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Abstract— Battery aging is one of the major concerns for
the pervasive devices such as smartphones, wearables and lap-
tops. Current battery aging mitigation approaches only partially
leverage the available options to prolong battery lifetime. In
this regard, we claim that wireless crowd charging via network-
wide smart charging protocols can provide a useful setting for
applying battery aging mitigation. In this paper, for the first
time in the state-of-the-art, we couple the two concepts and
we design a fine-grained battery aging model in the context
of wireless crowd charging, and two network-wide protocols to
mitigate battery aging. Our approach directly challenges the
related contemporary research paradigms by (i) taking into
account important characteristic phenomena in the algorithmic
modeling process related to fine-grained battery aging properties,
(ii) deploying ubiquitous computing and network-wide protocols
for battery aging mitigation, and (iii) fulfilling the user QoE
expectations with respect to the enjoyment of a longer battery
lifetime. Simulation-based results indicate that the proposed
protocols are able to mitigate battery aging quickly in terms
of nearly 46.74-60.87% less reduction of battery capacity among
the crowd, and partially outperform state-of-the-art protocols in
terms of energy balance quality.

Index Terms—Wireless power transfer, opportunistic networks,
energy efficiency, mobile computing

I. INTRODUCTION

Battery technology development has progressed much more

slowly compared to other areas of electronics, and, as a

result, batteries are often considered the least green and the

most design- and performance-limiting components of any

electronic device [1], [2]. Radical improvements in battery

technology are rather unlikely, as their energy density is

already very high. Incremental improvements are more likely,

but some of those improvements will be eaten up by the

energy demands of increased functionality in mobile devices.

Since batteries are frequently the primary perishable energy

source in portable devices, they can significantly affect the

devices’ uptime and overall performance, and thus, the user’s

experience [3]. Recently, some manufacturers had to slow

down smartphone development so as to account for aging

batteries. It is therefore considered essential to explore alterna-

tive approaches (individualized or network-wide) to extend the

battery performance [4] and consequently the network lifetime.

The loss of battery capacity, known as battery aging [5], is

a big concern in pervasive user devices such as smartphones,

wearables and laptops. Such pervasive devices which are

becoming more functional with an increasing collection of

resource-demanding applications, require higher energy loads

and more expensive batteries. Therefore, a large part of the

device price is incurred by the battery costs. Battery aging

usually leads to premature replacements and disposal of entire,

otherwise functional, devices.

The battery lifetime is usually defined as the number of full

charge–discharge cycles the battery can conduct before its end

of life is reached, that is, its capacity reduces to less than a

fraction of its initial capacity. There is a multitude of factors

contributing to battery aging. A highly important one is the

very high or very low state-of-charge (SOC). Many device

users are not familiar with ways of improving the battery

‘health’ of their devices, and therefore, frequently choose

unnecessarily high SOC, which increases aging. As shown

in [6], intelligently controlled actions, like usage-dependent

decrease of charging levels, or charging at appropriate times

can significantly mitigate battery aging.

Current battery aging mitigation approaches only partially

leverage the available options to prolong battery lifetime.

Specifically, for the first time in the state-of-the-art, we argue

that pervasive device battery aging mitigation can be com-

bined with wireless crowd charging [7] via the possibilities

that wireless power transfer [8] can offer. By leveraging

the functionality between device usage, and wireless crowd

charging [9], the required charging levels for each device can

be managed according to the battery lifetime objectives. By

combining this functionality across multiple pervasive devices

it can be possible to obtain a network-wide battery lifetime

optimization, which can be used so as to configure near-

optimal wireless charging profiles for each device.

A. Our contribution

We argue that recent initial approaches which target indi-

vidualized battery aging mitigation and user profiling, without

taking into account neither other users in the networked

population nor emerging energy sharing technologies like

wireless crowd charging, are not uncovering the full potential

of intelligent charging. Our approach aims at intelligently

addressing (i) the battery aging technological problem, (ii)

the maximization of the user’s quality of experience (bat-

tery lifetime) socio-technical problem and (iii) characteristic

network-wide energy distribution algorithmic problems, by not

focusing on battery technology improvements per se, but on

algorithmic, network-wide wireless charging optimization with

battery aging mitigation. This vision directly challenges the

related contemporary research paradigms, as follows:
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1) Unlike mainstream, coarse-grained wired/wireless

charge algorithmic modeling (such as [10]), which is

characterized by simplifications in the representation of

the underlying phenomena for the sake of decreasing

the network modeling complexity (as highlighted in

our previous work [11]), our fine-grained modeling
approach takes into account important characteristic

phenomena in the algorithmic modeling process

related to fine-grained battery aging properties [12].

