
4

Modeling, Replicating, and Predicting Human Behavior:

A Survey

ANDREW FUCHS, Universitá di Pisa

ANDREA PASSARELLA and MARCO CONTI, National Research Council (CNR)

Given the popular presupposition of human reasoning as the standard for learning and decision making,

there have been significant efforts and a growing trend in research to replicate these innate human abilities

in artificial systems. As such, topics including Game Theory, Theory of Mind, and Machine Learning, among

others, integrate concepts that are assumed components of human reasoning. These serve as techniques to

replicate and understand the behaviors of humans. In addition, next-generation autonomous and adaptive

systems will largely include AI agents and humans working together as teams. To make this possible, au-

tonomous agents will require the ability to embed practical models of human behavior, allowing them not

only to replicate human models as a technique to “learn” but also to understand the actions of users and

anticipate their behavior, so as to truly operate in symbiosis with them. The main objective of this article is

to provide a succinct yet systematic review of important approaches in two areas dealing with quantitative

models of human behaviors. Specifically, we focus on (i) techniques that learn a model or policy of behavior

through exploration and feedback, such as Reinforcement Learning, and (ii) directly model mechanisms of

human reasoning, such as beliefs and bias, without necessarily learning via trial and error.
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1 INTRODUCTION

Future autonomous and adaptive systems are expected to further exploit the concept of cyber-
physical convergence [25], and realize an environment where autonomous agents and humans
work together as teams, understand each other, and anticipate each other’s behavior and intentions.
This is driven by the pervasive diffusion of connected devices in the physical environment, which
are directly owned (e.g., personal devices) or in tight interaction (e.g., IoT devices) with the human
user. The vast diffusion of AI can bring autonomy of agents to a new level, making their behavior
much more refined and adaptive to the varying conditions of the environment and users. Human-

Centric AI (HCAI) is expected to be a fundamental element in this vision. Quite interestingly, AI
agents will need to interpret human behavior in context to better interact with users, understand
their actions, predict their choices, and ultimately orchestrate between actions performed directly
by humans and those delegated to AI agents in autonomy. To this end, it is essential to equip AI
agents with practical models of human behavior.

Utilizing models of human behavior and decision making has spanned decades across numer-
ous approaches and applications. Human behavior and reasoning enables complex behaviors and
social structures. Consequently, these structures become multifaceted and grow significantly in
complexity. Still, humans are generally quite successful at navigating this complex social struc-
ture. There are a multitude of attempts at explaining aspects of these capabilities, and this article
discusses some of the more popular or persistent methods. The motivations behind research in
the area of modeling human behavior and decisions are varied, so we limit the analysis to (a rep-
resentative subset of) works providing quantitative models (e.g., math models or algorithms), as
these are the approaches that allow one to “code” human behavior in autonomous systems. Some
examples include better autonomous driving [39, 161], comprehension of mental states [17], and
population-level modeling [66]. A primary distinction between the goals and approaches is often
the fidelity of the replication and the expected deployment case. For instance, researchers may try
to replicate the neurological pathways to mimic the neuro-physical process underpinning reason-
ing [11], or they may instead generate a computational model that is meant to mimic heuristically
biased behavior [85]. In any case, a common aspect is the desire to use humans as the template for
desirable patterns of reasoning.

Replicating or modeling human reasoning and abilities has motivated numerous research topics
enabling autonomous and adaptive systems. These systems can be trained to work independently,
in multi-agent systems, or in human-AI hybrid domains. In all of these cases, the resulting systems
require the ability to both learn from the environment and adapt to observed changes. We focus
primarily on topics relating to HCAI such as AI-assisted decisions or Hybrid Intelligence, which
demonstrate cases where humans use or interact with AI systems. These interactions require
differing assumptions regarding the dynamics between the human and the system, and how
those dynamics impact the capabilities or characteristics of the systems. In a more direct case of
Human-AI Interaction (HAI), humans utilize the output of a system in their decision-making
process. In this case, it is important the user clearly understands the output of an algorithm so
they can effectively utilize the provided information. As an example, consider the use of AI or
Machine Learning in medical diagnostics (i.e., HAI and AI-assisted decision making).

In what we consider one of the most relevant cases of HCAI for autonomous and adaptive sys-
tems (i.e., the case of Hybrid Intelligence), humans and AI systems form an interdependency. This
can take multiple forms [53, 70] but leads to cases in which the human and the AI are expected to
operate synergistically. Some examples include [33] Co-Evolution over Time, Human-in-the-Loop
Learning, Interactive Learning or Active Learning (AL), and Socio-Technological Ensemble.
Given these paradigms, the human and AI can be paired in multiple configurations depending on
technical, social, and related considerations (see the work of Wilkens et al. [160] for more details).
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Although emerging, the literature on HCAI and related human behavioral models is quite vast
already, and it is apparent that various types of HCAI exist. As an initial example, consider HCAI
systems that focus primarily on explainability [37, 58, 60, 61, 164]. Approaches for explainability
serve to make complex algorithms and methods explainable to humans. As an example, consider
the preceding case of AI-assisted decisions in medical diagnostics. The system must be effective
and demonstrate high accuracy, but must also prove worth using from a user’s perspective. If not,
the utility of the system may go unnoticed and unused. The use of explanation with respect to the
decision or underlying algorithm improves user awareness as it aids their determination regarding
the trustworthiness of the system and its output. A system demonstrating trustworthiness will of
course have a higher likelihood of use. A further form of HCAI (typically referred to as Hybrid
Intelligence) consists of AI agents and humans interacting directly, and impacting each other’s
operations [53, 70]. Examples of such cases include AI agents learning in the presence of human
teachers [59, 87, 98, 100, 113, 118], or humans exploiting the outcome of AI agents to acquire better
comprehension of a phenomenon [131]. Moreover, humans and AI agents may perform a common
operation as a team [96, 120]. In this context, designing approaches to orchestrate delegation of
tasks and decisions among the team’s members is also fundamental [101, 116].

The literature we consider on modeling HCAI systems for achieving higher levels of autonomy
and adaptation can be classified as shown in Figure 1. Specifically, we will discuss some popular
topics and applications relating to HCAI, HAI, and Hybrid Intelligence. These topics represent
methods that attempt a model mimicking or inspired by various biological/neurological, cognitive,
and social levels of reasoning. Additionally, we discuss how these topics align with application
areas of interest. These application areas cover a wide assortment of both scenario and level of
autonomy expected—for instance, demographic preferences [66] or something as safety-critical
as fully autonomous driving [39, 161]. The specific scenario can rely significantly on the level of
autonomy expected and the level of risk or autonomous control humans are willing to accept. For
these topics, we provide underlying principles and definitions, relevant examples of use cases and
their approaches, and further examples of relevant survey/review papers and related resources.
Finally, we provide additional details regarding some common application areas for these topics.

