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conceptualizing adaptive cognition
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We delve into the human brain’s remarkable capacity for adaptability and sustained cognitive
functioning, phenomena traditionally encompassed as executive functions or cognitive control. The
neural underpinnings that enable the seamless navigation between transient thoughts without
detracting from overarching goals form the core of our article. We discuss the concept of
“metacontrol,” which builds upon conventional cognitive control theories by proposing a dynamic
balancing of processes depending on situational demands.We critically discuss the role of oscillatory
processes in electrophysiological activity at different scales and the importance of desynchronization
and partial phase synchronization in supporting adaptive behavior including neural noise accounts,
transient dynamics, phase-basedmeasures (coordination dynamics) and neural massmodelling. The
cognitive processes focused and neurophysiological avenues outlined are integral to understanding
diverse psychiatric disorders thereby contributing to a more nuanced comprehension of cognitive
control and its neural bases in both health and disease.

The human brain is unprecedented in its ability to flexibly adapt to varying
situations and ‘behave in an intelligent way,’ which involves being able to
adapt to varying demands flexibly and persist in cognitive operations when
necessary. Classically, the above-mentioned aspects have, in cognitive sci-
ence, been subsumed under “executive functions” or cognitive control
functions1. These functions refer to a set of processes required for goal-
directedbehavior. These processes are critical formental andphysical health
and are dysfunctional in many diseases and disorders.

A fundamental enigma of goal-directed behavior is what neural
mechanisms make it possible to shift between thoughts from moment to
moment without losing long-range goals and allow us to concentrate on a
thought without getting stuck. Recent years have witnessed a flurry of stu-
dies calling from conceptual modifications of how cognitive control pro-
cesses are accomplished. It has been suggested that arbitration between
opposing cognitive processes, which are each important for goal-directed
behavior, is accomplished through the so-called “metacontrol”2,3. Meta-
control can be understood as processes that are superimposed on the cog-
nitive control functions already conceptualized in research on executive
functions. Metacontrol describes the style people prefer or engage in when
facing a particular situation4, which not only calls for cognitive functions to
operate but also to operate in particular ways. Sometimes, it is useful to
engage in a persistent, focused control style—like when facing distracting

but irrelevant information (e.g. while working in your office), while others
call for a more flexible control style—like when acting under uncertainty
and being still able tomonitorwhat is around you.Whereas a high degree of
persistence corresponds to the original idea of cognitive control as will-
power, with a strong focus on one goal and the information related to it, a
high degree of flexibility is characterized by amore integrative, less selective,
and less exclusive processing style,which facilitates switching between tasks,
ideas, and actions, and taking into consideration a broader range of
possibilities2,3,5. For example, while working in your office it is important to
not dismiss the smell of smoke to stop working and better escape from the
burning building. The fact that people can deal with both kinds of situations
suggests that they can swiftly adjust the degree to which they engage in a
specific cognitive control style2,3,5,6. It is especially the ease with which our
brains can accomplish this, which is astonishing and still not understood.

It has generally been considered that synchronization and locking of
oscillatory processes in electrophysiological activity are central
mechanisms involved in the neural bases of cognition7–9. Yet, locking and
synchronization can lead to “maladaptive brains because dynamics
becomes locked in a state and shielded from changes in the
environment”10. This means that the adaptive nature of goal-directed
behavior cannot be fully understood by locking and synchronization
processes alone. On the other hand, desynchronization (un-locking)
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processes allow some flexibility, but this can be a disadvantage if they
prevail because long-range goals become fleeting, causing thinking to
become disorganized and erratic. We discuss a potential solution to this
conundrum—stressing the necessity to better connect neuroscience and
psychological framings11—through the role of modulations in partial
phase synchronization as a robust mechanism for seamlessly transi-
tioning between thoughts while maintaining a connection with long-
range goals. In physiological systems, altering the energy of a signal is
time-consuming (i.e., its amplitude, power, etc.). Therefore,magnitudeor
energy-based mechanisms can (i) hardly explain why humans can
quickly switch between opposing goals voluntarily, and (ii) can also
hardly explain how such transitions can occur involuntarily. Yet, mod-
ulations in the phase properties of neural activity are less demanding, and
shifting the phase of a neural signal does not inherently require energy in
the sense of consuming physical resources. In this regardwe delve into the
possible role of neural noise for metacontrol. Moreover, using methods
from “coordination dynamics”, it is possible to analyze and mathemati-
cally describe this dynamic in time series data and hence in neurophy-
siological data associated with processes during the unfolding of goal-
directed behavior. Our contribution’s central focus lies in exploring
cognitive processing along a dimension characterized by its two poles:
“persistence” and “flexibility.” The continuum is also integral to under-
standing diverse psychiatric disorders, which is why a better con-
ceptualization of metacontrol on a neural level will likely lead to a better
mechanistic understanding of neuropsychiatric disorders. We propose
signal-processing methods to characterize this continuum connecting
neurophysiology, physics, and cognitive science. In this regard, also
neural mass modelling is considered.While the discussion below focuses
on EEG and MEG data, the different approaches discussed are of course
also applicable to other form of neural time series data (e.g. invasive
recordings at the level of individual neurons etc.).

