices [5,6], water purification systems [7], and 
antibacterial coatings [8]. AgNPs are also utilised as drug delivery car-
riers due to their size which enable them to readily penetrate cells and 
deliver therapeutic substances to targeted sites, enhancing treatments’ 
efficacy [9]. Additionally, because their unique optical and electrical 
properties, they are utilized in sensing and detection systems [10], 

measuring small quantities of target molecules, including heavy metals 
[11], environmental pollutants and biomarkers [12]. This has implica-
tions in fields like environmental monitoring, food safety and medical 
diagnostics [13]. They are also helpful in applications such as imaging 
devices [14] and solar cells [15]. Finally, have the ability to function as 
catalysts in a variety of industrial processes, such as organic synthesis, 
pollution control, and chemical manufacturing [16–18]. AgNPs have 
attracted attention as evidenced by the significant demand for and in-
vestment in associated research. The demand for AgNPs has been 
gradually increasing over the past 15 years, and manufacturing of the 
product is expected to exceed 500 tons annually to meet the demands of 
various industries [19]. Due to the growth of the market worldwide and 
the current offer of products with incorporated AgNPs, the study of their 
biological activity, functionalities and safety has become a paramount 
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matter of research [20]. However, their activities are modulated by their 
physicochemical properties (pchem) which are defined in the initial life 
cycle stage, the synthesis. To exploit and fulfil the Safe by Design (SbD) 
concept at the earliest stages of innovation it is imperative to compre-
hend which pchem properties, which are indirectly defined by key 
synthesis parameters (temperature, precursors, concentrations, treat-
ments, etc), impact the toxicological and/or antibacterial profile. This 
challenge can be addressed with the development of predictive models 
that forecast desired endpoints while capturing the relationship among 
pchem and key synthesis parameters. From the standpoint of 
computational-based drug development approach, it is crucial to create 
predictive models that can screen a variety of potential experimental 
conditions and help identify the selection of optimal ones to employ in 
the laboratory experiments. In order to create such models, three key 
parts with their related data have to be investigated, i) synthesis 
methods of AgNPs along with experimental conditions, ii) resulting 
measured pchem properties of the synthesised AgNPs and iii) their 
functional or safety profiles. 

1.1. Synthesis methods & experimental conditions 

Top-down and bottom-up methods by either chemical, physical or 
biological means are the main synthesis approaches for AgNPs. A top- 
down example includes the grinding of bulk metals and the subse-
quent inclusion of colloidal protective agents to stabilize the resulting 
nanosized metal particles. The bottom-up approach includes reduction 
of metal precursors, electrochemical or green synthesis methods [21,22] 
etc., with the main ones being: i. chemical reduction of a silver salt such 
as silver nitrate (AgNO3) using a reducing agent (sodium borohydride 
(NaBH4) or sodium citrate (Na3C6H5O7)) [23]. ii. sol-gel technique, 
which combines a gel-forming agent solution with a silver precursor (i. 
e., silica precursor). After that, the mixture is exposed to condensation 
and hydrolysis, which forms a gel containing silver ions. To convert ions 
into AgNPs, the gel is subjected to further heat treatment or reduction 
[24]. iii) green synthesis, which involves the use of natural or biological 
materials as reducing agents or stabilizers (i.e., plant extracts) [25]. iv) 
electrochemical deposition which involves the reduction of silver ions 
present in an electrolyte solution onto an electrode surface, typically a 
cathode [26]. During the synthesis process, several parameters can be 
adjusted to control and fine-tune the resulting pchem properties of 
AgNPs, such as:  

1) the reagents’ concentration which includes the silver precursor or 
the reducing agents. These chemical agents have an impact on the 
size, shape and dispersity index of the resulting NPs; higher con-
centrations frequently resulting in smaller NPs [27].  

2) the pH of the reaction solution. The stability, aggregation behaviour, 
and interaction of the particles with other substances can all be 
affected by changes in the surface charge of the particles caused by 
the pH of the solution [28]. 

3) the reaction temperature. Temperature plays a crucial role in regu-
lating the growth and nucleation kinetics; Higher temperatures often 
result in faster nucleation and growth, leading to larger NPs [29].  

4) the usage of stabilizing agents (i.e. polymers or surfactants). Those 
agents can control stability and prevent aggregation, through their 
effects on steric hindrance and/or electrostatic repulsion, which can 
also affect surface chemistry and dispersibility [30].  

5) the reaction time. Time has a strong impact on the pchem properties 
with longer reaction times often resulting to larger particles due to 
continued growth and reprecipitation processes associated with the 
Ostwald ripening [31,32].  

6) the use of external fields such as electric, magnetic or ultrasound. 
AgNPs with desired size and morphology can be produced by 
adjusting the applied voltage and deposition duration [33,34]. 

7) the use of natural or biological materials as reducing agents or sta-
bilizers in green synthesis methods can introduce unique properties 
due to synergistic interactions [35]. 

Based on the information summarized above, it is can be hypothe-
sized that various experimental conditions can be adjusted to alter the 
size, shape, and other o pchem properties of synthesised NPs. 

1.2. Physicochemical properties 

One of the main pchem properties affecting NPs’ behaviour is their 
core size. AgNPs are typically employed in products’ applications 
ranging from 1 to 10 nm in size [36]. Numerous studies have revealed 
that smaller particles exhibit greater antibacterial activity but higher 
cytotoxic responses [37,38]. As the particle size gets smaller the specific 
surface area increases, hence, a greater proportion of its atoms are dis-
played on the surface [39]. This implies that biological interactions and 
toxicity are dependent on the particles’ surface area than on the particle 
mass. The dispersibility, solubility, and/or hydrophobicity can be 
altered by the AgNPs’ functionalization with various coatings. The 
coatings in turn, affect AgNPs’ bioaccessibility and biodurability. There 
is a considerable literature amount indicates that the type of coating 
impacts both fate and toxicity of AgNPs [40–42]. For instance, trisodium 
citrate (CT-AgNP) and polyvinylpyrrolidone (PVP-AgNP) improve 
biocompatibility and stability against agglomeration phenomenon [43]. 
Moreover, coating modifies the surface charge which influences their 
cytotoxic potential and biological targets; positively charged NPs have 
stronger affinity for negative bacterial membranes causing higher 
cellular contents leakage and bacterial death [44]. Studies employing 
AgNPs of different sizes also revealed shape-dependent effects. For 
example, compared to spheres and wires, 55 nm silver nanotubes had a 
stronger antibacterial activity against Escherichia coli [45]. On the other 
hand, spherical, triangular and cuboid AgNPs were found to have no 
biocidal effect on Staphylococcus aureus [46]. The agglomeration state of 
NPs also determines cellular uptake as well as biological reactions [47]. 
A number of studies have shown that agglomerated particles exhibit 
reduced cytotoxicity compared to free AgNPs [47,48]. In summary, 
knowledge of the pchem properties is essential to comprehending the 
biological reactions of AgNPs and the underlying mechanisms of action 
which determined their applications. 