The rest of the article is structured as follows. In Section 2, we present common concepts and
key application areas. In Section 3, we discuss learning methods that generate a model of behavior
either by trial and error or by learning from observations of others. These techniques learn from
feedback denoting desirable behavior and adapt their policy according to this feedback. Next, in
Section 4, we discuss methods that attempt to model the mental states of others, utilize world mod-
els to simulate human knowledge, or discuss bias and fairness in representations and reasoning.
In Section 5, we discuss methods that attempt to replicate the cognitive abilities and suboptimality
found in humans. These allow for models that replicate biased or bounded rational behavior in-
spired by human cognition. A key aspect is modeling human cognitive resources and techniques
adopted by humans to efficiently use them, possibly at the cost of obtaining imprecise understand-
ing of the learned process or introducing mistakes. In Section 6, we focus on approaches that model
uncertainty in the human reasoning process, including cases where choices do not appear to be
the outcome of a rational process. Finally, Section 7 provides a brief overall comparison of the
considered approaches.

We will not provide a comprehensive coverage of all aspects relating to the listed topics, but
instead attempt to provide a useful assortment as a demonstration of topics of interest offering
potential areas for further exploration. Each section describing a topic is organized according to
a common structure. First, we point to specific surveys and related work dealing in greater detail
with that topic. Then, we discuss the general principles. Next, we discuss one concrete example
where those principles are made practical. Finally, we briefly mention additional examples where
the same principles have been applied.
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Fig. 1. Taxonomy of concepts.

2 HCAI ORTHOGONAL CONCEPTS AND SAMPLES OF APPLICATION AREAS

In this section, we discuss some common concepts related to HCAI that cut across the various
modeling methods presented in detail in the rest of the article. Moreover, we will briefly discuss
popular application areas demonstrating uses of techniques discussed. This list is not comprehen-
sive but serves to demonstrate topics that are likely more familiar and of immediate interest. The
approaches used demonstrate methods that serve to replicate, model, or learn from human behav-
ior and capabilities.

2.1 Orthogonal HCAI Concepts

It is important to note that different issues and considerations arise from varying requirements—
for instance, ensuring the AI system is not difficult to use or explain to users, difficult to manage
or maintain, or perceived as creepy by the potential users [37, 164]. Additionally, the systems
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will likely require awareness and capabilities supporting numerous types of intelligence (social,
emotional, physical, etc.) to best understand and interact with humans [24] while operating au-
tonomously. Further, the reliability, correctness, and resulting impact of the system can be viewed
as an important factor [110].

A key aspect in human-centric paradigms such as HAI or Hybrid Intelligence is that the behavior
of the human and the AI are assumed to impact each other [117]. In the case of Hybrid Intelligence,
each side is providing a deeper aspect to the relationship. In general, this would require AI systems
that can observe and understand humans to improve their behavior in this hybrid domain [71] via
adaptability. As an example, in some cases of AL or Reinforcement Learning (RL), a model is
being learned with the help of, or in observation of, a human teacher [59, 87, 98, 100, 113, 118]. In
such a case, we are expecting the AI system to continually refine both its model relative to the data
samples while also improving its ability to know when to ask for help. Further, one could expect
the human to use their understanding of the system implicitly or explicitly to improve the utility
of the samples based on the observed progression of the system [131]. In some cases, the samples
or information can come as human retellings of past experience [79]. This can also be reversed in
the sense that the system can be designed to improve the types of responses to guide the human
and improve the information received or queries of the user [152].

Systems can also be designed to learn to work in tandem with the human as a team. In such cases,
it is often desired to have the system augment the abilities of the human or maintain autonomous
control over an aspect of the task that is more challenging for the human (and is less critical
with respect to the larger goal). For instance, AI systems can be trained to assist the human in a
navigation task [120]. In such a case, there are aspects of the problem that are much easier for
either the human or the AI, so sharing the responsibilities allows for improved performance over
either working independently. For more direct assistance to the human, in the work of Morrison
et al. [96] we see an AI system augmenting the senses of the user to assist visually impaired users
in a social context. This demonstrates a system more closely integrated into the sensory systems
of the human and is intended as an unobtrusive augmentation of their sensory capabilities. From
another perspective, the goal could be a system that can operate as an independent agent in the
environment [157]. In these cases, the agent is expected to respond to the observed behavior of
the human to assist or avoid interfering as each work to achieve their tasks. In either case, it is
important to consider how the two (or more) are expected to interact and respond to observed
behavior [43, 168].

Another important aspect of Hybrid Intelligence is delegation (how and when to delegate) and
which tasks can be performed without human intervention [101, 116]. There needs to be graceful
handling in the event the human and AI system are both attempting to control the system. Addi-
tionally, there needs to be clear guidance regarding when either should be in control. For instance,
it is important to understand the reliability of the system and where it is likely to encounter errors.
Beyond simply impacting performance, system errors can impact the human’s perception of the
system and its overall utility. Consequently, this can impact the interactions between the system
and the human user [14].

To facilitate understanding and learning for the AI systems, it is important to support methods
for representing the observed behavior from the human in a manner that can be tractable and
potentially simplify learning. As an example, Xie et al. [163] encode the observations in a latent
space and then learn a model of behavior corresponding to the latent representation. Such an
encoding, among other benefits, can allow the agent to abstract the observations to support con-
nections between similar observations. Additionally, systems require the means to observe and
adapt to humans [113, 130]. An important example is human-aware robot navigation [91, 93] and
human-robot interaction scenarios [132]. In the navigation context, the motion, goals, and general

ACM Transactions on Autonomous and Adaptive Systems, Vol. 18, No. 2, Article 4. Publication date: May 2023.



4:6 A. Fuchs et al.

behavior are crucial for the robot to successfully navigate the environment. Similarly, models can
be generated to estimate or predict the feedback expected from a human collaborator or teacher
to boost training of the AI system [99, 100].

2.2 Application Areas

2.2.1 Robotics. Robotics can utilize human demonstrations to learn skills or behavioral policies.
For instance, humans can provide demonstrations for a robot learner using a policy-gradient RL
policy, which can then be improved through practice and exploration by the learner [5]. Similarly,
humans demonstrate the ability to adapt skills to variations and new scenarios. This adaptability
has been explored in RL agents in robotics to enable generalization from initial demonstrations or
exploration [68, 118], which enables aspects of learning from demonstrations and an interactive
learning process as seen in Imitation Learning (IL), Inverse Reinforcement Learning (IRL),
and AL. Robot agents can also learn to anticipate the movement of humans or other artificial agents
to compensate for their movements or rendezvous at a later position [91, 93, 156], and this concept
can be extended to further topics in human-robot collaboration [132]. Additionally, robot vision
can be designed to replicate models of human vision mimicking foveation [15], which allows agents
to observe visual stimuli with similar attention and focus to stimuli. These topics demonstrate how
robots can be designed to learn from humans and also learn to operate in an environment alongside
humans. The approaches for these solutions span multiple disciplines, including ones described in
this article (RL, IRL, etc.).

2.2.2 Driver Prediction and Autonomous Driving. There have been numerous examples of
research performed to model and predict behavior in a driving scenario [77]. These topics
include methods that model pedestrian behavior [23] or the behavior of other drivers [16, 22, 39].
This manner of modeling serves to train autonomous vehicles how to successfully drive while
compensating for the behaviors of others through the use of models based on IRL IL, and
related methods. This predictive power is essential so systems can anticipate and react to the
non-uniform nature of human behavior. In addition to modeling the behavior of other drivers,
systems have been investigated that model the vehicle control behavior of drivers [109]. This
allows for comprehension and modeling of driver control movements when operating a vehicle.
For example, there is a need to model and predict the outcome of control delegation between
the autonomous system and the human driver. To do so, researchers have investigated cognitive
models to predict the time to take over control given the type and difficulty of actions the human
driver is performing when the control is switched [88, 128, 129]. This allows for a model that can
simulate the cognitive and bio-mechanical responses when changing tasks for the human drivers.