Multiple avenues for conceptualizing metacontrol on a
neural level
Neural noise
On themechanistic level, persistence/flexibility has been related to gating
or signal-to-noise ratio12–16. Persistence then involves amplification or
maintenance of specific content in the foreground against a background
of neural ‘noise,’ at the cost of less flexible responses to potentially
important other signals. Interestingly, it has been suggested that this
mechanism can be directly assessed through aperiodic broadband EEG
activity4. Ametacontrol bias towards persistence is achieved by increasing
the top-down input of current action goals on the decision between
suitable action alternatives, and by increasing the mutual inhibition (or
competition) between representations of these alternatives3. Flexibility, in
turn, would be achieved by relaxing this top-down impact and the
competition between alternative representations. From a neurophysio-
logical perspective, this suggests that some form of inhibition-excitation
(I/E) balance is relevant for metacontrol and that measures reflecting this
balance may be central to gaining insights into the neural underpinnings
of metacontrol. Intriguingly, the I/E balance gives rise to the 1/f-like
nature of the power spectral density17, which suggests that the 1/f-like
nature of neural activity may be central to better understanding
metacontrol4. In a nutshell, persistency-heavy processing is associated
with a steeper slope of the 1/f function, while a more flexible processing
strategy is associatedwith a flatter 1/f function. Across the EEG spectrum,
a negative relationship exists between power and frequency, which can be
characterized by 1/fx, with an increasing exponent (x) reflecting a steeper
slope. Increasing evidence is accumulating that contextual requirements,
as well as individual differences modulate 1/f slope in a manner that is
consistent with an interpretation in terms of persistence/flexibility. For
example, higher experimentally-induced uncertainty regarding which
stimulus features are relevant for subsequent decisions induces flatter
slopes, consistent with the notion that a more flexible consideration of
multiple alternatives must be entertained18. According to this, a

persistence-prone metacontrol state may be characterized by a steeper
slope of the 1/f noise function and the a more flexibility-prone meta-
control state may be reflected by flatter slope of the 1/f noise function.

Critically, while evidence is rapidly accumulating that relates 1/f
slope to persistence/flexibility providing a potential mechanism to
metacontrol and how adaptive processes are implemented, processes
captured by this measure may not be the only ones being important. The
1/f noise or other modern parameterizations, such as “fitting oscillations
and 1/f (FOOOF)”17, are applied to measure broadband noise. Higher
frequency band activity contributes to 1/f noise (e.g., from the gamma
frequency band). While there is some evidence that 1/f-like dynamics is
evident in narrow-band amplitudefluctuations19,20, this dynamics is likely
mostly a side-effect of broadband activity. The reason is that low-
frequency oscillations are co-modulated with higher frequencies by
phase-amplitude coupling8,21–23. From that perspective, it is unlikely that a
1/f regimen alone is sufficient to ‘fully’ conceptualize metacontrol on a
neurophysiological level. It is thus necessary to consider other potential
mechanisms related to oscillatory dynamics and their biophysics.
Importantly, this possible dynamic has to forego the problem by syn-
chronization (locking) and desynchronization (un-locking).

Transient brain dynamics
Aside from “noise” or aperiodic activity, recent modelling and conceptual
advances have led to the characterization of oscillatory activity as a series of
bursts in specific networks rather than continuous ongoing activity.

One interesting aspect is so-called “phase precession”. It is a phe-
nomenon observed in the firing patterns of neurons and refers to a pattern
where the spiking firing pattern of neurons shift their timing relative to
ongoing oscillations (e.g. the theta frequency band). Neural ensembles
revealing phase precession properties are able to fire in a phase-locked
(persistent) state,when there areno changes in the associated cognitive state.
Yet, these ensembles also exhibit changes (flexibility) in their phases of
oscillations as the cognitive state is updated through environmental inter-
actions. While originally described in the hippocampus24,25, phase preces-
sion has also been found in themedial prefrontal cortex26 and other cortical
regions27,28. This implies a more global role for this phenomenon during
theta rhythm-mediated coordination of neural activity 27. Interestingly,
especially the medial prefrontal cortex is well-known to be involved in
cognitive control and relevant for adaptive cognitive processes29,30 and the
same holds true for theta band activity7,31. Therefore, phase precession could
reflect an important mechanism through which adaptive cognitive pro-
cesses may be realized. In particular it is conceivable that a flexibility-prone
state is reflected by a pattern where spiking neural activity is not closely tied
to the timing of ongoing oscillations. In a persistence-prone state, the
opposite may be the case.

Another line of research, also applicable using surface-based neu-
rophysiological data (e.g. EEG/MEG), is using novel modelling approa-
ches to capture and characterize fast brain dynamics. One such approach
is based on hidden Markov models (HMMs). These models assume that
the brain’s activity progresses through different states that are hidden and
Markovian. The observation model then associates e.g. a mean brain
activity across different brain regions to each of the states. Put more
concretely, this modelling approach starts from fMRI or source-
reconstructed M/EEG data and extracts several brain ‘states’. These
states have a spatial profile, can be characterized by specific frequency
content, and (in the case of M/EEG) allow us to analyze the dynamics at
millisecond resolution, i.e., these brain states have lifetimes in the order of
50–100 ms. These methods have been used to characterize the effect of
normal brain functioning, benzodiazepines32, or working memory in
health33 and disease34. Given that thesemodels capture fast transient brain
dynamics and can capture the stability of specific brain networks, they are
excellent candidates for distinguishing people on the persistence vs
flexibility axis. Hidden Markov models (HMMs) have been used in a
variety of settings to uncover hidden sequences underlying observations.
One example to illustrate the use of hidden Markov models goes as
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follows (see Figs. 1 and 2): assume you have a single variable that fluc-
tuates over time with a certain mean and standard deviation. However,
when plotting the histogram of values, you observe that the distribution
does not resemble a simple unimodal distribution but seems to present
different modes. Inferring the hidden Markov model on this data would