1.3. AgNPs mechanisms of action and applications 

AgNPs stand out among the many NMs that are known to be useful in 
preventing the growth of several bacteria due to their potent inhibitory 
and bactericidal properties [49,50]. AgNPs are also familiar for their 
antifungal and antiviral activities [51]. Several studies have reported 
their potent antifungal activity against several phytopathogenic fungi (e. 
g. Alternaria alternate, Sclerotinia sclerotiorum, etc) as well as human 
pathogenic fungi (e.g. Candida and Trichoderma sp.) [52] and against 
several viruses including SARS-CoV-2 [53,54]. Research has indicated 
that AgNPs interact with bacterial membranes but the precise mecha-
nism underlying these activities remains unclear [55,56]. One leading 
hypothesis holds that AgNPs when in contact with bacteria, produce free 
radicals and reactive oxygen species, which damage the bacteria’s in-
ternal organelles and change the intracellular signalling pathways that 
trigger apoptosis [57]. Another mechanism is the adhesion of AgNPs to 
the bacterial wall, followed by the infiltration of particles that act as a 
Trojan horse and release ions, causing bacterial membrane damage and 
leakage of cellular contents and death [58]. For example, the antibac-
terial activity of 12 nm AgNPs was excellent against both Gram-positive 
and Gram-negative bacteria including Staphylococcus bacillus, Staphylo-
coccus aureus, and Pseudomonas aeruginosa [59]. This indicates that both 
membrane thickness and surface charge facilitate particle attachment 
onto the membrane [60]. Finally, the release of Ag+ ions from the sur-
face area is another crucial factor that contributes to the antibacterial 
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activity. Release rate is dependent on a number of factors including size, 
shape, capping agent and colloidal state of NPs [51,61]. It is well 
established, smaller AgNPs have faster Ag+ release rate and, hence, an 
increased bioavailability, and also cytotoxicity, compared with larger 
NPs [62,63]. 

It becomes evident from the above sections that a modelling 
approach is essential to effectively and systematically capture the 
transversal information involved in the synthesis stage and to consider 
the impact of the many experimental parameters involved in the syn-
thesis process on the pchem properties of the resulting AgNPs, their 
antibacterial efficiencies, and/or their toxicity effects. 

1.4. Machine learning models 

With conventional approaches it is challenging to systematically 
explore the entire parameter space and comprehend the relationships 
between experimental synthesis conditions and resulting AgNPs char-
acteristics due to the complexity and multidimensionality. Additionally, 
manual experimentation can be time-consuming, costly, and limited in 
scope, making it difficult to optimize synthesis conditions effectively. 
Hence, modelling techniques, such as machine learning (ML) models 
provide a promising means to navigate this complexity and capture the 
interplay of multiple parameters. 

ML models can be trained using existing data on synthesis experi-
mental parameters and corresponding pchem properties or functional-
ities, allowing the development of predictive models that can guide and 
optimize the synthesis process [64,65]. The models can then be used to 
predict the AgNPs’ properties synthesized under different conditions. 
For example, by inputting the reagent concentrations, reaction tem-
peratures, reaction duration etc., into a model, it can predict the 
resulting size, shape, or stability [66,67]. ML can be used to optimize the 
synthesis process by iteratively adjusting and identifying the optimal 
combination of synthesis parameters to converge into the desired 
properties. Designing effective experiments (Design of Experiments), to 
investigate the synthesis parameter space, can be achieved by ML which 
recommends the most instructive experiments to be conducted based on 
the knowledge gained from the available data. Such as approach mini-
mizes the number of experiments required and speeds up the process of 
discovering the combination of synthesis conditions. Nanoparticles have 
only partially captured the benefits of automation, as exhaustively dis-
cussed in a review on the role of ML in Nanosafety [68]. One notable 
example of ML application is a proposed framework that optimizes the 
synthesis and extracts knowledge of the relationship between compo-
sition and optical properties [69]. The neural networks’ output layer is 
composed of 421 nodes, which are corresponding to the UV–Vis spectral 
data points. The experimental input parameters contained variables of 
different flow rates such as silver nitrate, trisodium citrate etc., The 
framework was built based on flow rates as input features and specific 
experimentation apparatus to obtain synthesized in aqueous 
sub-microliter droplets NPs. In an attempt to increase the application 
domain of ML in the synthesis process, we manually collected synthesis 
data from multiple literature studies and leveraged various ML algo-
rithms to explore the parameter space of synthesis conditions during the 
experiments and the resulting AgNPs characteristics followed by a tar-
geted functionality (such as antibacterial properties). Data extraction 
included parameters such as reagent concentrations, reaction condi-
tions, typology of stabilizing agents, etc. Additionally, pchem properties 
such as the core size measurements obtained from various character-
ization techniques, such as transmission electron microscopy (TEM), 
scanning electron microscopy (SEM), were recorded. Antibacterial effi-
ciency and toxicological profiles were also collected when available in 
the study design. In a second step, based on data completeness, we 
employed regression ML algorithms to build predictive models targeting 
various endpoints to establish relationships between synthesis parame-
ters and desired outputs. The developed models were validated using a 
cross-validation approach. Finally, the feature’s impact, based on 

SHapley Additive exPlanations (SHAP) average values, was utilized to 
provide insights into the contribution of individual features in the 
model’s predictions. 

2. Materials and methods 

2.1. Literature review 

A comprehensive literature review was performed for the duration of 
2004–2022 using a combination of keywords such as “silver nano-
particles”, “silver nanomaterials”, “synthesis”, “nanoparticle synthesis”, 
“nanoparticle”, “chemical reduction”, and “green synthesis” to identify 
relevant studies and extract key information. The search was performed 
across various academic databases, including PubMed, Scopus and 
Google Scholar. The aim was to compile a variety of synthesis protocols 
including the experimental conditions and the steps followed, the 
characterization techniques employed for pchem properties identifica-
tion and to record functionalities or toxicological properties of the 
aforementioned synthesized NPs. The retrieved articles were screened 
based on their titles and abstracts to assess their relevance to AgNPs 
synthesis. Selected articles were then obtained in full text and further 
reviewed to determine their suitability for inclusion in the literature 
review. Additionally, the reference lists of these articles were examined 
to identify additional relevant studies that may have been missed in the 
initial search. The inclusion criteria encompassed a variety of publica-
tion types, including research articles and review papers, excluding book 
chapters and conference proceedings. 

2.2. Data extraction – first dataset 

A manual data extraction was performed systematically from the 
selected articles. Relevant information, including synthesis parameters 
such as experimental conditions, AgNPs pchem properties, character-
ization techniques, toxicological outcomes, and antibacterial efficiency 
measurements were recorded in an Excel workbook format. To ensure 
consistency and reduce potential biases from expert judgment, the 
literature review was conducted by a team of researchers with expertise 
in nanomaterial synthesis and characterization. Regular discussions 
were held to address any discrepancies or uncertainties during the data 
extraction process. Having data on the synthesis procedure, the first step 
of the innovation process, is crucial for developing computational 
models for predicting multiple endpoints such as resulting pchem 
properties or functionalities. The data extraction included synthesis 
parameters such as:  

• Reagent concentrations and the chemical compounds. As reagents, 
we considered the silver precursor, the reducing agents used, the 
capping/stabilizing agent, and any possible additional catalyst dur-
ing the reaction process.  

• Reaction conditions included temperature, any external source of 
energy applied (ultrasound, pressure etc.,), the pH of the reaction, 
reaction duration, stirring approach and stirring conditions, and any 
specific environmental conditions (e.g., light conditions).  

• Post-synthesis treatments were recorded such as drying or washing.  
• Resulting pchem properties of the synthesized AgNPs were recorded. 

The characterization techniques employed to analyse the synthesized 
nanoparticles were specified such as transmission electron micro-
scopy (TEM), scanning electron microscopy (SEM), X-ray diffraction 
(XRD), dynamic light scattering (DLS), etc., providing information 
about AgNPs size, shape, zeta potential etc.  

• Finally, antibacterial and toxicological results were also extracted, 
reporting all the experimental details such as the cell line or organ-
isms exposed, the exposure conditions (dose and time) and the 
endpoints measured along with the assays such as cell viability, 
inflammation indication (in case of toxicological studies) or the 
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antibacterial efficiency or zone of inhibition (in case of antibacterial 
assessments). 