2.2.3 AI in Games and Teaching. In the area of video and serious games, AI is considered with
respect to multiple aspects. In one aspect, researchers and developers are investigating techniques
to integrate AI into game development and game character behavior [18, 162, 166, 167, 169].
This allows for levels, players, and so forth to be generated or controlled by adaptive behavior
models to create a broader scope of experiences. These examples demonstrate using approaches
such as planners (see Section 4), RL, and those related to improve the performance, adaptability,
or creation of games. Non-player character behavior can be supported by these techniques to
generate policies based on historical gameplay data or learned models of play. This can be from
learned models of behavior or based on past human player choices [31]. Non-player characters
with these characteristics could prove better suited to respond to player choices and allow for
more outcomes. Similarly, the generation of levels and scenarios can also be expanded by allowing
for more dynamic combinations of resources by the system. In the case of serious games, systems
can be implemented to train human users and learn models of their behavior [74]. This allows
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for systems that can teach and allow for improvement with a more thorough understanding of
the user’s behavior. For instance, cognitive architectures (see Section 5.2) can be used to define
intelligent tutoring systems [139].

2.2.4 Agent-Based Modeling. To achieve a model of human behavior and decision-making, nu-
merous topics have been investigated. Some examples include Agent-Based Modeling (ABM)

[35, 52, 66, 73, 136], which allows for models of groups of people or populations. In ABM, human
behavior models are often defined and then studied in an environment over a simulated time-
line. The agents follow the defined patterns of behavior and the resulting global patterns can be
analyzed. For instance, population segregation based on demographic preferences regarding neigh-
bors can be modeled by defining a diversity preference and modeling the movement of agents in
an environment [66]. Populations of humans can also be modeled with other techniques designed
to model the interdependence of the agents. The interactions can be modeled mathematically with
humans represented as nodes in a network, particles in an environment, or more [36]. Additionally,
the model of human behavior in ABM can also be supported by models of uncertainty, bounded ra-
tionality, or cognitive architectures, which we discuss in Section 5 and Section 6. As we will focus
on more direct and individual-level models of behavior, we will not present this topic in greater
detail in this article.

3 LEARNING HUMAN BEHAVIORS BY EXPERIENCE AND FEEDBACK

In the following sections, we discuss methods that learn patterns of behavior by exploration and
observation of feedback. In Section 3.1, we discuss learning agents that perform RL by observing
rewards denoting the desirability of actions in a particular state or context. Extending this concept
of feedback-based learning, we discuss IRL and IL in Section 3.2. These learning agents develop a
model of behavior attempting to replicate the observed behavior of others. In IRL, the agent gener-
ates an estimate of the feedback that generated the observed behavior and learns a corresponding
model of behavior. A similar attempt to replicate observed behavior is seen in IL. In this case, the
learner does not estimate the feedback signal but instead directly learns a model of behavior from
the observations. The final section, Section 3.3, discusses AL—a paradigm in which the agent is able
to query a teacher for feedback regarding a subset of input values. This allows learning based on
an estimated confidence regarding inputs and to utilizing teacher expertise to update knowledge.

3.1 Reinforcement Learning

3.1.1 Relevant Survey(s). For relevant survey papers and related topics, please refer to other
works [83, 112, 130].

3.1.2 Principles and Definitions. RL is a method by which situations are mapped to actions to
maximize a reward signal [142]. The maximization is performed by the learning agent through ex-
ploration of an environment and the possible actions. This exploration generates a feedback signal
via rewards that the agent uses to learn the behaviors resulting in the most desirable feedback. The
feedback received is provided immediately or can be a result of a sequence of actions. For example,
an agent could receive a reward for each step they make in an environment or simply a single
reward at the end of a training session that corresponds to the outcome. The different parameters
of the problems lead to numerous techniques for learning optimal behavior policies.

Markov Decision Process. In RL, agents are attempting to solve a sequential decision process,
which is represented by a Markov Decision Process (MDP). This representation allows a sce-
nario to be formally modeled with underlying assumptions, such as dependence on past states.
An MDP can be represented by the tuple {S,A,T ,R,p (s0),γ } [114]. S refers to the states of the
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environment that are traversed by executing actions from A. The transition between states fol-
lows the transition probabilities T : S × A → p (S ). As a means for feedback, the reward function
R : S × A → R provides reward signals based on the selected action. Note that R can also be de-
fined with the inclusion of the resulting state R : S × A × S → R. Additionally, p (s0) defines the
probabilities over initial states and γ defines the discount parameter (defined in Section 3.1.3).

3.1.3 Policies and Learning. Given a scenario or MDP, an agent is trained to find a policy π :
S → p (A) that defines a likelihood of actions given current state. An agent’s policy is learned
through trial and error by exploring the given MDP and observing the rewards r ∈ R. A policy is
learned via an estimate of action utility based on past observations and estimates of trajectories.
The agent can generate an estimate of discounted return based on a discounted sum of future
rewards:

Gt =

∞∑
k=0

γ kRt+k+1, (1)

where Rt+k denotes the reward observed k timesteps after time t and γ is the discount parameter.
This describes a measure of estimated return based on observations of trajectories. The value of
γ determines how quickly the scale of future rewards decays, which impacts how strongly those
observations impact the estimates. With this method of estimating returns, agents can generate a
model of likely utility for states or state-action pairs. This concept is used to define a value function
ν (s ) given state s with the assumption that the agent starts in state s and executes actions according
to their policy π in subsequent states. The distinction being that the estimate is based on behavior
determined by a policy π . This means that the estimated value will consider the estimates of future
values given the current state and expected trajectory. In the work of Sutton and Barto [142], ν (s )
is defined as

νπ (s ) = Eπ

⎡⎢⎢⎢⎢⎣
∞∑

k=0

γ kRt+k+1 |St = s
⎤⎥⎥⎥⎥⎦
,∀s ∈ S . (2)

Similarly, the action value function is used to estimate the value of executing an action a in a given
state s:

qπ (s,a) = Eπ

⎡⎢⎢⎢⎢⎣
∞∑

k=0

γ kRt+k+1 |st = s,at = a
⎤⎥⎥⎥⎥⎦
,∀s ∈ S . (3)

These are fundamental equations with respect to behavior policy learning via RL. Various methods
are used to learn a representation of value following Equation (3). This is done by utilizing the trial-
and-error learning process of RL. Agents explore the environment and select actions (following a
learning scheme—e.g., Epsilon Greedy) to observe the effect of actions. The effect is reflected in
the rewards observed, which are used in the estimated state-action value function to incrementally
improve the estimated utility of actions. This is done by refining the estimate through a modeling
process that uses immediate rewards and the current estimate of value to refine the estimate. This
cycle is used to learn a policy through the feedback loop created by taking an action, observing
an outcome, and updating the policy of actions accordingly. As an example, a temporal difference
method can be used in Q-Learning to learn a state-action value function:

Qt+1 (s,a) = (1 − α )Qt (s,a) + α[r + γ max
a′

Qt (s ′,a′)], (4)

where α is the learning rate used to discount the scale of the current estimate in the update to
the estimated value. As can be seen, there is a recursive relationship between the current state’s
utility and the value of future states in the discounted γ maxa′ Qt (s ′,a′) term. This enables the
relationship between the value of the current state and the value of future states under the current
policy.
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Fig. 2. Sample MDP showing issue with myopic view. State values are in parentheses below state labels.