then boil down to discovering the underlying states, their parameters (in
this case, the mean and standard deviation of the normal distribution),
and transition probabilities. Put concretely, if you have one EEG time
series captured during sleep, you could use the HMM framework to
extract the different sleep stages. An excellent starting point to under-
stand hiddenMarkovmodels can be found elsewhere35. Tomodel whole-
brain activity, it is necessary to have a (predefined) number of states and
an observationmodel that links these states to the observed brain activity.
There are several options for the observation model. One of the first
HMMmodels used a multivariate normal distribution, where each state
was characterized by its mean activation and the covariance between the
different time series36. More advanced models have been developed: the
multivariate autoregressive model enables to model of time-lagged
dependencies37 but is computationally unfeasible on whole-brain ima-
ging data. Therefore, Vidaurre et al. developed the time-delay embedded
HMM model. Here, the original time courses are supplemented with
time-delayed versions. Next, a principal component analysis is applied to
extract the main principal components, and a multivariate normal dis-
tribution is used as observationmodel38. The hidden brain states allow us
to characterize brain activity in whole-brain networks that are transiently
activated and that have an associated frequency spectrum. As such, one
can compare the 1/f-spectrum per brain state between two conditions or
the transition probabilities between different hidden states. Concerning
metacognition, one could hypothesize that flexibility vs persistence could
be represented by the stability of the different brain states as captured by
Markovian processes. Regarding metacontrol, an HMM provides para-
meters of the underlying states (e.g. of the stability of the different brain
states), and its transition probabilities. For a flexibility-prone state the
parameters indicate a lower stability of the different brain states and
higher transition probabilities. For a persistence-prone state the HMM is
likely to yield a stronger a stability of the different states and lower
transition probabilities.

However, aside HMM models to capture transient brain dynamics,
also other concepts have been around that may provide suitablemeans to
capture transient dynamics. One of these concepts is “chaotic
itinerancy”39,40. In a nutshell, this concept suggests that transitions
between cortical activity states are not random but yield chaotic
dynamics39,40. As such, chaotic itinerancy generates metastable states40,41.
As outlined in the introduction, these are central because locking and

Fig. 1 | Example of an HMM application. A single
time series (panel a, blue line) consists of a multi-
modal distribution as visualized by the histogram in
panel b. The underlying Markov chain is visualized
in panel c. The system cycles through two states, and
each state has an observation model, which - in this
case - is a univariate random Gaussian distribution
characterized by its mean and standard deviation.
Inferring the HMM refers to uncovering the states’
parameters and their activations (red line in panel a).
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Fig. 2 | Example of the application of HMM models to source-reconstructed
MEG data. The HMMmodel identifies the time points at which a certain state K is
active (panel a). This HMM state can be further characterized by its power spectral
map (b) and its functional connectivity pattern (c).
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synchronization can lead to “maladaptive brains because dynamics
becomes locked in a state and shielded from changes in the
environment”10. Through “chaotic itinerancy”39,40, such problems can be
avoided. Central to this concept is the existence of so-called quasi-
attractors. The latter reflects a region giving ordered (periodic) and dis-
ordered, chaotic activity39. Of note, it has been argued that such states can
be observed in networks showing scale-free properties of activity40. This is
important because scale-free activity is fundamental to the emergence of
1/f noise or aperiodic activity (see above)42. The concept of chaotic itin-
erancy could thus provide links between transient dynamics and noise
approaches to better conceptualized adaptive cognitive and metacontrol.
Regarding metacontrol and the arbitration between a flexibility-prone
and a persistence-prone state their effect on chaotic itinerancy may be as
follows: Chaotic itinerancy assumes a closed-loop trajectory through
high-dimensional state space of neural activity that directs the cortex in a
sequence of quasi-attractors39. Within a flexibility-prone state this quasi-
attractor is more governed by disordered chaotic activity between
regions, while in a persistence-prone state this quasi-attractor is governed
by ordered periodic activity. This, however,means that there is a dynamic
interplay or periodic and chaotic (aperiodic) activity to establish the
dynamic interplay of cognitive state as supposed by metacontrol theory.
Both, periodic and aperiodic activity, therefore need to be considered in
parallel to capture metacontrol dynamics.

Phase-based measures
As outlined above, a characterization of the phase properties of neural
activity can be key to the conceptualization of adaptive cognitive pro-
cesses. The framework of phase-based signal analysis offers a means to
characterize the dynamics underlying experimental neural signals. A
decomposition of signals into instantaneous amplitudes and instanta-
neous phases can readily be achieved using the so-called analytical signal
approach based on the Hilbert transform. The instantaneous phases can
be used to characterize individual signals, pairs of signals, or multivariate
sets of signals, thereby covering different spatial scales of neuronal
organization. For individual signals, the degree of regularity versus irre-
gularity can be quantified by the coefficient of phase velocity variation43.
This approach allows one to assess the synchronization of local ensembles
of neurons contributing to the signals measured at individual M/EEG
sensors. The synchronization between pairs of neuron ensembles mea-
sured at pairs of M/EEG sensors can be quantified by the mean phase
coherence44. The mean resultant length45, as well as its renormalized
definition46, can be used to quantify the overall phase coherence of an
extended network as measured by a multitude of M/EEG sensors. In
particular, these latter multivariate approaches can assess a network’s
instantaneous phase coherence, thereby offering a glance at the two poles
of persistence and flexibility in cognitive processing. Next to the analysis
of whole-brain network bursts, different measures can capture the
intrinsic stability of neurophysiological signals. One of them is the Kur-
amotoOrder parameter (see Box 1). This parameter quantifies the degree
of phase-locking in an ensemble of oscillators at any time; importantly, it
captures the degree of phase coherence in the system as it vanishes when
the phases are uniformly distributed and approaches onewhen the phases
of all oscillators become aligned, thus covering the overall structure. An
extension of the classical Kuramoto Order parameter to account for
higher harmonics of phases allows considering another type of phase
locking, i.e. the formation of symmetric phase clusters, where the oscil-
lators in a network separate into groups, each one oscillating in different
phases. When a network is stable, we expect the Kuramoto order para-
meter to remain (more or less) constant. However, if other networks start
competing, the Kuramoto order parameter may start to increase or
decrease. Understanding how the Kuramoto order parameter evolves
within trials, across trials, and subjects and how it is related to bursting
network activity (see above) provides a first promising approach toward a
novel characterization of Metacontrol in healthy and pathological brain
functioning. In addition, characterizing the Kuramoto order parameter