2.3. Data harmonisation and exploration 

Following data extraction, the features were then harmonized to 
create a unified and cohesive dataset, to ensure compatibility and con-
sistency, and to allow the exploration of features and the development of 
ML models. Experimental data collected from different studies exhibit 
variations in terms of synthesis parameters, characterization techniques, 
units of measurement, and reported properties. During meetings and 
discussions, the team collaborated to harmonize the extracted data and 
to reach a consensus. It was crucial to ensure that the dataset covered a 
broad range of synthesis conditions while maintaining data integrity. To 
achieve harmonization, the following main steps were followed as a 
principle:  

• converting various units of measurements into a consistent format 
(SI unit). For example, ensuring that reagent concentrations are 
expressed in the same units (e.g., molar concentration) or that tem-
perature is consistently reported in a specific scale (e.g., Celsius or 
Kelvin). This step minimized discrepancies arising from different 
reporting conventions.  

• aligning the different terminologies used to express the same 
ontology. For example, synthesis parameters, such as reagent names, 
reducing agents, stabilizing agents, and experimental conditions, 
needed to be harmonized to ensure consistency across the dataset. 
This involved creating a standardized vocabulary to facilitate data 
integration. 

• integration of features into simpler categories to avoid high cardi-
nality features for the training of the models, for example, the 
capping agents might greatly vary across the studies for this reason, 
agents were simplified, classified, and aggregated into organic and 
inorganic classes (more information in the results Section 3.2). 

Finally, all the data were inserted in a final workbook (Raw data tab 
in the supplementary material. 

2.4. Machine learning exploration 

The final workbook was split into i) synthesis dataset, ii) toxicolog-
ical dataset, and iii) antibacterial dataset to explore the potential of 
developing and applying modelling tools based on data completeness. 
Data completeness in this work refers solely to the extent to which data 
required for modelling is present within the dataset with low data 
completeness suggesting missing information that hinders the applica-
tion of modelling. In the nanosafety field data completeness can also 
refer to minimum reporting standards or guidelines for specific experi-
ments or applications (e.g. OECD, ISO, REACH, MIRIBEL). When data 
sufficient for modelling exploration the selected dataset was then pre- 
processed via one-hot encoding for the categorical variables enabling 
the inclusion of these in predictive regression modelling tasks. One-hot 
encoding is a commonly used technique for handling categorical values 
converting them into a numeric label. In a second step, PyCaret 
regression library [70] was utilized to train various ML algorithms. 
PyCaret contains more than 18 regression models such as linear 
regression, decision tree, random forest, support vector, extra trees, 
ridge, elastic net, huber, bayesian ridge among others. These algorithms 
cover a wide range of popular regression techniques, enabling the 
comparison of different models. The models were trained with the 
training set and validated via 10-fold cross validation approach. In this 
method, the dataset is divided into ten subsets of equal size. The model is 
then trained on nine of these subsets (training set) and evaluated on the 
remaining subset (test set). This process is repeated ten times, with each 
subset serving as the validation test set once. By averaging the perfor-
mance metrics across these iterations, such as accuracy or mean squared 

error, the cross-validation approach provides an estimation of the 
model’s performance on unseen data. This estimation accounts for 
variability in the data and helps assess the generalization ability and 
predictability of the model. Validation metrics such as root mean 
squared error (RMSE), mean absolute error (MAE), and R-squared (R2), 
were used to assess and compare the models’ accuracy. In a final step, 
the features’ impact based on SHAP (SHapley Additive exPlanations) 
average values [71,72] was derived to provide insights into the overall 
contribution of individual features in the model’s predictions. A positive 
average impact value suggests that the feature leads to more accurate 
predictions to the model’s output, while a negative value indicates the 
opposite. Features with higher average impact values have a stronger 
influence on the model’s predictions, indicating their significance in 
determining the target variable. The feature SHAP average impact 
values help identify key drivers or variables that significantly contribute 
to the model’s output and gain insights into the underlying relationships 
between the features and the output. The code for the ML pipeline 
containing the preprocessing steps and models exploration can be found 
here.2 

3. Results 

3.1. Literature review & data extraction 

From the literature review, 219 studies were collected from the 
2004–2022 period. In the first workbook, both synthesis and potential 
outcomes, covering antibacterial and toxicological assessments, were 
extracted. The process of including data into the workbook file involved 
duplicating each row based on a specific parameter, while keeping the 
remaining columns unchanged. For example, if the same synthesis 
process and resulting pchem properties were exposed into a cell culture 
under different exposure doses (i.e., 10, 50, 100 mg/ML), this resulted in 
three rows with only exposure dose being changed (same process for the 
synthesis methodology or the antimicrobial studies). This technique 
allowed for the systematic generation of multiple rows, each repre-
senting a unique combination of the duplicated parameter and the 
constant values of the other columns. By expanding rows in this manner, 
the dataset encompass various scenarios and conditions related to the 
parameter of interest, while maintaining consistency in the other attri-
butes. This approach enables comprehensive analysis and facilitates 
further exploration of the data by considering the impact of different 
values of the duplicated parameter on the corresponding outcomes or 
observations. 

Below, in Table 1 a brief overview of the targeted information 
extracted: 

3.2. Data harmonization and split 

Data extraction was followed by data harmonization, where the 
features were unified to create a cohesive dataset. Compatibility and 
cohesion are essential for ML model development and to enable feature 
exploration for insights from multiple studies we harmonized all units 
measurements for example minutes converted to hours for synthesis 
time and exposure duration (h), millilitre for volume (ML), millimolar 
for concentration (mM), Celsius degree for temperature (◦C), watt for 
external power (W), pound per square inch for pressure (psi), kilohertz 
for frequency (kHz), and milligram per millilitre for exposure dose (mg/ 
ML), where feasible. In some cases units harmonization was not possible 
such as concentration expressed in either mass or volume metrics (i.e., 
nanoparticles count or NPs per milliliter (NPs/ML) where not possible to 
convert into a single metric. 

Concerning the categorical features, we harmonized them in distinct 
classes. For example, 

2 https://github.com/IrieIrie/Design-rules-AgNPs 
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Table 1 
Overall overview of the first workbook design created by an iterative discussion with the research group.  

Synthesis studies Physicochemical properties characterization 

The synthesis 
method 

Synthesis 
process 

Chemical reduction, sol-gel, green synthesis, 
phytochemical or others 

Pchem 
properties 

Chemical 
composition 

The chemical composition followed by the 
method of determination and instrumentation 
used 

Steps involved Single-step or multiple steps process Dissolution Concentration of silver cations dissolved in 
relevant media (μM) 

Synthesis 
duration 

The duration of the entire synthesis process 
(h) 

Shape Shape followed by method of determination and 
instrumentation used 

Scale The scale of the synthesis process (ML) Crystal structure Crystal structure followed by method of 
determination and instrumentation used 

Precursor Precursor The precursor compound utilised (usually 
AgNO3) 

Zeta potential Zeta potential followed by method of 
determination and instrumentation used. In 
addition, standard deviation, pH and isoelectric 
point are reported (mV) 

Source The precursor commercial source (Sigma 
Aldrich, Aladdin, ACE chemicals, etc) 

Core size Core size followed by standard deviation, 
method of determination and instrumentation 
used (nm) 

Purity The precursor purity ( %) Crystallite size Crystallite size followed by standard deviation, 
method of determination and instrumentation 
used (nm) 

Concentration The precursor concentration along with its 
units of measurement (mM, where not explicit 
or calculable we express the amount of 
precursor in g) 