In RL, the method for defining and finding optimal behavior depends on the nature of the el-
ements of the observation available to the agent. In the most general case, such as Q-Learning
demonstrated earlier, the agent observes the current state and selects an action according to π .
Typically, this is done by identifying argmaxa qπ (s,a). An important aspect of basing decisions
on discounted future utilities is the possibility of MDPs that could result in suboptimal behavior
given a myopic view. For instance, Figure 2 provides an example of how too greedy a nearsighted
view of state values would lead an agent to bias its behavior to lead from state 4 to state 1 with a
sum of rewards equal to 12 rather than the optimal choice, which is 4 to 7 with a sum of rewards
equal to 21. Such a scenario can be quite common and is one of the many challenges for successful
policy learning in RL.

RL contains numerous examples of constraints that differentiate families of problems. For in-
stance, it is possible to have an environment that is only partially observable [134]. In this case,
not all aspects of a state are observable to an agent, so there is uncertainty regarding the exact
state the agent is occupying. This results in a need for the agent to estimate the current state and
use that estimation in the updates to the value function. In another case, the actions may not lead to
an outcome with 100% certainty. An example is a stochastic gridworld problem (e.g., OpenAI Gym
Frozen Lake [20]). In this scenario, agents try to navigate a 2D world by moving up, down, left, or
right. When an agent selects an action, there is a non-zero probability that the agent moves to an
unintended state. For example, an attempted “up” action could in fact move the agent to the left. In
this case, the learning method must support this uncertainty. It is worth noting that the previous
examples represent scenarios supported by tabular methods. The use of RL has also been extended
to continuous cases with the help of Deep Learning. This is referred to as Deep RL and is commonly
used in the case of continuous and/or large domains such as robotic control or video games [10].

3.1.4 Additional Relevant Results. For further examples of relevant results, please refer to the
work of Fuchs et al. [41].

3.2 Inverse Reinforcement Learning and Imitation Learning

3.2.1 Relevant Survey(s). For relevant survey papers and related topics, please refer to other
works [9, 39, 65, 170].

3.2.2 Principles and Definitions.

Inverse Reinforcement Learning. IRL is a method by which an agent learns from examples of
behavior without access to the underlying reward function motivating the behavior. The key dis-
tinction being that the agent is trying to replicate or approximate the reward function RE or policy
πE that caused the exemplar behavior. This results in effectively needing to learn a reward while
simultaneously attempting to learn optimal behavior policy under the current estimated reward
function. As such, the agent is performing two interdependent tasks. Given a policy πE or a set of
N demonstrated trajectories

D = {〈(s0,a0), (s1,a1), . . . , (sj ,aj )〉Ni=1 : sj ∈ S ;aj ∈ A; i, j,N ∈ N},

the agent is tasked with learning a representation that could explain the observed behavior [9].
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Generally speaking, there are numerous methods or approaches with respect to IRL. Therefore,
we will be unable to address all the techniques in this section. We will instead provide some prelimi-
nary examples for intuition regarding common techniques and underlying principles. One method
for the IRL task is that of apprenticeship learning [1]. In this case, there is an assumed vector of
state-related features ϕ : S → [0, 1]k that support the reward R∗ (s ) = w∗ ·ϕ (s ), with weight vector
w∗. The feature vectors ϕ refer to observational data corresponding to the states (e.g., a collision
detected flag). Given the definition of reward, the value of a policy π can be measured by

Es0∼D [V π (s0)] = E
⎡⎢⎢⎢⎢⎣
∞∑

t=0

γ tR (st ) |π
⎤⎥⎥⎥⎥⎦
= w · E

⎡⎢⎢⎢⎢⎣
∞∑

t=0

γ tϕ (st ) |π
⎤⎥⎥⎥⎥⎦

(5)

with the initial states being drawn s0 ∼ D and with behavior following from the policy π . Then,
the feature expectation can be defined as

μ (π ) = E
⎡⎢⎢⎢⎢⎣
∞∑

t=0

γ tϕ (st ) |π
⎤⎥⎥⎥⎥⎦
, (6)

which is used to define a policy’s value Es0∼D [V π (s0)] = w · μ (π ). Given the estimation of feature
expectation μ (π ), the goal is to find a policy π̃ that best matches the observed demonstrations. To
do so, this requires a comparison between π̃ and πE . Since the policy πE is typically not provided,
an estimate μ̂E based on demonstrations is needed. This can be accomplished by an empirical
estimate:

μ̂E =
1

m

m∑
i=1

∞∑
t=0

γ tϕ
(
s (i )

t

)
, (7)

for a given set of trajectories {s (i )
0 , s

(i )
1 , . . . }mi=1.

Given this structure, algorithms can be defined for iteratively refining the weight vectors and re-
sulting policies. This enables the two components of the IRL paradigm. First, the estimated weight

vectorsw (i ) define an estimated reward function that can be refined by updating the weight vector
to reduce the discrepancy between the two estimated feature expectations μ̂E and μ (π ). Second,

the estimated reward with the current weight w (i ) enables learning a policy using RL that is op-
timal according to Equation (5). This is used in the first step to measure value discrepancy. The
process provides a cyclical method of reward refinement and policy learning.

It is worth noting that needing to find a suitable reward function and a policy increases the
complexity of the problem. The cycle of improving the reward requires the agent to retrain a
behavior policy that reflects the new reward. However, finding an accurate representation of the
reward would afford the agent a more general understanding of the behavior. Having access to
a reward function allows an agent to understand desirable behavior at an abstract enough level
to potentially transfer its understanding to a new environment. Of course, if the approximated
reward is not accurate enough, one would expect this to result in issues. In any case, there is the
potential for increased generality of the resulting agent. Finally, note that an exact replication of
the underlying reward is not entirely necessary. In fact, an affine transformation of the true reward
function would result in an equivalent policy [9].

Imitation Learning. IL is a process that attempts to learn a pattern of behavior under a given task
[106] based on given expert demonstrations. At an abstract level, IL is closely related to IRL. In both
cases, the goal is to utilize observations of behavior to train a behavioral model or policy. The key
distinction comes in the structure of the learning process. In IRL, the learning process attempts to
learn a suitable reward function that aligns with the demonstrated behavior. The learning process
then uses the learned reward to generate a policy of behavior. For IL, the learning process is not
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designed to generate a reward function that fits the demonstrations; instead, the process attempts
to directly learn a model of behavior best fitting the demonstrations.