Specifically, we, for the first time, model battery aging

in the context of wireless crowd charging.

2) Unlike recent, mainstream battery aging mitigation vi-

sions (such as [13]) which focus on the optimization

of individual devices/users for solely stationary wired

charging, our approach designs and deploys ubiquitous
computing and network-wide protocols for battery aging

mitigation for wireless crowd charging. We devise two

such protocols which target to mitigate network-wide

battery aging during wireless crowd charging.

3) Unlike mainstream crowd charging services which focus

on solving emerging technical problems (such as [14]),

our approach inherently takes into account the funda-

mental human factor of the opportunistic setting and

address the socio-technical dimension by fulfilling the

user QoE expectations with respect to the enjoyment of
a longer battery lifetime via an aging mitigation enabled

charging approach. Using simulations, we show that

our approaches achieve performance trade-offs between

battery aging mitigation (nearly 46.74-60.87% less re-

duction of total battery capacity) and energy balance

quality.

The rest of the paper is organized as follows. In section

II, we list the most representative literature on battery aging

mitigation and wireless charging. Next, in Section III, we

present wireless energy transfer model and devise the detailed

battery aging model in the context of wireless crowd charging.

Sections IV and V discuss the proposed protocols and the

performance evaluation results. Finally, the paper concludes

in Section VI citing future directions of work.

II. RELATED WORKS

The current literature includes works solely in (i) the domain

of battery aging mitigation for individual devices and without

any wireless power capability, and, (ii) the domain of wireless

crowd charging (usually targeting network energy balance) but

without any battery aging mitigation mechanisms. The novelty

of our approach lies on the combination of the two concepts

for the first time. For completeness of the presentation, for

each domain, we list here the most representative works in

the literature so far.

A. Battery aging mitigation for pervasive devices

[15] is probably the first paper that introduces, analyzes

and mitigates the built-in battery aging when an individual

device is operated with a provided power supply. The authors

focus on the fact that in an effort to reduce size and weight,

the capacity of the power supply is optimized for the average

power demand rather than the maximum power demand.

In [6], the authors present Smart2, an advanced smartphone

charger that mitigates battery’s capacity fading, which until the

introduction of the paper had usually been ignored. Smart2

exploits the fact that many users charge their phones over

night. Since the overnight charging duration is unnecessarily

long, the battery is subjected to a high average SOC, which

accelerates battery aging. Therefore, Smart2 delays the charg-

ing process adaptively to be done shortly before the phone is

unplugged.

In [13], the authors present UBAR (User- and Battery-aware

Resource management) which considers dynamic workload,

user preference, and user plug-in/out pattern at run-time to

provide a suitable trade-off between battery cycle life and

quality of experience. UBAR personalizes this trade-off by

learning the user’s habits, while considering battery temper-

ature and (SOC) patterns. The evaluation results show that

UBAR achieves 10% to 40% improvement compared to the

existing state-of-the-art charging approaches.

B. Wireless crowd charging

In [16], the authors investigate how to efficiently transfer

energy wirelessly in populations of battery-limited devices,

towards prolonging their lifetime. They address a quite general

case of diverse energy levels and priorities in the network and

study the problem of how the network can efficiently reach a

weighted energy balance state distributively, under both loss-

less and lossy power transfer assumptions. Three protocols are

designed, analyzed and evaluated, achieving different perfor-

mance trade-offs between energy balance quality, convergence

time and energy efficiency.

In [17], the authors try to minimize both the energy differ-

ence between nodes and the energy loss during this process. To

this end, they propose three different energy sharing protocols

between nodes based on different heuristics. One of the

proposed protocols achieves the best performance by reaching

an energy balance between nodes while keeping the maximum

possible energy in the network.

In [18], the authors present MobiWEB, a mobility-aware

energy balancing method, which employs a predictor for es-

timating the mobility information of users. MobiWEB selects

the different pairs of peers for energy exchange, such that

the network energy distribution is balanced while minimizing

the loss and energy difference between the peers. MobiWEB,

when compared to the state-of-the-art, achieves different per-

formance trade-offs between energy balance quality, conver-

gence time, and energy-efficiency.