Hydrodynamic 
diameter 

Hydrodynamic diameter followed by standard 
deviation, method of determination and 
instrumentation used (nm) 

Capping agent Compound The capping agent used during synthesis Surface area Surface area followed by standard deviation, 
method of determination and instrumentation 
used (m2/g) 

Classification Capping agent classification into plant-based, 
chemical, fungal extract, bacterial-based, etc 

Polydispersity 
index 

Polydispersity index followed by standard 
deviation, method of determination and 
instrumentation used 

Class Organic versus inorganic agents Agglomeration Information if agglomeration was present 
Concentration The capping agent concentration along with 

its units of measurement (mM or mg/ML) 
UV-Vis peaks The peaks of UV-Vis analysis for NPs and of 

reducing agents (nm) 
Reducing agent Compound The reducing agent used during synthesis 

Classification Reducing agent classification into plant- 
based, chemical, fungal extract, bacterial- 
based, etc 

Antimicrobial studies followed 

Class Organic versus inorganic agents Exposure 
conditions 

Exposure dose The exposure concentration along with its units 
of measurement (mg/ML) 

Concentration The reducing agent concentration along with 
its units of measurement (ML or mg/ML) 

Exposure 
duration 

The exposure duration of the experiment (h) 

Catalyst Compound The catalyst used during synthesis Temperature Temperature for the experimental conditions 
(◦C) 

Concentration The catalyst concentration along with its units 
of measurement 

Organisms Culture medium The bacterial exposure medium 

Experimental 
conditions 

Temperature Synthesis prevailing temperature. In case of a 
range of temperatures, the median value is 
reported (◦C) 

Species The species exposed 

Order of 
reagent 

The order of reagents in the synthesis process Strand The specific strand of the organism 

Conditions of 
light 

Dark, light or sunlight exposure Outcome Bacteria 
reduction 

The bacteria reduction along with its units of 
measurement (i.e., reduction in mm) and 
standard deviation 

External energy Energy Addition of energy (through heating, 
sonication, ice bath, incubator, etc) or no 
addition of external energy 

Bacterial 
methods 

The methodology followed for the evaluation of 
the antibacterial efficiency 

Power In case of microwave or sonication, the power 
used (W) 

Toxicological studies followed 

Stirring In case of stirring applied further split into 
magnetic, mechanic or shaking, etc 

Exposure 
conditions 

Exposure dose The exposure concentration along with its units 
of measurement (mg/ML) 

Stirring Speed The rpm of stirring applied Exposure 
duration 

The exposure duration of the experiment (h) 

Pressure 
autoclave 

The amount of pressure applied (psi) Cell culture 
information 

Cell line Cell line name 

Ultrasound In case of sonication, the frequency used 
(kHz) 

Cell type Cancer or normal and the specific type (i.e., 
glioma, macrophages, vascular, etc) 

Treatment Any post treatment of AgNPs such as drying, 
washing, centrifugation, etc 

Cell origin The origin of the cell line (human, animal, plant). 

Post treatment Solution The solution where the treatment took place Cell organ The organ which the cell line represents 
Methods The methods applied for the specific 

treatment recorded above 
Multiwell The number of wells in the study 

Speed In case of centrifugation applied, the rpm 
speed 

Outcome Toxicological 
assay 

Assay used to assess the toxicological endpoint 

Duration The duration of the speed method (min) Toxicological 
endpoint 

The endpoint measured by the assay 

(continued on next page) 
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• the synthesis process was divided into biosynthesis, micosynthesis, 
green synthesis, or general wet chemical synthesis.  

• the capping agent feature was first classified into aggregated classes, 
for example algae extract aggregated class contains species such as: 
Padina sp. marine alga extract, Noctiluca scintillans, Ecklonia cava, etc, 
or the fungal extract aggregated class contains extract from Aspergillus 
flavus, Emericella nidulans, Macrophomina phaseolina, etc. In a second 
step, features were engineered to capture information on organic 
versus inorganic capping agent: organic contains information such as 
plant, fungal, fruit extracts, biopolymer or bacteria. The same 
approach was followed for the reducing agent.  

• The order of reagents was converted into a codified feature where the 
silver precursor is denoted with A; reducing agent with B; capping 
agent with C; catalyst with D or other to simplify its representation. 
CADB for example would signify the following order of reagents: 
capping;precursor;catalyst;reducing. In that manner, the steps of syn-
thesis can be represented by a single feature. 

• The data was then split into synthesis dataset, pchem dataset, toxi-
cological dataset and antimicrobial dataset for ML purposes. 

3.2.1. Synthesis & targeting core size 
For the synthesis dataset, briefly, from the nearly 900 rows of in-

formation (from 219 studies), phytosynthesis was the most common 
synthesis process reported (57.7 % of rows, 119 studies) followed by wet 
chemistry (26 % of rows, 58 studies) and biosynthesis (12.7 % of rows, 
28 studies). Missing values in the dataset containing all the synthesis 
information and pchem information (no toxicological or antibacterial 
information) (Supplementary material, synthesis tab) were common. 
Roughly 89 % of the rows had single-step synthesis process (185 
studies). When external energy was applied, heating was one of the most 
common (41 %, 93 studies) followed by sonication (10 studies) and 
microwave assistance (5 studies). Regarding the temperature applied 
during synthesis, nearly half of the values fall within the range 24–64 ◦C 
with seven studies applying > 100 ◦C. Regarding the light conditions, 86 
% of the rows contained no information (we hypothesised that no special 
light conditions were applied). 29 studies reported dark conditions. The 
exact order of reagents was missing in 35 studies. The duration of syn-
thesis was absent nearly 18 % (42 studies) of the rows, while the scale of 
synthesis (ML), 30 %. Features that were missing more than 80 % con-
tained the precursor purity information. However, precursors’ concen-
tration (expressed in mM) had few missing values, same as capping 
agent compound (mostly plant or chemical agents) and reducing agents. 
On the other hand, capping agent and reducing agent concentrations 
(mg/ML) had nearly 40 % missing values. The pH during synthesis was 
missing > 70 % of the row cases. Regarding the pchem properties, 
dissolution was missing the majority of the time (> 90 %), shape nearly 
30 %, crystal structure > 65 %, zeta potential and hydrodynamic size 
measurements > 70 %, while crystallite size, polydispersity index and 
surface area were almost always missing. Core size had the lowest count 
of missing values, nearly 25 % (6 studies out of 219 did not report core 
size). Since core size had the most data completeness and is one of the 
most crucial factors affecting biological interactions, antibacterial ca-
pabilities, and toxicity, was selected as model output to be predicted 
from synthesis parameters inputs. 

3.2.1.1. Targeting core size. Rows with no core size data were dropped, 

and when information on the standard deviation or size distributions on 
the core size was available (92 studies provided SD), those rows were 
triplicated containing the average, the minimum and maximum core 
size. This resulted in a new dataset (Supplementary material, core size 
tab) containing 2113 rows with 17 input features (7 numerical and 9 
categorical) showed in Table 2. The stirring speed, capping and reducing 
agent concentrations features were excluded from the modelling part 
due to substantial amount of missing values. 

Table 1 (continued ) 

Synthesis studies Physicochemical properties characterization 

Temperature In case of drying process followed, the 
temperature applied (◦C) 

Toxicological 
results 

The endpoint results are followed by the 
standard deviation and its units of measurements 

Duration The duration of the drying method (min) Information of the studies such as the author, title, year, DOI are recorded. An initial 
notebook of 6202 rows was created. Other Information such as the storage conditions 

Yield The yield of synthesis reaction ( %)  

Table 2 
Input features used to predict core size along with the missing values presented 
in that dataset and a description of the features.  