As a demonstration of the principles, IL can be formulated as follows. Given a trajectory τ =
[ϕ0, . . . ,ϕT ] of features ϕ, the learner is tasked with learning a policy reproducing the behavior.
The vectors ϕ represent the features of the environment or system at each stage of the trajectory.
The context, or state, s representing the system state can be used in conjunction with an optional
reward parameter r as components of the underlying optimization problem.

With a set of demonstrations D = {(τi , si , ri )}Ni=1 of trajectories τ , contexts s , and rewards r ,
(Note: the reward values ri might not be provided), the goal is to find a policy π ∗. The policy
should minimize the discrepancy between the distribution of features from the expert q(ϕ) and
the distribution of features from the learner p (ϕ):

π ∗ = argminD (q(ϕ),p (ϕ)), (8)

where D is a discrepancy measure such as Kullback-Leibler. A key feature of Equation (8) is that it
promotes the alignment of behavior through direct observation by penalizing distributions diverg-
ing from the demonstration. This goal of low discrepancy guides the policy search toward those
policies that best fit the observed distribution over features. Overall, the method for generating
policies will vary with each approach, but the underlying principle of direct replication is still a
key component.

3.2.3 Applications and Recent Results. To demonstrate the preceding concepts, we present an
IRL example [165] in which an agent learns a model to replicate human gaze patterns when search-
ing for a visual target. The proposed approach, referred to as Dynamic-Contextual-Belief (DCB),
uses imagery data with human-annotated gaze fixations. Further, the: approach uses simulated
fovea to learn a plausible model of desirable objects for attention. This is used to model how a
human’s gaze shifts around an image while attempting to locate an object. The approach showed
an improved ability to identify particular objects of interest over generating a saliency map to
demonstrate attention.

DCB is composed of three components: fovea, contextual beliefs, and dynamics. The fovea serves
to mimic human vision and provide a sub-region in high detail while blurring or masking the re-
maining region. The masking selects a sub-region of the image to represent in high resolution,
whereas the remaining regions are represented using a blurred version of the image. This approx-
imates the effect of the fovea on human vision and represents the fixation of the observer. The
contextual beliefs represent a person’s understanding of the contents of the scene, such as objects
and background items of an image. Last, the dynamics component collects information regarding
the focal fixations during search. The dynamics are represented as a transition between versions
of the image, which are updated based on iterations of fixation. Each region that receives fixation
is replaced by its high-resolution representation, resulting in a transition represented by

B0 = L;Bt+1 = Mt � H + (1 −Mt ) � Bt , (9)

whereBt represents the belief state after t fixations andMt is the mask generated by the t th fixation.
L and H are belief maps that represent object and background locations for low-resolution and
high-resolution images, respectively. Based on this definition, we can see that the representation
of the image and the beliefs Bt regarding contextual information and item locations are updated
based on the iterative search conducted by moving the fixation around the image.

To represent the reward and learn a policy representing visual search behavior, Generative Ad-
versarial Imitation Learning (GAIL) is utilized, which is a framework that utilizes the adversarial
paradigm, with networks representing the discriminator D : S×A→ (0, 1) and generatorG. These
are used to train the system to generate data matching the patterns of the original sampled data.
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The discriminator is tasked with learning to distinguish between real human data and those gener-
ated artificially byG. The generatorG is tasked with learning to generate data convincing enough
to the discriminator D to be labeled as real rather than artificially generated. This is accomplished
by maximizing an objective function:

LD = Er [log(D (S,a))] + Ef [log(1 − D (S,a))] − γEr [| |∇D (S,a) | |2], (10)

where D (S,a) is the output of D given the state-action pair (S,a), Er refers to the expectation
over real state-action pairs, and Ef refers to the expectation over fake search transition samples
fromG. The gradient term at the end of Equation (10) serves to improve the convergence rate. The
definition of the reward is based on the output of the discriminator:

r (S,a) = log(D (S,a)). (11)

For the generator, the performance uses Equation (11) and is tasked with maximizing

LG = Ef [log(D (S,a))] = Ef [r (S,a)], (12)

which shows that the higher likelihood of being real the discriminator places on generated data,
the higher the resulting reward will be. To find an RL policy for the generator, Proximal Policy
Optimization is utilized with the following representation:

Lπ = Eπ [log(π (a |S ))A(S,a)] + H (π ), (13)

where the advantage function A is estimated using Generalized Advantage Estimation (GAE). The
advantage represents the gain observed by taking action a versus the policy’s default behavior.
This definition of loss for the policy learning helps guide the learner toward actions that will
result in higher advantage over other actions. The term H is the max-entropy IRL term H (π ) =
−Eπ [log(π (a |S ))], which helps improve convergence.

To test the approach, images from the COCO-Search18 dataset were included based on relevant
selection criteria. The algorithm was tested against relevant baselines and against human perfor-
mance. In the tests, results were used from 10 participants who viewed the 6,202 images in the
dataset. For the participants, eye tracking was performed during the search task. The algorithms
compared against were a random scanpath, a ConvNet detector, Fixation heuristics, a Behavior
Cloning CNN, and a Behavior Cloning LSTM. The results demonstrated show the method meeting
or exceeding the performance of the compared algorithmic methods. Further, they demonstrate
the relationship between the number of fixation transitions made before finding the target and the
success rate of the searches. Additional tests were performed, which can be found in the original
text [165].

3.2.4 Additional Relevant Results. For further examples of relevant results, please refer to the
work of Fuchs et al. [41].

3.3 Active Learning

3.3.1 Relevant Survey(s). For relevant survey papers and related topics, please refer to other
works [98, 118, 121, 133].

3.3.2 Principles and Definitions. AL is intended as an AI paradigm by which the learner is able
to query an oracle regarding unlabeled data. The goal is to enable a more efficient usage of poten-
tially costly data by allowing the learner to identify a representation of confidence/understanding
to determine which items should be prioritized or require input from an oracle [133]. This is de-
scribed as a characteristic similar to the concept of curiosity in humans, since AL demonstrates
a motivation to inspect items with less experience or certainty. Note that this relates to how the
system decides what it wants to learn more about, not a true reproduction of human cognition.
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However, it has been argued that humans must regulate their priorities regarding curiosity to
know when and what to learn [143]. When prompted, the oracle can then provide labels for the
queried samples, reducing the need to label larger sized datasets prior to the start of training.

There are numerous ways in which the learner can represent its understanding of the data to
determine its confidence level. The representation is used to measure which would be the most
desirable query. A possible definition could be the use of entropy to measure the confidence

x∗ENT = argmax
x
−

∑
i

P (yi |x ;θ ) log P (yi |x ;θ ) (14)

for labelsyi , instance x , and model θ . This provides an information-theoretic representation of the
uncertainty. Specifically, the instance selected for the oracle feedback is the one corresponding to
the largest entropy in the probability of assignment to the various labels (as per Equation (14))—
that is, the one for which the distribution of probabilities is closer to a uniform distribution (highest
uncertainty). Another approach is the instance with the least confident labeling:

x∗LC = argmin
x

P (y∗ |x ;θ ), (15)

where y∗ = argmaxy P (y |x ;θ ) is the most likely class labeling. This promotes querying instances

that have a best labeling with the least confidence.
The underlying principle in Equations (14) and (15) remains the representation of how well the

model can relate instances to the labels based on a self-aware measure of certainty. The utiliza-
tion of this notion of confidence is what allows for systems to exhibit behaviors akin to curiosity,
allowing them to guide the learning process and reduce the reliance on large datasets.