not across the whole brain but across the well-known subnetworks of the
brain would further help elucidate the stability and flexibility of each
subnetwork. Through the Kuramoto order parameter, one could derive a
measure for a candidate neural mechanism possibly consistent with this
well-known, yet unexplained nature of goal-directed behavior, which is
an “intermediate” of the locking (synchronization) and un-locking
(desynchronization) processes and be considerably dynamic to become
fully effective in short time frames. Instead of research on goal-directed
behavior conventionally centering on mechanisms of neural locking
(synchronization) or unlocking (desynchronization), the use of the
Kuramoto Model may be useful to better understand the dynamics of
goal-directed behavior. Interestingly, the Kuramoto model has already
been regarded to reflect “metastability”, which is the simultaneous rea-
lization of two competing tendencies: the tendency of the individual
components (oscillators in a network) to couple together and the ten-
dency for the components to express independent behavior. The con-
current expression of both temporary large-scale integrative activity and
local autonomous activity is achieved via partial coordination or patterns
of quasi-phase-locking that summon and release brain areas “on
demand”. Using methods from “coordination dynamics” (i.e., the Kur-
amotomodel), it may be possible to analyze andmathematically describe
metastability in time series data and hence in neurophysiological data
associated with processes during the unfolding of goal-directed behavior.
The Kuramoto order parameter encodes the level of synchrony of a phase
oscillator population and could be used to quantify the degree as to which
a system is in a persistence-prone or flexibility-prone state. A Kuramoto
order parameter close to one indicates a high level of synchrony of a phase
oscillator population, which could give rise to a persistence-prone
metacontrol state. Vice versa, a Kuramoto order parameter closer to zero
could indicate a more flexibility-prone metacontrol state. Higher Kur-
amoto order parameters (see also Box 1 and Fig. 3) may finally disclaim
the case where there is only one flexibility-prone metacontrol state or
several persistence-prone metacontrol states.

Neurocomputational approaches
Whereas signal processing techniques can help us characterize brain
functioning across a range of neuropsychiatric disorders, it is important to
remember that the signals we can measure noninvasively are necessarily
averages across large neuronal populations. Neurocomputational models,
however, have the potential to explain these changes or—at least—to gen-
erate new hypotheses on how Metacontrol emerges and is altered across
normal and pathological functioning. In the cortex, neural activity is
coordinated across the network, despite weak, zero-lag cross-correlations
between pairs of neurons. As a result, the collective network dynamics can
be effectively described by a small number of collective variables when
compared to the number of (simultaneously) recorded neurons. These
collective variables are typically obtained using dimensionality-reduction
techniques such as principal component analysis. It has been proposed that
low-dimensional dynamics are a consequence of the fact that the con-
nectivitymatrix is rank-deficient47, which seems to require either some form
of synaptic plasticity or some specific anatomical organization of the con-
nectivity. In either case, the biological underpinning of the postulated low-
rank connectivity remains unidentified.

Neural mass and field models, able to generate brain rhythms using
the notion of population firing rates, have been usually employed to
reproduce the above-mentioned low-dimensional collective dynamics of
the active cortex. While more detailed networks of interacting
conductance-based spiking neuronmodels are hard to analyze in the raw
data, given that they are both high-dimensional and nonlinear, neural
mass and field models are much more amenable to mathematical ana-
lysis, as reviewed in Cook et al. 48. Even though these low-dimensional
models are typically not derived from any underlying microscopic
spiking dynamics, they can be motivated by several phenomenological
arguments for the evolution of coarse-grained neuronal variables. The
population model of Wilson–Cowan49,50 is perhaps the most well-known
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among these neural mass and field models that can be derived from
underlying microscopic dynamics, but do not come from a biophysically
detailed description of a spiking neuron: a core part of its modelling
framework is the use of a sigmoid function to determine population firing
rates in terms of population activity, while, at the tissue level, the spatially
extended Wilson–Cowan model can be conceived of as a (spatially
continuous) network of neural masses describing population activity
where a form of non-local spatial interaction is adopted to describe
anatomical connections and signaling along axonal fiber tracts.