Group of 
features 

Input features Missing 
values 

Description (min – max, mean 
values), categorical examples 

The synthesis 
method 

Synthesis 
process 

0.0 % Such as phytosynthesis (59 %), 
micosynthesis (4.8 %), wet 
chemical (24.5 %), biosynthesis 
(11 %), etc 

Steps involved 0.0 % Single step synthesis (85 %), or 
multiple steps 

Synthesis 
duration 

12.8 % 0.008 – 336, 17.5 (h) 

Scale 24.5 % 1 – 510, 87.2 (ML) 
External energy Energy 0.0 % Such as heating (46 %), 

sonication (5.2 %), microwave 
(1.2 %), ice bath, UV treatment 
(1.8 %), cooling, none, etc 

Stirring 0.0 % Such as mechanic (17.3 %), 
normal stirring (15.2 %), 
magnetic (13 %), shaking (12.9 
%), yes (when no additional 
information was provided, 1.9 
%), etc 

Stirring Speed 49.0 % 0 – 5000, 71 (rpm) 
Experimental 

conditions 
Temperature 1.3 % -4 – 200, 48.4 (◦C). In case of no 

information in the article, room 
temperature 25 ◦C was inserted 

Precursor Concentration 1.0 % 0.1 – 1000, 6 (mM) 
Capping agent Classification 0 % Such as plant (55 %), chemical 

(14.5 %), biopolymer (8 %), 
fungal extract (5 %), 
biomolecule (4 %), animal 
derivative (1.8 %), algae 
extract, etc 

Class 0.0 % Organic (92 %), inorganic or 
none 

Concentration 41.0 % 0.005 – 1000, 45.7 (mg/ML) 
Reducing agent Classification 5.3 % Such as plant (56 %), chemical 

(16 %), biopolymer (5 %), 
biomolecule, animal derivative, 
fungi extract, etc 

Class 5.3 % Organic (83 %), inorganic 
Concentration 35.9 % 0.0025 – 500, 16.1 (mg/ML) 

Experimental 
conditions 

Order of 
reagent 

17.5 % Codified feature such as AB (44 
%), CADB, BA (20 %), etc, 
where, A: precursors addition, 
B: reducing agent addition, C: 
capping agent, D: catalysts, E: 
other step 

Post treatment Treatment 3.8 % Such as washed (42 %), no post 
treatment (43 %), dried (2.2 %), 
centrifuged, pH adjusted, 
filtration, etc 

Outcome to be 
predicted 

Core size 0.0 % 0.1 – 334.8, 28.7 (nm)  
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In the next step, missing values were imputed via iterative ML based 
imputation. During each iteration, the imputation model uses the 
imputed values from previous iterations along with other available 
features to improve the accuracy of predictions. This process continues 
for a predefined number of iterations or until convergence is achieved. 
The dataset was randomly stratified split into ten training (1479 rows) 
and test sets (634 rows) for training and validation ML purposes. Models 
were validated via 10 fold corss validation approach which provides 
valuable insights into the predictive power of a model on unseen data 
from the training set. 

3.2.2. Toxicological 
In case of the toxicological dataset, the creation of a dataset targeting 

a toxicological outcome with synthesis parameters as inputs was not 
feasible (Supplementary material, toxicological tab). The diversity of 
outcomes did not allow the selection of a single outcome of sufficient 
size and data completness. For example, various endpoints were mea-
sures such as cell viability, Inhibitory Concentration 50 % (IC50), Lethal 
concentration 50 % (LC50, LC90), minimum inhibitory concentration 
(MIC), lipid peroxidation, apoptosis, rate of haemolysis, scavenging 
activity, proliferation, etc. IC50 expressed as mg/ML, was the most 
commonly reported outcome in our case (20 studies), resulted only in 
nearly 500 rows of information. Thus, we did not proceed further with 
the toxicological case. 

3.2.3. Antibacterial efficiency 
From the 219 studies, 134 of them provided an antibacterial effi-

ciency assessment using diverse endpoints such as biofilm inhibition/ 
formation (8 studies, endpoint expressed as % or CFU/ML), LC50 (2 
studies), growth rate, inhibitory concentration (IC10 or IC50, 4 studies), 
minimum bactericidal concentration (MBC, 6 studies), minimum 
inhibitory concentration (MIC, MIC50, MIC90, 28 studies with endpoint 
expressed as mg/ML, % or NPs/ML, mM, etc), zone of inhibition (ZOI, 88 
studies), etc. Based on the analysis, ZOI (mm) was selected as the 
endpoint to be modelled which represents a a circular area around the 
spot of the agent in which the bacteria colonies do not grow (expressed 
in mm) and indicates the effectiveness of the antimicrobial agent. The 
model captures the efficiency againste multiples strains providing a 
comprehensive understanding of its overall effectiveness and generalize 
findings. It may be more appropriate to develop separate predictive 
models for each bacterial strain for a more focused and accurate 
assessment of the relationship between antimicrobial agents and bac-
terial growth inhibition. However, due to limited availability of data for 
individual strains we combined information to assess the overall anti-
microbial activity in a holistic persepctive. 

Rows absent with ZOI values were dropped, and when information 
on the standard deviation on the ZOI results were available (15 studies 
provided SD), those rows where triplicated contain the average, the 
minimum and maximum ZOI values. This resulted in a new dataset 
(1251 rows with 25 features, 9 numerical and 16 categorical) shown in  
Table 3 (Supplementary material, antimicrobial tab). Scale synthesis, 
capping and reducing agent concentrations and stirring speed were 
excluded from the modelling part due to substantial amount of missing 
values. 

3.3. Machine learning exploration 

PyCaret regression library [70] was utilized to train various ML al-
gorithms (linear regression, decision tree regression, random forest 
regression, and support vector regression, among others). Models 
parameterazation or optimization was not performed since the chosen 
algorithms have few hyperparameters and are relatively straightfor-
ward. In addition, the emphasis of the study is placed on the exploration 
of the feasibility of modelling approach using literature data rather than 
the parameter optimization. The models were trained using the training 
sets, which consisted of subsets of the available data (70 %). A 

Table 3 
Input features used to predict zone of inhibition along with the missing values 
presented in that dataset and a description of the features.  

Group of 
features 

Input features Missing 
values 

Description (min – max, 
mean values), 
categorical examples 

The synthesis 
method 

Synthesis process 0.0 % Green synthesis, 
phytochemical synthesis 
(70 %), wet chemical (9 
%), biosynthesis (8.2 %), 
etc 

Steps involved 0.0 % Single step synthesis (95 
%), or multiple 

Synthesis duration 11.3 % 0.008 – 168, 16.2 (h) 
Scale 40.6 % 3 – 510, 107.2 (ML) 

External energy Energy 0.0 % Such as heating (31 %), 
autoclave (4.2 %), 
sonication (1 %), 
microwave (3.7 %), ice 
bath, UV treatment 

Stirring 0.0 % Such as mechanic (18.3 
%), normal stirring (28.7 
%), magnetic (10.7 %), 
shaking (5.2 %), etc 

Stirring Speed 49.0 % 0 – 5.000, 71 (rpm) 
Experimental 

conditions 
Temperature 3.8 % 20 – 200, 44 (◦C) in case of 

no information in the 
article, room temperature 
was inserted 

Precursor Concentration 2.4 % 0.1 – 25,000, 19.2 (mM) 
Capping agent Classification 0.0 % Such as plant (64 %), 

chemical (8.7 %), 
biopolymer, biomolecule, 
fungal extract (7.3 %), 
algae extract (7.8 %), etc 