3.3.3 Applications and Recent Results. As a demonstration of AL, we discuss the approach out-
lined in the work of Navidi [99] and Navidi et al. [100], in which a method of Active IL in an
RL context is presented. The proposed approach is a divergence from the preceding examples of
approaches but still utilizes the general principles of AL. In this case, a model is generated to the or-
acle’s responses for improved performance and to compensate for potential delays between agent
action and oracle response. The prediction model enables the agent in its learning process and
guides policy learning. Unlike the form of AL described earlier, the oracle feedback provides labels
of good or bad behavior, so the agent’s policy learning phase will learn to avoid poorly performing
actions rather than querying low-confidence items. Hence, the behavior of the oracle encodes a
model of the human’s preferences with respect to agent behavior. This creates a method combin-
ing concepts from IL, AL, and RL. Regarding the underlying algorithm, a combination of SARSA
and A3C with human-in-the-loop training was proposed.

To provide feedback from the teacher, agents observe a binary signal indicating a positive or
negative teacher response. This is in contrast to other methods, which might provide more com-
plicated or graded feedback by utilizing varying levels of good or bad (e.g., [−100,−50, 50, 100]). To
compensate for variance in both reaction time and frequency of responses from the teacher (e.g.,
some might tire of giving feedback), a feedback prediction system is used.

The feedback predictor or manager FB is designed to learn and predict the feedback behavior of
the human teacher. FB is provided responses from {−1, 1} to signify satisfaction: 1 or dissatisfaction:
−1. The feedback prediction policy is denoted as

FB (O,A) = ψTθ (O,A), (16)

where FB (O,A) denotes the teacher feedback policy, ψ are the policy parameters, and θ (O,A)
represents a density function modeling the human response delay.

The feedback is then used to guide the training of the RL policies for the agent. Testing is per-
formed utilizing the SARSA and A3C algorithms. The feedback weights past observations to give
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a teacher-based representation of the outcomes. These methods are tested against Open-AI Gym
environments such as the Cart-Pole and Mountain-Car scenarios. In both cases, the proposed meth-
ods perform strongly in the environments and against the baseline methods.

3.3.4 Additional Relevant Results. For further examples of relevant results, please refer to the
work of Fuchs et al. [41].

4 BELIEF AND REASONING APPROACHES

In the following sections, we discuss methods that use representations of belief or world knowl-
edge to guide/assist in agent learning. Relating to the concept of cognitive frugality, we will discuss
Meta-reasoning and Meta-learning in Section 4.1. These concepts relate to how skills or knowledge
are utilized based on the current context. Further, these concepts also relate to how and when cog-
nitive resources should be applied to determine which system will select the course of action. Com-
pensating for the behavior or preferences of others is another important aspect of modeling and
replicating human behavior. The topic Theory of Mind (ToM), which we discuss in Section 4.2,
generates a model of the mental states of others to anticipate and collaborate with others. Last,
we discuss methods integrating a model of knowledge or world dynamics in Section 4.3. These at-
tempt to replicate human understanding of the world to perform reasoning at a level utilizing these
models rather than attempting to learn them indirectly through interactions with the environment.

4.1 Meta-reasoning and Meta-learning

4.1.1 Relevant Survey(s). For relevant survey papers and related topics, please refer to other
works [2, 27, 44, 50, 62, 64, 75, 111, 154].

4.1.2 Principles and Definitions. Meta-reasoning and Meta-learning consider topics related to
a level of abstraction that allows the algorithm to make determinations at two levels. In Meta-
reasoning, this is often referred to as “reasoning about reasoning” [27]. Similarly, Meta-learning is
often referred to as “learning to learn” [75]. These indicate the core aspect, which is the ability to
perform introspection to dictate behavior. More concretely, this often relates to an ability to deter-
mine how resources or behavior policies are allocated for reasoning or learning. This implies a no-
tion of cost/effort regarding the task and an ability to identify the most suitable solution/behavior
based on context. The notion of allocation for reasoning can also be related to examples in human
cognition and the notion of bounded rationality [173], which we discuss in later sections.

Meta-reasoning. As noted in the work of Russell and Wefald [126], real agents are limited in
capacity with respect to reasoning. Such a limitation manifests in both computational power
as well as the time to decide and act. Further, the benefit/utility of an action can deteriorate
over the time it takes to deliberate or to execute the action. Consequently, there is an implicit
trade-off between the cost of an action (deliberation and execution) and its intrinsic utility.
The ability to make judgments, consciously or otherwise, regarding the appropriate balance of
these factors is a key aspect of Meta-reasoning. In the context of computer-generated solutions,
the common approach is to consider minimal time for an acceptable solution or maximizing
outcome at the expense of time to completion. The ability to find an appropriate balance is one of
the key motivations for investigating Meta-reasoning topics.

From an algorithmic perspective, the Meta-reasoning problem can be viewed as a method of
optimizing the expected utility of performing an action versus the cost to do so. Following Griffiths
et al. [50], this can be expressed as

VOC(c,b) = Ep (b′ |b,c )[max
a′
E[U (a′) |b ′] −max

a
E[U (a) |b]] − cost (c ), (17)
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whereb is the agent’s current belief,b ′ is the refined belief resulting from executing computation c ,
and E [U (a) |b] is the expected utility of taking action a under utilityU over the distribution of out-
comes corresponding to beliefb. Given the VOC, a rational agent should select the action that maxi-
mizes its value (or perform no action if VOC < 0). Unfortunately, calculating the VOC is costly, and
so methods need to be developed to approximate it or define a similar measure of cost versus utility.

Meta-learning. Similar to Meta-reasoning, the case of Meta-learning relies on an ability to per-
form introspection to understand how to best utilize the resources at hand. In this context, re-
sources are being applied to behavior learning and utilization. As noted in the work of Hospedales
et al. [62], Meta-learning involves improving a learning algorithm over multiple learning episodes
at two levels. First, in base learning, a learning algorithm learns to solve a task based on the scenario
parameters (e.g., image classification). For the second phase, Meta-learning, an outer level algo-
rithm improves the inner learning algorithm. The improvement is made so the resulting learned
model improves one of the outer objectives. There can be multiple outer objectives necessitat-
ing the algorithm consider which model/algorithm to apply in a given context. Similar to Meta-
reasoning, the accrual of information or the time for deliberation can be costly. Consequently, the
algorithm requires a method by which it can make a determination regarding the cost/benefit
trade-off between the two [44, 50].

For a more formal characterization, we utilize the conventions provided by Vanschoren [150].
Consider the accrual of behaviors for given tasks tj ∈ T , where T is the set of all known tasks.
Given a set of learning algorithms parameterized/configured by θi ∈ Θ and evaluation measures
Pi, j = P (θi , tj ) ∈ P, a meta-learner L is trained to predict recommended configurations Θ∗new for
a new task tnew . In this paradigm, it becomes a matter of learning a function f : Θ × T → {θ ∗

k
},

k = 1 . . .K that generates configurations θ ∗
k

. This allows for the creation of a portfolio of configu-
rations associated to tasks which they are best suited. This paradigm allows for the generation and
selection of configurations based on the experiences of the algorithm. Hence, the learner develops
an understanding of what to learn and how to learn it.