In [19], the authors aim at finding the maximum number of

wired charging times that could be skipped through utilization

of available energy in other users in the vicinity with wireless

energy sharing. To this end, they use dynamic programming

approach to find the optimal skipping patterns for selfish and

cooperative energy exchange cases and verify the results with

brute force.
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III. NETWORK MODEL

A. Wireless Energy Transfer Model

We consider m number of users each carrying a smart-

phone with wireless charging facility in the area of inter-

est. These users are denoted as U = {u1, u2, · · · , um},
and the corresponding locations of these nodes at any time

t are represented as L(t) = {l1t , l2t , · · · , lmt }. The energy

levels or SOCs of these nodes at any time t are denoted

by Et = {Et(1), Et(2), · · · , Et(m)}. In this paper, we use

the words ‘user’ and ‘node’, and ‘energy level’ and ‘SOC’,

interchangeably. We assume that all the nodes are equipped

with homogeneous wireless charging hardware. The energy

transfer between any two nodes is affected by energy loss,

and thus, the actual energy received by the receiving node is

only a fraction of the transmitted energy. For example, the

initial energy levels of nodes ui and uj nodes at time t1 are

Et1(i) and Et1(j), and e energy is transferred from node ui

to uj over a time duration (t1,t2). Then, the remaining energy

of this pair of nodes at time t2 will be,(
Et2(i), Et2(j)

)
=

(
Et1(i)− e, Et1(j) + (1− β)× e

)
, (1)

where β ∈ [0, 1) denotes the energy loss factor during wireless

charging. As typically considered in the related literature,

such as [20] [21], we assume that β remains constant over

the duration of energy exchange. Also, any wireless charging

exchange between two nodes does not affect the energy levels

of other nodes (∀uk ∈ U , uk �= ui, uj) in the network.

We define the energy distribution of all the nodes U at any

time t, Et(u), as,

Et(u) = Et(u)

Et(U) where, Et(U) =
∑
u∈U

Et(u) (2)

whereas, the average network energy is defined as, Et =
Et(U)

m .

We utilize the parameter energy variation distance to es-

timate the overall energy distribution in the whole network.

The energy variation distance is calculated by applying the

probability theory and stochastic processes described in [16],

[22]. For any two probability distributions P and Q defined

over the sample space of U , the total variation distance,

D(P,Q), is computed as,

D(P,Q) =
∑
x∈U

|P (x)−Q(x)| (3)

As we consider the devices to be carried by the users, the

movement pattern of these devices can be characterized by

a human like mobility pattern. In our model, the users move

from one location in the considered area to another following

their own interest. Also, the movements of these users are

such that they spend similar amount of time in the same

location while revisiting it in a later point of time. Therefore,

the movement of any user remains independent of other users

as well. Subsequently, the number of users present in each

location vary over time.

We assume that the users can exchange energy wirelessly

with any other user present in the same location at the same

time. Specifically, such interaction between two users is only

possible when the following conditions for a valid contact is

satisfied.

Definition 1. A valid contact (νtij) between any two nodes
ui and uj for a duration of (t1, t2) satisfies the following
conditions ∀t ∈ (t1, t2),

νtij =

{
1, (lit, l

j
t ) ≤ dreq and (t2 − t1) ≥ tmin,

0, otherwise
(4)

where (lit, l
j
t ) refers to the distance between ui and uj . dreq

and tmin denote the minimum distance and minimum time,
respectively, required for performing a successful wireless
energy exchange.

B. Battery Aging Model

Any smartphone battery has a maximum number of charg-

ing/discharging cycles after which the battery’s capacity drops

to a specific fraction (for example, 80%) of the initial capacity.

We consider that after completing the maximum number of cy-

cles, Cmax, the battery capacity is reduced by Pr percentage.

For example, if the battery capacity after 500 cycles is reduced

to 80% (i.e., 20% reduction), then Cmax = 500 and Pr = 20.

Also, for any user ui, the parameter Ci(t) denotes the current

number of completed battery cycles. According to battery

specifications [23], one battery cycle refers to the period of

use from fully-charged to fully-discharged and fully-charged

again. To simplify the computations, in our work, we consider

a battery cycle is completed when the cumulative charging and

discharging percentages in recent charging and discharging

sessions reach 100%, respectively. Let, δci,s and δdi,s denote

the charging and discharging percentages, respectively, in each

such charging/discharging session s during the period (t1, t2).
Then, the number of current cycles of the battery is updated

as,

Ci(t2) = Ci(t1)+1 if
∑

s∈(t1,t2)
δci,s = 100,

∑
s∈(t1,t2)

δdi,s = 100

(5)

Next, we explain the different components of battery aging

of any node participating in wireless crowd charging scenario.

For any node ui at time t, the battery age depends on the num-

ber of already completed battery cycles (Ci(t)). Subsequently,

we can compute the degradation of the battery capacity till

time t as,

BCcurri = Ci(t)× Pr

Cmax
(6)

where, Pr

Cmax
denote the reduction of battery capacity for

completing a battery cycle.