Nonetheless, they are only expected to provide appropriate levels of
description for many thousands of near-identical interconnected neu-
rons with a preference to operate coherently. As a consequence, they are
not ideally suited to studying phenomena that are known to be associated
with changes of synchrony, such as the post-stimulus response ubiqui-
tously seen in human neuroimaging studies51 and which are currently

focused ondebates on howadaptive behavior is accomplished. Recently, a
new type of neural mass model has been developed that can capture the
phenomenon of event-related synchronization/desynchronization (ERS/
ERD) that is believed to underlie the changes in power seen in brain
spectrograms. Importantly, this new mean-field model is an exact
description of a network of non-identical (heterogeneous) θ-neuron
models in the limit of infinitely many neurons, where all the neurons are
connected and interacting among them in a symmetric manner (globally
coupled). The θ-neuron, or Ermentrout–Kopell canonical model (see
Box 2), is the normal form for the saddle-node on a limit cycle bifurcation
and for, constant stimulation, can generate lowfiring rates typical of those
seen in real cortical neurons52. Interestingly, the resulting mean-field
model has a population firing rate that depends on the degree of popu-
lation synchrony,measured by the Kuramoto order parameter53–55, rather
than just keeping track of the fraction of active neurons in a given interval

Box 1 | Phase oscillators and the Kuramoto Order Parameter

A phase oscillator network can be imagined as an ensemble of nodes,
where the state of each node is given by a single-phase variable. More
specifically, consider a population of N oscillators where the state of an
oscillator (i) is given by a phase θi ∈ T, where T indicates the circle of all
phases [0, 2π). Without input, the phase of each oscillator (i) advances at
its intrinsic frequencyωi∈R.The input to the oscillator (i) is determinedby
a complex field Hi (t), which is modulated by a sinusoidal function; this
field could be due to an external driving or to network interactions
between oscillators both within the same population or other popula-
tions. In other words, we consider oscillator networks whose phases
evolve according to

dθi=dt ¼ ωi þ ImðHi ðtÞ e�iθi Þ ð1:1Þ
While we allow the intrinsic frequency and the driving field to depend on
the oscillator to a certain extent (i.e., they are nonidentical), we will hen-
ceforth also assume that all oscillators within any given population are
indistinguishable: this means that the properties of each oscillator in a
given population are determined by the same distribution. Specifically,
suppose that the properties of each oscillator are determined by a
parameter ηi - for example, the excitability in the case of a QIF neuron
described in the next text box. Now let both the intrinsic frequencies and
the fieldbe functionsof this parameter, that is,ωi =ω(ηi) andHi (t)=H(t;ηi).
The oscillators of a given population are indistinguishable if all ηi are
random variables sampled from a probability distribution with density
g(η). In the special case that allηi are equal (i.e. g is adelta-distribution) the
oscillators are identical. Ifηi is not equal, the oscillators are not identical or
heterogeneous.
Phase oscillator networks of the form (1.1) include a range of well-known
models, suchas theKuramotomodel,which consists of a populationofN
coupled phase oscillators, θi (t), having natural frequenciesωi distributed
with a given probability density g(ω), and whose dynamics is governed
by:

dθi=dt ¼ ωi þ
XN

j¼1Kij sinðθj�θiÞ i ¼ 1; . . . ;N ð1:2Þ
Thus, each oscillator tries to run independently at its frequency, while the
coupling tends to synchronize it with all the others. When the coupling is
sufficiently weak, the oscillators run incoherently, whereas beyond a
certain threshold, collective synchronization emerges spontaneously.
Many different models for the coupling matrix Kij have been considered
such as nearest-neighbor coupling, hierarchical coupling, random long-
range coupling, or even state-dependent interactions. If all entries of the

coupling matrix are identical and equal to 1, all oscillators are identically
coupled to all the others, and the network is said to be globally coupled.
The synchronization transition observable in the model (1.2) can be
evaluated once the (complex-value) order parameter (known as the
Kuramoto Order Parameter)

Z ¼ r eiψ ¼ 1=N
XN

j¼1e
iθj ð1:3Þ

that is the mean of all phases on the unit circle. Here r(t) with 0 ≤ r(t) ≤1
measures the coherence of the oscillator population. Its magnitude r =|Z|
describes the level of synchronization of the oscillator population, see
Fig. 3: on the one hand, r = 1 if and only if all oscillators are phase syn-
chronized, that is, θk = θj for all k and j; on the other hand, we have r = 0 for
example if the oscillators are evenly distributed around the circle. The
argument ψ of the Kuramoto order parameter Z describes the ”average
phase” of all oscillators, that is, it describes the average position of the
oscillator crowd on the circle of phases.
As it turns out to be clear in Fig. 3, when looking at the middle and right
panels, the Kuramoto order parameter cannot differentiate between
completely asynchronous behaviors (where phases may be randomly
distributed on the unit circle) and synchronized behaviors with multiple
symmetric phase clusters (where each cluster or group consists of fully
synchronized oscillators, and different groups are phase-locked with
nonzero phasedifference). In otherwords, theKuramoto order parameter
Z is sufficient to measure the synchrony provided that the coupling
function does not include any higher-order phase harmonics. To over-
come this limitation, it is convenient to introduce the Kuramoto-Daido
order parameters, which represent mean-fields of the higher harmonics
of phases:

Zm ¼ rm eiψm ¼ 1=N
XN

j¼1e
imθj;m ¼ 1; . . . :;4; ð1:4Þ

with Zm being the centroid of N points {eimθ j} on the unit circle in the
complex plane. Form = 1 one obtains again Eq. (1.3) (i.e. Z1 ≡ Z), while for
m = 2 it is possible to take into account the formation of two clusters
separatedbyphasedifferenceπ. Referring toFig. 3, r 2 = 0 if theoscillators
are evenly distributed around the circle, while r2 = 1 in the case shown in
the right panel. Therefore, the Daido order parameter Z2 is needed to
quantify the overall degree of synchronization via entrainment in both
clusters, while Z1 just measures the degree of asymmetry between the
clusters. Equivalently for m = 3 (m = 4) the order parameter Z3 (Z4) iden-
tifies the formation of 3 (4) symmetrically formed clusters.
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of time (as in the original heuristic derivation of the Wilson–Cowan
equations). The inclusion of a dynamic component for describing spike
synchrony enables tracking within-population synchrony in a tractable
way. Moreover, this mean-field model can also be expressed in terms of a
few collective variables representing the firing rate and the mean mem-
brane potential of the neuronal populations56,57. In all cases, it can
incorporate realistic models of synaptic currents (both chemical and
electrical), and it can be easily embedded into network studies (both

discrete and continuous). Thus, we may select from one of the two
equivalent perspectives depending on context. For example, when
modelling MEG studies that highlight ERS/ERD it is convenient to use
the Kuramoto order parameter representation, while it is natural to use
themembrane potential formwhen calculating the power spectrumof the
local field potential.