4.1.3 Applications and Recent Results. Lange and Sprekeler [80], Memory-based Meta-learning
(related to the concept of “learning to learn”) is investigated. In this scenario, the key concept is
an algorithm that can determine when to rely on a learning algorithm for generating behavior
versus utilizing a heuristic. This enables agents that develop policies when it is feasible given
the time/computational constraints and rely on heuristics otherwise. Regarding learning behavior
policies, three features of particular interest are noted relating to the dependence of the Meta-
learning algorithm on the meta-RL problem:

• Ecological uncertainty: How diverse is the range of tasks the agent could encounter?
• Task complexity: How long does it take to learn the optimal strategy for the task at hand?
• Expected lifetime: How much time can the agent spend on exploration and exploitation?

Based on the analysis performed in [80], non-adaptive behaviors are optimal in two cases: low
variance across tasks in the ensemble, and when time constraints prevent sufficient time for explo-
ration.

For a first scenario, the approach is tested on a two-arm Gaussian bandit task. It is noted that
this allows for an analytical solution of optimality. The agent interacts with the environment by
performing a series ofT arm pulls with rewards represented by a deterministic reward of 0 for the
first arm and a Gaussian distribution with variable mean μ for the second. The mean is sampled
μ ∼ N (−1,σ 2

p ) (where σp specifies the scale of ecological uncertainty) at the beginning of each

episode, and is then used to define the reward function r ∼ N (μ,σl ). It is noted that this variability
controls how many arm pulls are needed to estimate the mean reward and σl controls how quickly
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the agent can learn the policy as it controls the consistency of the observed rewards. The scale of
σp clearly determines how much uncertainty should be expected for the agent regarding the mean
reward observed from the stochastic arm, which consequently scales the difficulty of estimating
the expected utility of this arm. For σl , this determines how difficult it will be to estimate the mean
based on observed rewards.

Given this definition, the optimal solution is determined analytically based on the problem char-
acteristics. Since the agent should perform n pulls for exploration before exploiting its knowledge,
the goal is to identify the optimal number of trials n∗ before concluding the exploration. The solu-
tion is as follows:

n∗ = argmax
n
E

⎡⎢⎢⎢⎢⎣
T∑

t=1

rt |n,T ,σl ,σp

⎤⎥⎥⎥⎥⎦
(18)

= argmax
n

[
−n + Eμ,r

[
(T − n) × μ × p (μ̂ > 0)

] ]
,

where μ̂ is the estimated mean reward of the second arm after n exploration trials.
Based on experiments, two distinct types of behavior were noted. In the first, learning via ex-

ploration is the optimal behavior. In the second, the agent should not learn and instead exploit
its knowledge. The value in stopping learning is attributed to two aspects: (1) small ecological
uncertainty can make it very unlikely the first arm is better, and (2) too high of variance causes
the lifetime to be too short for valid learning. In other words, uncertainty and resource limitations
can cause a shift in the prioritization of learning and knowledge exploitation. As a result, that
this leads to two consequences. First, the values of σl and σp create a threshold between learn-
ing and not learning of behaviors. This determines whether learning is suitable or if the agent
should instead rely on exploitation of the existing knowledge. Second, the optimal strategy is de-
pendent on the time allotted for learning. The amount of knowledge an agent can attain is strictly
dependent on the variance parameters and the time they have to learn the dynamics of the arms.
The results indicate the relationship between complexity and uncertainty with respect to the ex-
pected number of trials. There is a clear delineation between the two behaviors indicated in the
results.

Given the preceding specification, agents trained on the bandit scenario, were generated, which
were subsequently compared to the theoretically optimal solution. The outcome indicates the Meta-
learning paradigm creates agents matching the analytical solution. Given this structure, [80] notes
that such an agent demonstrates the dual components that handle learning a behavior policy and
utilizing a hard-coded choice that selects the deterministic arm (optimal choice in expectation).

To test the proposed approach in a more general case, an LSTM-based actor-critic agent is
trained and tested in an ensemble of gridworld tasks. This scenario allowed investigation of the
impact of lifetime on the exploration strategies of the agents generated. Intuitively, in the case of
a long lifetime, the agent has more opportunity to search for higher-valued goals where shorter
lifetimes would necessitate greedier identification of goals. This was tested by placing goals of
increasing value at farther distances from the start state.

As indicated by the results, the trained agent demonstrates a learned preference for goals based
on the proximity and lifetimeT provided. The results indicate the agent is able to learn a priority for
farther goals when there is more time to discover and return to the higher-valued goal. Similarly,
the agent learns to focus on goals closer to the start state when there is a higher restriction on T
or when the agent should prioritize the goal states based on time remaining. The agent exploits
its policy to find the highest value goal while there is time, then switches to the lower value state
when there is only time for these path lengths. This indicates the agent is able to exploit different
experiential knowledge while also identifying when to switch between exploration or learned
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behaviors. Based on the two scenarios, the results demonstrate the method having the means to
learn how to switch between learning and exploiting learned models. This demonstrates “learning
to learn” and an ability to minimize the cost of behavior.

4.1.4 Additional Relevant Results. For further examples of relevant results, please refer to the
work of Fuchs et al. [41].

4.2 Theory of Mind

4.2.1 Relevant Survey(s). For relevant survey papers and related topics, please refer to other
works [17, 48].

4.2.2 Principles and Definitions. ToM is what gives humans the capacity for reasoning about
the mental states such as beliefs and desires for other agents in their environment [13, 40, 115, 155].
In most, if not all, aspects of daily life, humans rely on and utilize their ability to estimate the men-
tal state of others. One can imagine numerous scenarios they might encounter daily where they
interact with someone while relying on this type of reasoning. Something as simple as trying to
anticipate on which side to pass another pedestrian requires this technique. It is also easy to imag-
ine a more complex scenario, such as poker. Players must reason about both the hand likelihoods
as well as the mental state of their opponents to ensure a higher chance of success. In poker, play-
ers can utilize methods of deception in an attempt to disguise their true mental state and gain an
advantage. As a result, players need to reason about the mental states of their opponents to guide
their playing strategy.

ToM relies on multiple aspects of perception. A person will utilize the non-verbal cues, contex-
tual clues, and other stimuli to form a picture of the world from the perspective of another. ToM
is what allows you to imagine yourself as someone else to model the likely next steps. Such a skill
allows humans to perform better both as individuals and as part of a team. As with the walking
and poker examples, one could also imagine numerous scenarios where people work together to
accomplish a goal. People working together will of course utilize verbal and other forms of com-
munication, but there is also a significant reliance on each member’s ability to use a deeper un-
derstanding of the observed behaviors of their collaborators. Without this ability, we could expect
that every aspect of these interactions would require explicit and comprehensive communication
regarding all aspects of the interaction.