Now, the other components for battery capacity is accounted

based on whether the node is participating in the energy

exchange or not. In case the node participates in energy

exchange in session s after time t, there will be a charging

(δci,s) or discharging (δdi,s) event depending on the status of
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the node as an energy receiver or provider, respectively. On

the other hand, if the node does not participate in wireless

charging, nonetheless, there will still be a discharging (δnoi,s)

depending on the usage of the device. In the following, we

explain the computation of battery capacity corresponding to

both these cases.

Using the definition of a battery cycle as given in [23], we

can constitute a relationship between the charging/discharging

percentage and battery cycle. Let, x denotes the charging or

discharging percentage in any session. Therefore, we can rep-

resent it as, x = δci,s+δdi,s, as either of the two operations will

be performed. For example, if the node ui is receiving energy

from another node, then δci,s > 0 and δdi,s = 0. Similarly,

when ui is providing energy to another node, then δci,s = 0 and

δdi,s > 0. Subsequently, we can deduce the fraction of a battery

cycle completed by the amount of charging/discharging in the

recent session. Thus, for x, the equivalent fraction of battery

cycle is x
2×100 , where the value 2×100 refers to the full battery

cycle value, i.e., fully-discharged and fully-charged parts of a

battery cycle. However, the charging and discharging process

of any battery also varies with the battery’s current capacity,

i.e., any charging/discharging operation is more impactful as

the overall capacity drops. We account this information in our

computation by multiplying the battery capacity degradation

with charging/discharging with the factor of elapsed battery

capacity, i.e.,
1+Ci(t)
Cmax

. Therefore, the change in battery capacity

for participating in energy exchange is computed as,

BCwcc
i =

(δci,s + δdi,s
200

× 1 + Ci(t)
Cmax

)
× Pr

Cmax
(7)

Similarly, when ui does not participates in energy exchange,

the discharging of the battery by δnoi,s is equivalent to
δno
i,s

200
battery cycles. However, battery capacity also depends on the

SOC and Depth-of-Discharge (DOD) – very high and very low

SOC (e.g. high DOD) both will lead to faster degradation of

the battery capacity [5]. To reflect the same behavior in our

model, we include a factor of |1 − Et(i)
50 | and multiply with

the battery capacity degradation value. Here, Et(i) refers to

the SOC value (in other word, energy level) of ui at time t,
and 50 refers to the middle point of the possible SOC values,

i.e., 0–100.

BCnowcc
i =

( δnoi,s

200
× |1− Et(i)

50
|
)
× Pr

Cmax
(8)

Based on the information in Equation (6), (7), and (8), we

can compute the battery capacity after session s at time t,
BCi(s, t), for any user ui as,

BCi(s, t) = BCcurri + Iwcc×BCwcc
i +

(
1−Iwcc

)
×BCnowcc

i

(9)

where, Iwcc is the indicator variable which reflects whether

the node is participating in energy exchange (Iwcc = 1) or

not (Iwcc = 0).

Therefore, the battery capacity of ui is,

BCi(s, t) =
[
Ci(t) + Iwcc ×

(δci,s + δdi,s
200

× 1 + Ci(t)
Cmax

)
+

(
1− Iwcc

)
×
( δnoi,s

200
× |1− Et(i)

50
|
)]
× Pr

Cmax
(10)

C. Problem Description

In the following, we describe the studied problem in two

parts – considering energy balancing and considering battery

aging. In the first case, towards the ‘energy balancing’ goal,

the focus is solely on achieving energy balance in the network

without caring for the battery aging of the participating users.

As discussed in [18] (our previous paper), this is a sensible

goal in order to optimize network lifetime at the overall

network level. We consider this problem as a benchmark when

battery capacity degradation is not taken into account, and

briefly summarize the main feature of the problem addressed

in [18]. On the other hand, in the second case, we focus on

mitigating the ‘battery aging’ of the participating users without

considering the energy balance goal for the network.

1) Achieving Energy Balancing: The energy balance of the

network is achieved when the energy distribution of the nodes

reach the same level. We name this stage as the target uniform

energy distribution (UT ). However, due to the inevitable energy

loss during the energy exchange process, the actual energy

distribution achieved at time T will be different, i.e., ET .

The final energy (SOC) level of any node ui, ET (i), is

calculated as,

ET (i) = E0(i)−
∑
t∈T

∑
∀uj �=ui

etij +
∑
t∈T

∑
∀uj �=ui

(1− β)etji (11)

where, E0(i) refers to the initial energy (SOC) level of node

ui.
∑

t∈T
∑
∀uj �=ui

etij and
∑

t∈T
∑
∀uj �=ui

(1− β)etji denote

the energy transmitted to and received from other nodes ∀uj �=
ui, respectively.