As a result, this new type of neural mass model has a richer dynamical
repertoire than standard neural mass models in terms of macroscopic

Fig. 3 | Illustration of Kuramoto order parameter background. The Kuramoto
order parameter (1.3) encodes the level of synchrony of a phase oscillator popula-
tion. The state of each oscillator is given by a phase θi (black dot, empty arrow) on
the circle T. The left part of the figure shows a configuration with high synchrony

where r = |Z| ≈ 1. Themiddle part of the figure shows a configuration with r = |Z| ≈ 0
where the oscillators are approximately uniformly distributed on the circle. Also the
right part of the figure shows a configuration of oscillations with r = |Z| ≈ 0, which is
organized into two clusters.

Box 2 | Simplified neuronal models andmean-field formulation

TheErmentrout-Kopell canonicalmodel is better knownas the “θ-model”
and is a simple one-dimensional model for the spiking of a neuron: it
describes a single neuron using a phase θ ∈[0, 2π) such that a spike is
generated whenever θ passes through π from below. The one-
dimensional ordinary differential equation

dθ=dt ¼ 1� cos θþ ð1þ cos θÞI ð2:1Þ
describes the universal dynamic that occurs on the invariant circle near
an SNIC bifurcation (a global bifurcation in which multiple structures
interact, such as heteroclinic orbits, fixed points, etc.) in at least a two-
dimensional space. The variables θ and I in (2.1) represent the dimen-
sionless membrane potential and current injected into the neuron. In this
representation, neurons are seen as simple phase oscillators char-
acterized by an angular variable. When I < 0, the system is excitable, i.e.,
given an appropriate perturbation, the systemwill produce a spike.When
I > 0, dθ/dt is also positive, and the system will give rise to a limit cycle
(periodic oscillating behavior). For I = 0, the equilibrium points present for
I < 0 merge exactly and disappear for I > 0.
The Θ-model is often presented with another name: the Quadratic
Integrate-and-Fire (QIF) model. The QIF model is usually preferred
becauseof its natural interpretation in termsof themembrane potential of
the neuron. The equationgoverning the evolution of theQIFmodel canbe
obtained from the (2.1), under the transformation V = tan(θ/2):

dV=dt ¼ V2 þ η with the reset rule : if V>Vthresh : V Vreset ð2:2Þ
The parameter η (that replaces I in 2.1) represents a constant external
current that determines the neuronal excitability. TheQIF neuron exhibits
two possible dynamics, depending on the sign of η (see Fig. 4).
To investigate the emerging dynamics of interacting neurons, one can
consider an ensemble of synaptically coupled QIF neurons. In such a
network of i = 1,… N QIF neurons, the dynamics of the system reads

dVi=dt ¼ V2
i þ ηi þ 1=N

XN

j¼1Jij tð ÞSjðtÞ þ IsðtÞ; ð2:3Þ

where Is(t) is an external time-dependent current, while Jij (t) represents the
strength of the direct synapse from neuron j to i that, in the absence of
plasticity, we assume to be constant in time and all identical, i.e. Jij (t) = J. The
sign of J determines if the neurons are excitatory (J > 0) or inhibitory (J < 0).
Moreover, the excitability parameters ηi can be heterogeneously distributed
according to a certain probability distribution. Now the total synaptic current
due to the recurrent connections with presynaptic neurons reads s(t) = 1/N
∑N

j=1 Sj(t) and we can rewrite the dynamics as:

dVi=dt ¼ V2
i ðtÞ þ ηi þ JsðtÞ þ IsðtÞ: ð2:4Þ

In the following, we restrict to the case of instantaneous synapses, for
which the total synaptic current s(t) is identical to the instantaneousmean
firing rate of the network, i.e. s(t) = r(t). In the infinite size limit, it is possible
to reproduce thecollective evolutionof a singlepopulationofQIFneurons
(2.4)with twocollective variables representing thefiring rateand themean
membrane potential of the neuronal populations:

dr=dt ¼ Δ=πþ 2πrv;dv=dt ¼ v2 þ ηþ Jrþ IsðtÞ � π2r2 ð2:5Þ

where r is the population firing rate, v is the average membrane potential, J is
the synaptic weight, Is an external current applied to all neurons and η
represents the average neural excitability (for η < 0 (η > 0) the neuron is sub-
(supra-) threshold). The term Δ is the width of the distribution of the neural
excitabilities, therefore this parameter controls the heterogeneity of the
population. The exact derivation of Eq. (2.5) from Eq. (2.4) is shown in
Montbrió et al. 57.Moreover, it is possible to derive an exact neural fieldmodel
starting from a single population of spikingΘ-neurons, thus reproducing the
collective evolution of the population with two collective variables repre-
senting the level of synchronization of the population, in terms of the
amplitude of the Kuramoto order parameter and average phase of all the
oscillators53–55.
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behavior. For example, a heuristic firing rate model, specifically designed to
reproduce theQIF network dynamics (see Fig. 4) with short-term plasticity,
does not display any oscillatory activity in the β-γ range, contrary to what is
observable in the spiking network itself and the equivalent neural mass
model58.