Class 1.0 % Organic, inorganic 
Concentration 34.1 % 0.02 – 500, 68.6 (mg/ML) 

Reducing agent Classification 1.4 % Such as plant (65.7 %), 
chemical (9.5 %), 
biopolymer, biomolecule, 
animal derivative, algae 
extract (7.8 %), etc 

Class 1.4 % Organic, inorganic 
Concentration 41.6 % 1.0 – 500, 36.4 (ML) 

Experimental 
conditions 

Order of reagent 7.1 % Codified feature such as 
ABE, CADB, CAB, etc, 
where, A: precursors 
addition, B: reducing agent 
addition, C: capping agent, 
D: catalysts, E: other step 

Post treatment Treatment 0.2 % Such as none, (51.6 %), 
washed (26.6 %), dried 
(4.2 %), centrifuged, pH 
adjusted, filtration (3.8 
%), etc 

Pchem 
properties 

Shape 9.2 % Such as spherical (76.8 %), 
prism, cubic (4.8 %), 
hexagonal, triangular, etc 

Core size 9.4 % 0.68 – 334.8, 32.1 (nm) 
Core size (method) 10.3 % Such as TEM (51.3 %), 

SEM (22.8 %), AFM (6 %), 
FETEM (5.7 %), FESEM 
(2.2 %), etc 

UV-Vis peaks of 
NPs 

6.1 % 280 – 780, 429 (nm) 

Exposure 
conditions 

Exposure dose 16.2 % 0.00001 – 1000, 9.2 (mg/ 
ML) 

Exposure duration 13.8 % 3 – 168, 26.8 (h) 
Organisms Culture medium 17.3 % Such as Corkborers, Luria 

Bertani, Agar, Mueller 
Hinton, etc 

Species 0.0 % Such as E. coli, 
Staphylococcus, Bacillus, 
Klebsiella, Salmonella, 
Candida, etc 

Outcome to be 
predicted 

Bacteria reduction 
(endpoint: zone of 
inhibition) 

0.0 % 0 – 80, 12.7 (mm)  
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cross-validation approach to evaluate the models’ robustness was used 
to validate models iteratively, with each fold serving as a validation 
unseen test set. This process was repeated ten times, ensuring that each 
fold was used also as the validation set. During cross-validation, various 
metrics to assess the accuracy and generalization capability of the 
models were assessed such as the root mean squared error (RMSE), mean 
absolute error (MAE), and R-squared (R2). The RMSE measures the 
average magnitude of the prediction errors and provides an indication of 
how well the model fits the data. The MAE represents the average ab-
solute difference between the predicted and actual values and is useful 
for understanding the model’s overall accuracy. The R2 score quantifies 
the proportion of variance in the target variable that is explained by the 
model and indicates the goodness of fit. 

3.3.1. Core size prediction 
The performance metrics of the 10-fold cross-validation results of the 

top five model’s out the 18 regression algorithms contained in the 
PyCaret library, shown in Table 4. The regression algorithms performed 
similarly with random forest and Extreme Gradient Boosting reaching 
during the 10-fold cross a R2 ≈ 0.70, RMSE≈ 16.85 and MAE≈ 9.10 
followed by Extra Trees Regressor. 

Prediction error plot of random forest model (right) and residuals 
plot (left), of one individual instance of the ten subsets for visualazation 
purposes, are shown in Fig. 1. The blue dots on residuals plot represent 
the training set instances where the model is trained on 70 % of the data 
and shows an R2 value of 0.84. The green dots represent the test set 
instances where the model is tested on 20 % of the data as a test set and 
shows an R2 value of 0.66. The residuals plot allows to identify areas of 
the target that may be more or less prone to errors by displaying the 
difference between residuals on the y-axis and the dependent variable 
on the x-axis. The plot indicates a good-performing model since the 
residuals are randomly scattered. In the right panel, the actual targets 
from the dataset are plotted against expected values produced by 
random forest model in a prediction error plot. Comparing this plot to 
the 45 degree line (identity line), where the prediction exactly matches 
the model, allows diagnosing the regression model fit. The plot shows a 
good fit of the model with an R2 value of 0.66 displaying a correlation 
between actual core size values and its predicted values. 

We computed the mean absolute SHAP (SHapley Additive exPlana-
tions) value as a measure to compare the influence of features in the 
model. The mean absolute SHAP value represents the average impact of 
a feature on the model’s predictions across all instances. By comparing 
the mean absolute SHAP values across different features, we gained 
insights into their relative importance in predicting the target variable. 
Upon analyzing the results, we observed that certain features exhibited 
higher mean absolute SHAP values, indicating their stronger influence 
on the model’s predictions (Fig. 2). These features collectively play a 
more significant role in determining the target variable and had a larger 
impact on the model’s output. Conversely, features with lower mean 
absolute SHAP values contributed less to the predictions and had a 
relatively smaller influence.  

• The synthesis duration showed the highest SHAP value indicating its 
strong influence on the prediction values of the core size. The 
duration plays a crucial role in determining the structural and 

morphological characteristics of AgNPs; longer synthesis durations 
often result in larger particle sizes. The duration is closely linked to 
the kinetics and reaction pathways involved in the formation of NPs, 
due to a balance between growth and stabilization processes of NPs 
associated to reducing and capping agents [73]. Different synthesis 
durations can influence the rates of nucleation, growth, aggregation, 
or surface modification processes.  

• The scale of synthesis followed second which could be explained by 
its function in determining the reagents interactions during synthe-
sis. Changing the synthesis scale can affect the local ratios of re-
agents, which can influence the nucleation and growth kinetics, 
particle size distribution, and local composition [74]. It can also be 
attributed to its influence on the quantity- and 
composition-dependent NPs properties.  

• The order of reagents was ranked third. The order can affect the 
nucleation and growth processes involved in synthesis [75]. Con-
trolling the sequence of reagent addition, can influence the forma-
tion, capturing critical information about the kinetics and 
thermodynamics of nucleation and growth, and making it a signifi-
cant predictor.  

• The nature of the capping and reducing agent appeared high, since 
they provide information about AgNPs chemical nature that in-
fluences the surface chemistry and properties of the nanoparticles 
[76]. Consequently, the classification or the type of capping and 
reducing agent becomes a crucial predictor for modelling these 
nanoparticle characteristics, leading to high SHAP value. The 
reducing capping agent derived from plant is the most relevant in the 
top ten features, while the nature of the capping agent is followed in 
as biopolymer > chemical > plant.  

• Stirring mode, concentration of precursor and type of post-synthesis 
treatment also appeared in the top ten SHAP values. 

3.3.2. Zone of inhibition prediction 
The performance metrics results of the top five model’s of PyCaret’s 

regression moduleshown in Table 5. The regression algorithms per-
formed similarly during the 10-fold cross validation reaching a R2 

≈ 0.72, RMSE≈ 4 and MAE≈ 2.5 with Light Gradient Boosting Machine. 
Similar results were observed with random forest and extra tress re-
gressor algorithm. 

Prediction error plot (right) and of residuals error plot (left) of 
lightgbm regression model are shown in Fig. 3. The blue dots represent 
the training set instances where the model is trained on 70 % of the data 
and shows an R2 value of 0.87. The green dots represent the test set 
instances where the model is tested on 20 % of the data as a test set and 
shows an R2 value of 0.73. The plot shows fairly uniformly distributed 
residuals against the target in two dimensions indicating a good per-
forming model. The prediction error plot shows a good fit of the model 
with an R2 value of 0.73 displaying a correlation between actual ZOI 
values and its predicted values. 