Subsequently, the total energy loss is computed using the

following,

LT =
∑
t∈T

∑
∀ui∈U

∑
∀uj �=ui

etijβ (12)

In this part of the problem, our goal is to minimize the vari-

ation distance (D(ET ,UT )) between ET and UT . Additionally,

we need to minimize the total energy loss during the process

of energy exchange.

2) Mitigating Battery Aging: Considering battery aging

of the users, irrespective of their participation in energy

exchange, we need to minimize the total reduction in battery

capacity for all the users in the network. However, considering

the functionality of the network, we need to ensure that

the nodes hold the minimum energy they need to continue

the operations. Additionally, as discussed previously, higher

energy of the nodes is not beneficial for the battery aging.

Therefore, the SOC values of the nodes should ideally be

within a range of desirable values. We count the number of

nodes, which are not in that range, using the parameter, the
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number of unhealthy nodes, NUH
t . It is defined as,

NUH
t = |U|Emin≥Et(i)≥Emax

∀ui ∈ U (13)

where, Emin and Emax are the two threshold values which

denote the minimum and maximum desirable SOC values for

maintaining healthy battery. Subsequently, the total number of

unhealthy nodes at time T will be,

NUH
T =

∑
t∈T

NUH
t (14)

Similarly, at time T , the total battery capacity of the network

will be,

BCT =
∑
t∈T

∑
s

∑
ui∈U

BCi(s, t) (15)

In this part of problem, our objective is to minimize the total

number of unhealthy nodes as well as minimize the reduction

in battery capacity (BCT − BC0) of the whole network over

the duration T . It is important to note the following possible

range of values for these parameters: 0 ≤ Ci(t) < Cmax and

0 < δci,s, δ
d
i,s, δ

no
i,s < 100.

IV. BATTERY AGING MITIGATION AND WIRELESS CROWD

CHARGING

A. Wireless Energy Balancing

In this part, we briefly explain the process followed to

reach energy balancing in wireless crowd charging. In any

ideal scenario, with no energy loss during energy exchange,

at energy balance, all the nodes of the network will reach

the average energy of the network. Let us consider this

average energy value as Et. However, in practical scenarios,

considering energy loss during energy exchange, the nodes

will reach a different value, E
∗
, rather than Et. E

∗
can be

estimated using the value of energy loss (β) as shown in [17],

E
∗
=
−(1− β) + 2

√
(1− β)

β
∀β ∈ [0, 1],m −→∞

(16)

Now, our objective is to achieve energy balance of the

network with minimum energy loss and minimum energy

variation distance of the population. Therefore, to achieve

these two objectives, we need to select nodes with current

energy level close to E
∗
. In addition to this strategy, if we

choose nodes with energy level at the opposite side of E
∗
,

we will be able to achieve higher decrease in the energy

variation distance among the network in each iteration with

lower energy loss. Therefore, using these two strategies, the

nodes in the network will converge to energy balance state

quickly. As the nodes move from one location to another,

the inter-node meeting duration remains an important aspect

to consider while choosing the peers of pairs to engage in

wireless energy exchange. As mentioned, based on our two

strategies, we start with the node (say, ui) with energy level

closest to E
∗
. Therefore,

ui = argmin
∀ui∈U

|E∗ − Et(i)| (17)

Algorithm 1: Battery Aging Mitigation and Peer Se-

lection with Prioritizing Network Availability (PBA-

wNA)

1 Inputs: Et, BC0.

2 Output: NUH
T , BCT .

3 Initialize State[·]←− Incomplete;

4 while t ≤ T do
5 for ui ∈ U and State[i] = Incomplete do
6 if Et(i) < Emin then
7 Find the most unhealthy node,

ui ←− argmin∀ui∈U Et(i);

8 for uj ∈ U and uj �= ui do
9 if Et(j) > Emax then

10 Find the peer for ui,

uj ←− argmax∀uj∈U Et(j);

11 Perform energy exchange between ui and uj ,(
Et(i), Et(j)

)
←−

(
Et(i) + (1− β)×

Et(j)−Et(i)
2 , Et(j)− Et(j)−Et(i)

2

)
;

12 if Et(i) > Emin then
13 Update State[i] = Complete;

14 if Et(j) < Emax then
15 Update State[j] = Complete;

16 Update the number of unhealthy nodes NUH
t ;

17 Update the battery capacity of nodes BCi(·) ,

BCj(·);

Then, we choose the designated pair for this node as the

node (say, uj) in the opposite side of E
∗
, as well as energy

level closest to E
∗
. Thus, we apply the following conditions,

uj =

⎧⎪⎨
⎪⎩

argmin
∀uj∈Nt(ui)

(E
∗ − Et(j)), if, Et(i) > E

∗

argmin
∀uj∈Nt(ui)

(Et(j)− E
∗
), otherwise

(18)

where, Nt(ui) = Nt(ui)∪uj refers to the set of possible peers

for ui at time t and the condition νtij = 1 holds.