In general, a key feature of this new type of neural mass model is the
ability to capture transient synchronization properties and oscillatory
dynamicspresent in the spikingnetworks, that are lost in usual ratemodels.
In particular, with this new type of neural mass and neural fieldmodels are
observable phenomena such as multi-stability, the coexistence of oscilla-
tory and non-oscillatory behaviors, and various behaviors displaying
multiple time scales. The wide variety of reachable states, together with the
ability of themodel todescribe systems that dynamically evolve between an
incoherent state and a partially synchronized state seems to be the ideal
mathematical framework for understanding the role of modulations in
partial phase synchronization and Metacontrol related processes.

In this direction, advances in non-invasive neuroimagingmethods that
allow for a detailed characterization of the brain’s anatomy and activity,
together with developments in network science, have supported a pro-
liferation of network connectivity-based approaches, employing neural
mass models as building blocks, to understand large-scale brain function.
The advantage of using an exact description of a network of heterogeneous
θ-neurons in the infinite size limit as a neural mass model lies in the pos-
sibility of an exact (analytical) moving upwards through the scales, while
keeping the influence of smaller scales on larger ones it levels out their
inherent complexity. At the same time, moving downwards through the
scales, more detailed modelling parameters can be used, e.g. to test specific
hypotheses. Inparticular, having a1:1 correspondencebetweenmicroscopic
(i.e. neuronal), mesoscopic (i.e. single population), and macroscopic (i.e.
network) levels will help us to understand at which level it is most appro-
priate to test the action of the Metacontrol.

Network studies are especially relevant to elucidating the emergence
of functional connectivity networks that describe dynamic patterns of
temporal coherence of activity between brain regions. Important exam-
ples include archetypal brain networks that emerge under different tasks
or stimulants59, and so-called resting state networks60, whereby different
regions of the brain’s sensorimotor system oscillate slowly and syn-
chronously in the absence of any explicit task. More generally, these

functional connectivity networks are implemented to support high-level
brain function, while the divergence between dynamic functional activity
and the relatively static structural connections between populations turns
out to be critical to the brain’s wide functional repertoire and may hold
the key to understanding brain activity in health and disease61–63. How-
ever, while functional connectivity is widely employed in both empirical
and theoretical studies, the specific link between the brain’s anatomical
circuitry and the varied and complex behavior it exhibits is not fully
understood61,64. In particular, the application of a (next generation) neural
mass network model, incorporating human connectome data to relate
structural and functional connectivity, can be used to investigate the
relationship between the disruptions in structural and functional brain
networks and a variety of psychiatric and neurological diseases65–67.While
the initial formulation of the neural mass model56,57 has been developed
for globally coupled deterministic populations, a recent formulation can
encompass further fundamental aspects of brain circuits beyond het-
erogeneity, as sparseness in the synaptic connections (as opposite to
global coupling) and background noise68, thus being able to reproduce
spiking network dynamics induced by various noise sources. Within this
formalism, we could also reproduce the 1/f power spectral structure of
LFPs, as well as more complex frequency scaling to understand whether
the 1/f slope is dependent on task context. Finally, the model shows the
possibility of supporting collective oscillations in different frequency
bands as well as coupling between neural oscillations at different
timescales69–71. Thus, through the use of neural mass models, “neural
noise” approaches, approaches reflecting “transient brain dynamics” and
“phase-based” measures of dynamics may be combined and lead to a
harmonized formulation of neural dynamics underlying Metacontrol.
Neural mass models offer a means to formalize insights gained from
testing the hypotheses outlined above on how a flexibility-prone or a
persistence-prone state affects neural noise or measures of transient
dynamics.

Metacontrol and Psychopathology
The conceptualization of persistence versus flexibility as a dispositional
metacontrol bias has substantial explanatory power in explaining infor-
mation processing characteristics associated with diverse forms of psy-
chopathology. Prime examples are obsessive-compulsive disorder (OCD)

Fig. 4 | Dynamics of a single QIF neuron. (a1)
shows the excitable case with V(0) <√|η | , (a2) with
V(0)>√|η| and (a3) corresponds to tonic firing. The
solid and dashed black lines mark V =∓ √|η| and
spike times are denoted by t1, t2, and t3. (b) Bifur-
cation diagram V versus η. The solid and dashed
black lines show the stable and unstable fixed points
of Eq. (2.2). The saddle-node bifurcation at (V = 0,
η = 0) is marked by a black dot; the SNIC bifurcation
at η = 0 by a green line. The orange region marks
η ≥ 0, for which stable limit cycles exist.
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and attention deficit hyperactivity disorder (ADHD), representing
extremes on the persistence and flexibility end of the spectrum,
respectively14. Underscoring the explanatory power of this account, it
cannot only organize the findings regarding cognitive deficits associated
with such descriptive diagnoses (e.g., perseverative errors in a rule
inference task such as the Wisconsin Card Sorting Test – OCD, versus
problems with sustained attention - ADHD) but can also do right by
findings regarding related cognitive strengths (e.g., superior divergent
thinking in ADHD)14. Beyond these hallmark examples, bias towards the
flexibility end can, for example, be recognized in positive thought dis-
order in schizophrenia, i.e., broader spreading of activation in semantic
networks72, or in the association between schizotypy and divergent
thinking73. In anxiety, depression, and post-traumatic stress, repetitive
negative thoughts (worries, traumatic intrusions, rumination)may reflect
an undermined ability tomaintain a focus on othermental content74–76, in
keeping with reported deficits in inhibitory control in these
populations77–79. The restricted, repetitive patterns of behavior observed
in autism could be an example of a persistence bias, which dovetails with
congruent cognitive strengths in this population, such as superior visual
search among distractors80. However, it is critical to take a sufficiently
dynamic perspective in this respect, as apparent in the case of gambling
and substance addiction. While there is a larger risk of developing such
problems in individuals with a flexibility bias, e.g., ADHD81–83, the
addiction process itself gives rise to persistent, compulsive behavior and
response perseveration84. Indeed, metacontrol as a relevant inter-
individual characteristic is not to be simplistically understood as an all-
pervasive bias towards one end of the persistence/flexibility dimension,
but also as the tendency or ability to shift between these poles in amore or
less adaptive manner concerning situational demands.