We computed the mean absolute SHAP (SHapley Additive exPlana-
tions) value as a measure to compare the influence of features in our 
model Fig. 4.  

• Core size highest SHAP value in predicting the ZOI suggests its strong 
influence on the models’ predictions. The model reflected what is 
known by mechanistic investigations. Smaller NPs with larger sur-
face areas have increased contact area with bacterial cells, enhancing 
the chances of interactions. The core size affects the diffusion and 
penetration of NPs into bacterial cells. Smaller NPs can more readily 
penetrate the bacterial membrane, being internalized, accessing 
intracellular targets, and disrupting essential processes, causing cell 
damage [77]. 

• The core size can influence the targeting and specificity of NPs to-
wards bacteria, which can explain the bacterial species features 
appearing second. For instance, certain core sizes may exhibit 
stronger interactions with specific bacterial strains or surface 

Table 4 
Top five machine learning regression algorithms validation results metrics 
(mean values of 10-fold cross validation approach).  

Model Acronym MAE RMSE R2 

Random Forest Regressor rf 9.11 16.82 0.70 
Extreme Gradient Boosting xgboost 9.06 16.89 0.70 
Extra Trees Regressor et 9.03 17.19 0.68 
Decision Tree Regressor dt 9.09 17.6 0.66 
Light Gradient Boosting Machine lightgbm 10.12 18.20 0.66  
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receptors, leading to enhanced antibacterial activity [78,79]. Un-
derstanding the size-dependent targeting capabilities is crucial for 
predicting the antibacterial efficiency of NPs.  

• Exposure dose appeared third in the SHAP, since the antibacterial 
activity of NPs often exhibits a concentration-dependent behavior. 
Higher exposure concentrations provide a higher concentration of 

NPs (higher bioavailability), enabling more extensive interactions 
with bacterial cells and facilitating stronger inhibition of bacterial 
growth.  

• The core size affects various properties of NPs, such as solubility, 
stability, and aggregation behavior. These properties can influence 
the dispersibility and behavior of NPs in the bacterial environment, 
impacting their antibacterial efficacy which can explain the type of 
culture medium appearing as top influential features (Muellet Hinton 
> Agar medium). For example, smaller NPs may exhibit higher sta-
bility and remain dispersed, ensuring sustained antibacterial activity 
[80,81].  

• Synthesis process and parameters also appear in the top five, directly 
linked to the final size (as mentioned in a previous session). 

Consequently, the core size, bacterial species, culture medium and 
synthesis process become critical predictors for modelling the antibac-
terial efficiency, leading to their high SHAP values. Synthesis duration, 

Fig. 1. Residuals plot (left) and prediction errors plot (right) for random forest model. Train set: 1479 rows, test set: 634 rows. The figure represents one instance of 
the ten fold validation process. 

Fig. 2. Top 10 variables impact on predicted core size values (mean absolute SHAP value).  

Table 5 
Top five machine learning regression algorithms validation metrics (mean 
values) via 10-fold cross validation results.  

Model Acronym MAE RMSE R2 

Light Gradient Boosting Machine lightgbm 2.49 4.07 0.72 
Random Forest Regressor rf 2.31 4.10 0.70 
Extra Trees Regressor et 2.27 4.20 0.68 
Extreme Gradient Boosting xgboost 2.35 4.432 0.65 
K Neighbors Regressor knn 3.02 4.71 0.61  
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stirring and capping agent also appeared in the top ten SHAP values. 

4. Discussion 

AgNPs are used in various products, such as antibacterial soaps, 
wound dressings, bandages, medical devices, certain cosmetics and 
personal care products (creams, lotions, deodorants, and shampoos) for 
their antimicrobial and antioxidant properties [82–85]. Those func-
tionalities have been attributed to their unique pchem properties, thus 
manipulating those or predicting the properties during the synthesis 
stage is stage is crucial for the final nano-enabled products. Overall, the 
ability to manipulate and/or predict pchem properties during the syn-
thesis stage empowers researchers and manufacturers to create mate-
rials with tailored functionalities, optimized performance, and enhanced 
applicability in various industries. This approach also paves the way for 
innovative and advanced materials that can revolutionize technologies. 
By leveraging computational approaches, researcher can uncover syn-
thesis parameters and pchem combinations that could enable the 
development of materials with tailored properties. In addition, pre-
dicting pchem properties during synthesis can lead to more efficient and 
cost-effective processes. By avoiding the need for trial and error in 
experimental synthesis, researchers can save time, resources, and 

materials. AgNPs can be synthesized through various methods and the 
synthesis process can be complex, involving multiple parameters that 
influence the resulting NPs characteristics. Addressing this challenge 
necessitates the development of efficient predictive models that can 
capture the relationship among all the synthesis variables. In this study, 
a first attempt of utilizing synthesis data manually extracted from the 
literature with ML approaches has been reported. The data-driven 
approach has benefits but also carries some limitations. 

4.1. Benefits of a data driven approach 

A modelling approach allows for the systematic investigation of 
AgNP synthesis by considering a wide range of parameters simulta-
neously. This holistic perspective facilitates a comprehensive under-
standing of the synthesis process, enabling the identification of optimal 
parameter combinations and conditions for desired AgNPs properties. 
ML, offers a valuable approach to be incorporated into the synthesis of 
AgNPs. It can effectively handle diverse datasets, capture nonlinear re-
lationships, and make predictions [86,87]. By utilizing ML algorithms, 
researchers can consider multiple synthesis parameters and their in-
teractions, enabling accurate predictions of AgNP properties based on 
given synthesis parameters, helping to guide and prioritize experimental 

Fig. 3. Residuals plot (left) and prediction errors plot (right) for lightgbm regression model. Train set: 875 rows, test set: 376 rows.  

Fig. 4. Variable impact on predicted bacterial reduction (mean absolute SHAP value).  
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efforts [88]. It becomes possible to explore virtually the effects of 
different synthesis conditions combinations without conducting 
numerous time-consuming and costly experiments [89]. This speeds-up 
the synthesis process, reduces trial-and-error experimentation, and 
provides insights into the most influential parameters [90]. This 
approach promotes a more informed and data-driven approach to AgNP 
synthesis, leading to improved control over NPs characteristics and 
functionality. ML can aid in the discovery of novel AgNP formulations by 
guiding researchers towards unexplored regions of the parameter space 
[91]. This can lead to the identification of new NPs and functionalities 
that were not readily apparent through traditional synthesis approaches. 
The collaboration between traditional synthesis methods and ML-based 
approaches opens up new possibilities for innovation, efficiency, and 
impact in the field of materials science and nanotechnology. The feature 
importance analysis also provided valuable quantitative insights into the 
underlying factors that contribute significantly to the prediction of the 
outputs. By identifying them, deeper insights into the synthesis process 
and understand the parameters that have the strongest impact on the 
properties of AgNPs can be gained. This knowledge helps in streamlining 
the synthesis process, contributing to the development of more 
comprehensive and accurate models for predicting and optimizing AgNP 
synthesis. However, it is important to acknowledge limitations 
regarding data availability, generalizability, and assumptions made by 
the models. 