Next, the selected pair of nodes engage in energy exchange,

and we update their energy levels accordingly. We mark the

nodes which have already reached the desired energy balance

level. Thereafter, other pairs of nodes are selected from the

nodes which are yet to achieve energy balance, and the process

follows till the final time T . For further details of the protocol,

intended readers can check [18].

B. Battery Aging Mitigation

In this part, we discuss our proposed battery aging miti-

gation protocol for wireless crowd charging. As mentioned

in Section III-C2, our objective is to minimize the number

of unhealthy nodes as well as minimize the reduction of

overall battery health of the whole network. To achieve these

objectives, we devise a greedy protocol which selects the
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‘unhealthy’ nodes and pair them with suitable ‘unhealthy’

nodes for energy exchange. In this way, these nodes return to

the ‘healthy’ region again. Now, we can select the unhealthy

nodes in two different ways – based on the priority to ensure

network availability or not. To ensure network availability, our

focus will be to prioritize recharging the nodes which are about

to get their batteries exhausted.

1) Prioritizing Network Availability: In the case of prior-

itizing the network availability, we need to select the nodes

having current SOC closest to zero first. So, we select the

node ui as,

ui = argmin
∀ui∈U

Et(i) Et(i) < Emin (19)

Thereafter, we need to select uj , the peer of ui for energy

exchange, from the other ‘unhealthy’ zone where Et(i) >
Emax. Therefore,

uj = argmax
∀uj∈U

Et(j) Et(j) > Emax (20)

2) Without Prioritizing Network Availability: In this sce-

nario, we start with the unhealthy node which is having current

SOC level closest to the energy threshold levels. Therefore, we

select the first node, ui as,

ui = argmin
∀ui∈U

min(Emin − Et(i), Et(i)− Emax) (21)

where, min(a, b) return the minimum value among a and b.
Thereafter, we choose uj from the nodes which has current

SOC values in the other ‘unhealthy’ zone compared to ui. We

apply similar strategy to choose the node which has the energy

level closest to the respective SOC threshold value. Therefore,

uj =

⎧⎪⎨
⎪⎩

argmin
∀uj∈U ;Et(j)>Emax

Et(j)− Emax, if, Et(i) < Emin

argmin
∀uj∈U ;Et(j)<Emin

Emin − Et(j), if, Et(i) > Emax

(22)

Subsequently, we apply these conditions on the rest of nodes

of the network until there are no such unhealthy nodes or

not enough available peers. Algorithm 1 and 2 list the steps

followed by the nodes of the network with and without the

priority for network availability, respectively.

Complexity of the Algorithms: Both the Algorithms 1 and

2 have an execution time of O(m2), where m denotes the

number of users.

V. PERFORMANCE EVALUATION

A. Simulation Settings

We consider 100 nodes deployed randomly over 5 different

locations. In each iteration, the nodes’ movement is as follows

– they choose a random stay duration between 10-30 minutes,

and after that time, the nodes move to another location chosen

randomly. The initial energy distribution or the SOC values of

the nodes are chosen randomly over [0, 100] units. We also

consider that the current completed battery cycles (Ci(t)) of

these nodes are randomly distributed over [0, 0.5 × Cmax].
The nodes are equipped with homogeneous wireless charging

Algorithm 2: Battery Aging Mitigation and Peer

Selection without Prioritizing Network Availability

(PBA-woNA)

1 Inputs: Et, BC0.

2 Output: NUH
T , BCT .

3 Initialize State[·]←− Incomplete;

4 while t ≤ T do
5 for ui ∈ U and State[i] = Incomplete do
6 if Et(i) < Emin then
7 Find the unhealthy node,

ui ←− argmin∀ui∈U min(Emin −
Et(i), Et(i)− Emax);

8 for uj ∈ U and uj �= ui do
9 if Et(i) < Emin and Et(j) > Emax then

10 Find the peer for ui,

uj ←− argmax∀uj∈U Et(j)− Emax;