Considering the different approaches to better conceptualize meta-
control on a neural level, current findings regarding 1/f slopes seem to
largelymatch the characterization in our examples above (see Fig. 5). At the
persistence end, steeper slopes in preterm infants have been found to predict
autism risk at 3 years of age85,86.

However, a recent study found no slope differences in the resting state
(RS) spectrogram of individuals with OCD versus healthy controls87.

Conversely, shallower RS slopes have been observed in individuals with
schizophrenia88,89, but see90. In depression, shallower slopes have been
foundduring sleep91, and treatment response to brain stimulation seems to
be associatedwith a slope increase in this population92,93. Aflattened resting
state slope has also been found in ADHD, which seems to develop from an
initially steeper slope in this population throughanexaggerated age-related
flattening94,95—again highlighting the importance of a sufficiently dynamic
and developmental perspective. In childrenwithADHD, a flatter slope has
been observed during response inhibition, which is normalized using
treatment with methylphenidate96. In keeping with a view on metacontrol
as the ability to shift persistence/flexibility in light of circumstantial
demands, cognitive load, and stimulus salience had less of a modulatory
effect on an overall shallower slope in children with ADHD in a visual
oddball task97. Of note, this research is in its infancy. The 1/f slope is
dependent on task context, developmental stage, and electrode location. It
may have differential functional significance across different portions of
the frequency spectrum—all factors that are yet to be systematically
investigated. Intriguingly, considerable evidence suggests that not the
broad-band activity but low-frequencyoscillations, particularly in the theta
band, are likely important when understanding psychopathologies16,98 and
are also of considerable importance for cognitive control processes31,99 that
can be described along a persistence-flexibility continuum7.

There is very little literature on the use of HMMs to characterize the
metacontrol-defined persistence/flexibility axis in neuropsychiatric dis-
orders and even less on aspects, such as chaotic itinerancy and phase
precession. Shappell et al. 100 analysed fMRI data using Hidden semi-
Markovmodels and demonstrated that childrenwithADHDspendmore
time in one well-connected brain state with the highest global and local
efficiency and lowest modularity, and less time in default mode network,
and task-relevant networks as compared to typically developing children.
Similarly, Kottaram et al. 101 demonstrated that the DMN was less fre-
quently visited in people with schizophrenia with shorter durations per
visit, and Lin et al. 102 observed shorter lifetimes across many different
brain states in autism spectrum disorder. Importantly, these three studies
employed functional MR imaging data and are thus intrinsically limited
in their temporal resolution. In this framework, neural mass models

Fig. 5 | Schematical illustration of possible mod-
ulations of 1/f noise in a log-log plot of the power
spectrum (fictive data). Psychiatric conditions with
possibly show lower or higher “noise” are shown in
different colours.
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describe the dynamics of populations of neurons and how they generate
observable signals. The possibility to generate simulated data and test
different hypotheses can help researchers gain insights into the brain
information process and understand how changes in neural dynamics
relate to cognitive functions and disorders. In particular next-generation
neural mass models70,71,103–106 allow for the generation of frequencies in
different ranges, as well as phase-amplitude coupling or cross-frequency
coupling. In this direction, choosing a proper set of parameters that allow
for the emergence of low-frequencies in the theta/delta range will help to
verify the hypothesis of a smaller presence of theta/delta rhythms in
OCD/ADHD. On the other hand, the suggested mean-field description
relates structural and functional connectivity, as mentioned in the pre-
vious Section, showing how changes in the structural connectivity are
reflected in themacroscopic dynamics107. Thus, wemay hope to employ it
in discerning whether or not the dichotomy stability/flexibility in OCD/
ADHD is explained by changes in structural connectivity.

Conclusion
The human brain demonstrates remarkable flexibility and persistence in
adapting tovarious situations, knownas executive functions, crucial for goal-
directed behavior and mental health. Recent studies suggest that a concept
called “metacontrol” overlays these functions, enabling individuals to adjust
between persistent and flexible cognitive styles depending on the situation.
In this paper, we have identified multiple avenues to conceptualize meta-
control on a neural level. We highlighted the potential of aperiodic broad-
bandEEGactivity as ameans to capturepersistence.Yet, as a characteristic of
the frequency spectrum amplitude, we lose dynamic and phase-based
information. Therefore, we highlighted the potential of chaotic itinerancy,
phase precession and of hiddenMarkovmodels, and phase-basedmeasures
to capturepersistenceorflexibility at a veryhigh temporal resolution. Finally,
whereas signal processing techniques may lead to novel biomarkers, neu-
rocomputationalmodels provide a theoretical framework for understanding
the dynamics of neural populations andmay bring insights intowhy specific
neurophysiological features are altered.Wehighlighted recent developments
in these models that now enable us to simulate the 1/f power spectrum and
offer insights into the dynamics of functional connectivity networks and
phase stability and their role in health and disease.
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