4.2. Limitations of the data driven approach 

The ML models developed in this study are trained and validated 
using a specific dataset collected from the literature. The applicability 
and generalizability of these models to other synthesis conditions, NPs 
systems, or antibacterial agents should be approached with caution. 
Therefore, further validation and testing on independent datasets are 
necessary to assess the model’s robustness and generalizability. The 
selection of features used in the models is critical for their predictive 
performance [92]. In this study, certain features were chosen based on 
their data completeness (missing values %). However, other important 
features may not be considered or available in the collected dataset. It is 
important to consider a broader range of features and explore their 
potential impact on the model’s performance in future studies such as 
the yield of reaction and other pchem properties or atomistic de-
scriptors. While ML models can provide insights into feature importance 
and their impact on predictions (e.g., SHAP values), they do not inher-
ently provide causality for example high SHAP values associated with 
certain features indicate their influence on the model’s predictions, but 
do not establish causal relationships. Therefore, caution should be 
exercised when interpreting the results and making causal claims based 
solely on the model outputs. For example, the synthesis duration is the 
most relevant feature to predict the final core size, followed by the 
synthesis scale and the order of reagents in the process [93–95]. 
Reducing and capping reagents’ typology and concentration are less 
relevant in the final outcome compared to the three features mentioned 
above. Conducting experiments under controlled conditions using the 
predicted optimal synthesis parameters can help validate the model’s 
predictions and assess their practical utility. Addressing these limita-
tions and further exploring the predictive performance of the models in 
real-world scenarios will be crucial for the practical application and 
wider acceptance of ML approaches in the field of NPs synthesis and 
antibacterial research. 

4.3. The main limitation of data driven approaches: data 

One of the main limitations of this study is the reliance on manually 
collected data from the literature. The availability and quality of the 
data might vary [96]. This lack of data poses challenges for researchers 
and hinders the development of accurate predictive models [97,98]. It 
becomes difficult to establish general guidelines or best practices for 

achieving desired NPs characteristics. The accuracy and completeness of 
the data depend on the reporting and documentation of the synthesis 
procedures in the literature. Data harmonization is a crucial step in the 
development of ML models [99]. It involves standardizing and inte-
grating diverse datasets from various sources to ensure compatibility 
and consistency, identifying common parameters, variables, and units of 
measurement across the studies. The lack of standardized reporting 
formats across different studies introduces variability in the collected 
data. Therefore, harmonizing the data is essential to create a unified and 
cohesive dataset for model development. It is crucial to collect 
comprehensive and diverse datasets that cover a wide range of synthesis 
conditions and nanoparticle properties to ensure the accuracy and 
generalizability of the models. 

4.4. Future directions 

To overcome the scarcity of data, researchers can adopt strategies to 
generate and share synthesis data. Collaboration among researchers and 
institutions can facilitate the pooling of data from different studies and 
contribute to a collective knowledge base [100]. Additionally, efforts to 
publish detailed synthesis protocols and characterization data can help 
bridge the data gap and foster reproducibility in the field. Furthermore, 
emerging techniques such as high-throughput experimentation and 
automated synthesis platforms can aid in generating large volumes of 
data on AgNPs synthesis. These approaches can rapidly explore a wide 
range of synthesis conditions and provide valuable insights into the ef-
fects of various parameters on nanoparticle properties. Sharing such 
data openly can encourage collaboration, accelerate progress, and 
enable the development of machine learning models and predictive tools 
[89]. To achieve harmonization, standardizing the data involves con-
verting various units of measurement into a consistent format. For 
example, ensuring that reagent concentrations are expressed in the same 
units (e.g., molar concentration) or that the same approach is used for 
NPs characterization. This step minimizes discrepancies arising from 
different reporting conventions. Aligning the parameters involves 
mapping and matching the terminologies used in different studies. 
Synthesis parameters, such as reagent names, reducing agents, stabi-
lizing agents, and experimental conditions, need to be harmonized to 
ensure consistency across the dataset. This may involve creating a 
standardized vocabulary or ontology to facilitate data integration and 
fairness. Strong efforts are ongoing in the field of nanosafety towards the 
principles of Findability, Accessibility, Interoperability and Reusability 
(FAIR) data and their importance for modelling studies and data-driven 
safe and sustainable application of nano- and advanced materials 
[100–103]. 

Another emerging concept in the nanotechnology computational 
field is the use of read-across structure-activity relationship (RASAR) 
[69]. The integration of RASAR in the synthesis of AgNPs with ML 
models enhances the predictive capabilities and the efficiency of the 
models. RASAR leverages the similarity between chemical structures 
and their corresponding activities, enabling the extrapolation of prop-
erties to new or untested compounds. In this context, RASAR can be 
applied to complement the abovementioned models and enable the 
prediction the pchem properties, antibacterial efficiencies, and toxico-
logical profiles of AgNPs beyond the specific data points manually 
extracted from literature sources. RASAR extends the predictive scope 
by considering structural similarities with known compounds, providing 
a broader understanding of the relationships between synthesis pa-
rameters and endpoints. 

5. Conclusions 

This study employed a data-driven approach to predict the properties 
of AgNPs and their antibacterial efficiencies from synthesis parameters. 
The models were trained and validated using manually collected data 
from the literature, and their performance was evaluated using various 
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metrics. The feature importance analysis helped identify the influential 
variables in predicting the core size and zone of inhibition outputs. 
Factors such as synthesis duration, scale of synthesis, and the choice of 
capping agents were found to be important predictors in the models. The 
generalizability of the models to different datasets and experimental 
conditions should be further investigated. The development of stan-
dardized reporting formats for synthesis data would facilitate data 
collection and promote the reproducibility of studies in this field. 
Despite these limitations, the study showcases the potential of ML and 
their predictive capacity. The findings contribute to the growing body of 
knowledge in nanoscience and provide a foundation for further explo-
ration and optimization of NPs synthesis processes by providing a data 
asset to be further explored and enriched. Ultimately, the integration of 
ML and experimental validation holds promise in advancing the devel-
opment of materials, providing indication on how to implement a Safe- 
by-Design approach at the earliest stages of innovation. 
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silver nanoparticles synthesis from sustainable point of view: 2000 to 2023 - A 
review on game changing materials. Heliyon 2022:8. https://doi.org/10.1016/j. 
heliyon.2022.e12322. 

[36] Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M. An 
evidence-based environmental perspective of manufactured silver nanoparticle in 
syntheses and applications: A systematic review and critical appraisal of peer- 
reviewed scientific papers. Sci Total Environ 2010;408:999–1006. https://doi. 
org/10.1016/j.scitotenv.2009.11.003. 

[37] Jeong Y, Lim DW, Choi J. Assessment of size-dependent antimicrobial and 
cytotoxic properties of silver nanoparticles. Adv Mater Sci Eng 2014;2014. 
https://doi.org/10.1155/2014/763807. 

[38] Lu Z, Rong K, Li J, Yang H, Chen R. Size-dependent antibacterial activities of 
silver nanoparticles against oral anaerobic pathogenic bacteria. J Mater Sci Mater 
Med 2013;24:1465–71. https://doi.org/10.1007/s10856-013-4894-5. 

[39] Bakand S, Hayes A. Toxicological considerations, toxicity assessment, and risk 
management of inhaled nanoparticles. Int J Mol Sci 2016;17:1–17. https://doi. 
org/10.3390/ijms17060929. 

[40] Motta G, Gualtieri M, Saibene M, Bengalli R, Brigliadori A, Carrière M, et al. 
Preliminary Toxicological Analysis in a Safe-by-Design and Adverse Outcome 
Pathway-Driven Approach on Different Silver Nanoparticles: Assessment of Acute 
Responses in A549 Cells. Toxics 2023;11. https://doi.org/10.3390/ 
toxics11020195. 

[41] Karlsson HL, Cronholm P, Gustafsson J, Moeller L. Copper oxide nanoparticles are 
highly toxic: A comparison between metal oxide nanoparticles and carbon 
nanotubes. Chem Res Toxicol 2008;21:1726–32. https://doi.org/10.1021/ 
tx800064j. 
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