11 if Et(i) > Emax and Et(j) < Emin then
12 Find the peer for ui,

uj ←− argmax∀uj∈U Emin − Et(j);

13 Perform energy exchange between ui and uj ;

14 if Et(i) < Emin and Et(j) > Emax then
15

(
Et(i), Et(j)

)
←−

(
Et(i) + (1− β)×

Et(j)−Et(i)
2 , Et(j)− Et(j)−Et(i)

2

)
;

16 if Et(i) > Emax and Et(j) < Emin then
17

(
Et(i), Et(j)

)
←−

(
Et(i)−

Et(j)−Et(i)
2 , Et(j)+(1−β)× Et(j)−Et(i)

2

)
;

18 if Emin < Et(i) < Emax then
19 Update State[i] = Complete;

20 if Emin < Et(j) < Emax then
21 Update State[j] = Complete;

22 Update the number of unhealthy nodes NUH
t ;

23 Update the battery capacity of nodes BCi(·) ,

BCj(·);

hardware with energy loss rate β = 0.2. We assume the

wireless charging rate α = 0.5 to simulate a real Qi charger

(for example, the Qi charger in [24] with capacity of 7.5 Wh
has α ≈ 0.675). In the experiments, we consider Emin and

Emax as 20 and 80, respectively. We assume Pr and Cmax as

20 and 500, respectively, based on a Lithium Polymer battery

Pack of 4000 mAh capacity [25].

B. Benchmarks and Evaluation Metrics

We consider two recent state-of-the-art methods

MobiWEB [18] and PGO [17] as the benchmarks for

comparing the performance of our proposed methods. In

both the benchmarks, first, a pair of nodes are selected

with current SOC level that is closest to the target energy

balance level as well as belong in the opposite side of it.
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(a) Total network energy.
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(b) Total energy variation distance.
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(c) Number of inter-node meetings.
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(d) Nodes reached energy balance.

Fig. 1: Performance comparison w.r.t. energy balance quality.

Subsequently, more pairs of peers are selected from the rest

of the nodes for energy exchange. However, MobiWEB
leverages the user mobility information, and accordingly

fine-grains the selection of nodes for network-wide wireless

crowd charging. Whereas, PGO chooses nodes solely based

on energy conditions rather that joint conditions of mobility

and SOC. Our proposed protocols, on the other hand, select

nodes based on the SOC levels and the priority of network

availability. In all the protocols, we consider energy loss and

the energy exchange duration is bounded by the inter-node

meeting duration of the participating nodes. However, as only

MobiWEB leverages mobility prediction, the comparison is

a bit unfair to the proposed protocols.

To compare the performance of the proposed and benchmark

methods, we show the results using the metrics which cover

both energy balance as well as the battery aging mitigation

aspects. The metrics related to energy balance are total net-

work energy, total energy variation distance, number of inter-

node meetings, and number of nodes that reached energy

balance. With respect to battery aging mitigation, we consider

the metric: reduction of total battery capacity, which refers to

the difference of total battery capacity of the crowd between

the iterations (BCT − BC0).

C. Results

1) Total network energy: Figure 1a shows the results for to-

tal network energy (SOC levels) in different iterations. Among

MobiWEB and PGO, MobiWEB experiences higher energy

loss due to increased number of inter-node meetings during

the initial parts of the experiment (i.e. 1-5). This behavior is

supported by the results shown in Figure 1c. Subsequently,

the total network SOC reduces quickly compared to PGO.

However, the difference in total network energy reduces sig-

nificantly in the higher iterations (i.e. 20-30) compared to the

initial iterations (1-10). On the other hand, for PBA-wNA
and PBA-woNA, only specific nodes meeting the conditions

of SOC threshold levels are chosen for the energy exchange,

and most of these nodes are chosen in the initial iterations

(1-3). Accordingly, the energy losses happen during these it-

erations, and the total energy level does not change afterwards.

However, the energy losses are higher in both these protocols

due to the higher amount of energy exchanged (compared to

MobiWEB and PGO) between the selected nodes. Among

PBA-wNA and PBA-woNA, the energy loss in PBA-wNA

is higher compared to PBA-woNA. Such behavior is attributed

to the type of peer selection promoted in PBA-wNA – energy

exchange between peers with very high or very low SOC

results in higher amount of energy exchanged and energy loss.

2) Total energy variation distance: The results for total

energy variation distance is depicted in Figure 1b. From the

results it is evident that the higher amount of energy exchange

during the initial iterations (1-3) in PBA-wNA and PBA-

woNA helps in reducing the total energy variation distance

among the crowd very early. In subsequent iteration, as there

are not much energy exchange activity in these two protocols,

the variation distance remains unchanged. Similarly, higher

number of inter-node interactions in MobiWEB results in

lower energy variation distance compared to PGO. Although

the proposed protocols exhibit lower total energy variation

distance, the energy loss remains higher compared to the

benchmarks. However, we also notice that both the proposed

protocols are able to exploit the possible inter-node meeting

opportunities in the early iterations, as shown in Figure 1c.

3) Number of inter-node meetings: We depict the number

of inter-node interactions during the experiments in Figure 1c.

It is depicted from the results that the proposed protocols are

able to explore higher percentage of total possible meeting op-

portunities (> 90%) compared to the benchmarks (35− 55%)

during initial parts of experiments (iterations 1-3). However,

the absolute number of inter-node meetings remains higher

in the benchmarks. Such behavior is attributed to the higher

number of potential peers in the benchmarks compared to few

number of potential peers in case of proposed protocols.

4) Number of nodes that reached energy balance: In Figure

1d, we plot the number of nodes with SOC equal to the

target energy balance level. The results show that very less

number of nodes reach the desired SOC level in the proposed

protocols compared to the benchmarks. The reason for such

performance is due to the type of energy exchange promoted in

the proposed protocols – only nodes with SOC Et(·) < Emin

and Et(·) > Emax exchange energy without regarding the

energy balance level. Therefore, although most of the inter-

node meeting opportunities are exploited and the proposed

protocols are able to reduce the energy variation distance, the

number of nodes that reach the energy balance level remains

lower.

5) Reduction of total battery capacity: We plot the re-

duction of the total battery capacity at different iterations in
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Fig. 2: Reduction in total battery capacity.

Figure 2. From the results it is evident that the reduction of

the total battery capacity for the whole crowd is significantly

lower in the proposed protocols compared to the benchmarks.

To be specific, the cumulative (over iterations 1-3, where

the comparison is fair) reduction in total battery capacity is

nearly 46.74-60.87% less in proposed protocols compared to

the benchmarks. Therefore, we can infer that on a long run,

the proposed protocols will be able to reduce battery aging

(or extend the network lifetime) significantly compared to the

benchmarks. In PBA-wNA and PBA-woNA, the reduction of

total battery capacity remains lower, and such performance is

attributed to the lower number of inter-node interactions which

results in lower energy loss as well. However, the energy loss

in PBA-wNA is higher compared to PBA-woNA due to the

higher amount of energy exchanged between the selected peers

in PBA-wNA. This behavior is attributed to the type of peer

selection promoted in PBA-wNA: energy exchange between

peers with very high or very low SOC results in higher amount

of energy exchanged and energy loss.

VI. CONCLUSION

In this paper, we, for the first time, model battery aging

in the context of wireless crowd charging. Thereafter, we

present two protocols, namely PBA-wNA and PBA-woNA,

to mitigate network-wide battery aging during wireless crowd

charging. The proposed protocols enable the selection of

pairs for energy exchange such that the battery lifetime is

enhanced. Simulation results depict that the proposed protocols

are able to mitigate battery aging quickly in terms of nearly

46.74-60.87% less reduction of battery capacity among the

crowd. Regarding energy balance quality, proposed protocols

are able to outperform the benchmarks partially during the

experiments. Therefore, we can conclude that the proposed

protocols achieve performance trade-offs between battery ag-

ing mitigation and energy balance quality. The future works

will be focused on improving the protocols further on the

joint objectives of battery aging mitigation and energy balance

quality.

ACKNOWLEDGMENT

This work was carried out during the tenure of an ERCIM

‘Alain Bensoussan’ Fellowship Programme of the first author.

This work was partially funded by the European Union’s

Horizon 2020 Research and Innovation Programme under

grant agreement No. 951972 (StandICT.eu 2023) through its

4th open call.

REFERENCES

[1] M. Armand and J. M. Tarascon, “Building better batteries,” Nature, vol.
451, no. 7179, pp. 652–657, 2008.

[2] T. Starner, “Powerful change part 1: batteries and possible alternatives
for the mobile market,” IEEE Pervasive Comp., vol. 2, no. 4, pp. 86–88,
2003.

[3] S. Saxena, G. Sanchez, and M. Pecht, “Batteries in portable electronic
devices: A user’s perspective,” IEEE Industrial Electronics Mag., vol. 11,
no. 2, pp. 35–44, 2017.

[4] M. Satyanarayanan, “Avoiding dead batteries,” IEEE Pervasive Comp.,
vol. 4, no. 1, pp. 2–3, 2005.
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