The representation of others is not necessarily exact, but can instead utilize an approximate and
higher-level model [115]. Further, it can be argued that humans bias their models of others based
on their own perspective. It is natural to expect a person’s past experiences to impact their model
of another person’s perspective. Given a system to model the perspective of others, the natural
extension is generating recursive relationships between them [155]. For instance, modeling the
mental state of others can be extended to model the other person’s model of one’s self. This means
a person can generate a model of how they are perceived from another person’s perspective. As
noted by Freire et al. [40], several notable approaches exist to address the problem of ToM. These
include methods relying on RL, neural networks, policy reconstruction, and so forth.

4.2.3 Applications and Recent Results. One aspect of ToM is predicting the behavior of others so
we can act accordingly. The work presented in Wang et al. [156] demonstrates a use case in which
an RL-based learner predicts movements of another agent to support rendezvous in a multi-agent
environment. This is accomplished by generating a model for motion prediction that supports a
Hierarchical Predictive Planning (HPP) module.

Formally, the problem is defined as a Decentralized Partially Observable Markov Deci-

sion Process (Dec-POMDP)M = 〈n,S,O,A1, ...,n ,T ,R,γ 〉, where n is the number of agents, S
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denotes the set of states, and O = [O1, . . . ,On] is the joint observation space (Oi is agent i’s obser-
vations). The joint action spaceA1, ...,n is the Cartesian product of the agent action spacesAi for
agents i ∈ {1, . . . ,n}, which define the actions available to the agents. The transitions are defined
by the function T : S × A1, ...,n × S → [0, 1], which models the probability of transitioning be-
tween states given a joint action a1, ...,n . R is the reward function and maps states and actions to a
reward r ∈ R. As defined in RL, γ is the discount factor for the learning process. The assumption
in Dec-POMDPs is that agents receive noisy observations of the environment, so the true state si

is unknown and is instead represented by the observation Oi . Consequently, the behavior relies
on the estimated current state to identify a desirable action.

The observations provided based on this method represent the beliefs regarding the position and
observations of each agent. This enables generating predictive models that can attempt to reduce
the error in predictions of future state for one’s self or others. The future predictions allow an
estimation of likely positions and observations for future timesteps, and the error of the prediction
can guide the updates to the learning method in the form of a reward. In this case, the reward is the
negative sum of the prediction error, which motivates the agents to improve their ability to predict
the movements of others. The learned predictive model enables estimation of likely rendezvous
locations in this scenario.

Agents are provided observations Oi = [pi , p−i , o, g], where pi and p−i refer to the agent posi-
tions, o are the sensor observations, and g is the agent’s goal. The agents learn a predictive model
of motion via a self-supervision algorithm. The systems are tasked with learning two models: self-

prediction(fi ) and other-prediction(f−i ). In this context, fi and f−i refer to self and other dynamics
models, respectively. Note that these models are the key point where ToM is used in this example
as they enable modeling and prediction of others. These models are learned to generate a self-
prediction of position Δpt+1

i and observation Δot+1
i , using a time window of past position that

covers the previous h steps: (
Δpt+1

i ,Δot+1
i

)
= fi

(
pt−h:t

i , ot−h:t
i , g

)
. (19)

Similarly, a model for other-prediction (i.e., other agent prediction) is defined as(
Δpt+1
−i ,Δot+1

i

)
= f−i

(
pt−h:t
−i , ot−h:t

i , g
)
. (20)

It is noted that the models do not depend on actions, but instead utilize observations of po-
sitions and pose conditioned on goals, which prevents needing to know the action space of
others.

Given the predictive models fi and f−i , a decentralized policy Πi is generated via the Cross-
Entropy Method (CEM) to convert goal evaluations into belief updates over potential rendezvous
points. The demonstrated intuition behind this approach is that each agent is simulating a central-
ized agent that fixes the goal of all agents, which are used to precondition the motion predicted
by fi and f−i . These predictions are performed in a rollout ofT timesteps into the future to predict
the pose of agents. Based on the rollouts, the predicted goals are scored according to

R (p1, ...,n ) =
⎧⎪⎨⎪⎩

0, |pj − pμ | < d, ∀j ∈ 1, . . . ,n∑
j,k�j −|pk − pj |, otherwise

(21)

where pμ =
1
n

∑
k ∈1, ...,n pk and d is a precision parameter. This emphasizes accuracy of predicted

future states and smaller distances between agents at rendezvous points. Based on the predicted
goal values, goal states are sampled via a normal distribution and the estimation process continues
to favor goals that bring the agents closer together. This process generates the policy Πi , which is
used to complete the rendezvous without centralized control. With the preceding approach, a ToM
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method is demonstrated utilizing the first level of ToM reasoning to predict likely agent behavior
based on past observations and current circumstances.

The algorithm’s capabilities are demonstrated in simulated and real-world environments. Simu-
lated environments range in complexity starting with no obstacles and transition to environments
with multiple obstacles. Similarly, the physical environments vary in obstacle complexity, type,
and layout. The approach was tested against learned, decentralized, planning-based, and central-
ized baselines. For the learned baseline, the popular MADDPG algorithm is used. Planning was
performed using the RRT planning system. For the centralized system, the midpoint, other agent’s
position, and random point are used. As is clear from the results, the proposed approach performs
strongly compared against the baselines. This demonstrates the agents are able to perform the
rendezvous without the need for centralized control. In the case of the real-world environments,
we can see a similar effectiveness of the proposed approach. The results indicate that the approach
is able to translate from simulated environments into the real world.

4.2.4 Additional Relevant Results. For further examples of relevant results, please refer to the
work of Fuchs et al. [41].

4.3 Simulating Human Knowledge of World for Learners

4.3.1 Relevant Survey(s). For relevant survey papers and related topics, please refer to the work
of Fuchs et al. [148].

4.3.2 Principles and Definitions. The topics in this section do not represent a comprehensive
list, but instead serve to illustrate a type of learning that relies on a level of world comprehension
to accomplish the learning task. In this case, learning agents are provided models allowing them
to understand a feature of the environment instead of requiring the agent to learn these features.
For example, humans demonstrate a capacity for modeling the fundamental characteristics of an
environment such as physics and compositional structure (e.g., Solidity [148]). With such an under-
standing, the components of a scenario can be considered when learning or utilizing a skill. Such
a behavior is demonstrated in multiple aspects of daily life. Something as simple as understanding
that gravity allows a person to pour water into a glass is something we take for granted. Compre-
hension of these aspects of the world enables a rich set of behavior. For artificial systems, such a
comprehension is often not provided or demonstrated. To overcome this, researchers have inves-
tigated methods in which features such as physical, compositional, and hierarchical are provided
as a model for simulation or planning.

Physics Models. Following the assumption that humans possess an internal model or understand-
ing of aspects of physics (e.g., pushing an object over the edge of a table causes it to fall), digital
systems can be generated to replicate these behaviors for modeling and simulation. Engines such as
Unity or MuJoCo [146] demonstrate motion of objects in physical environments and can provide re-
alism to object motion for observations made by artificial agents. These models of system behavior
provide an agent with an internal estimator for world dynamics to support prediction and planning
[6, 107, 108]. This lets a learner generate predicted future states for reasoning and planning.

Planners. Similar to a physics engine, the components and dynamics of a system can be mod-
eled by describing the objects in the environment and how they can interact, be utilized, or be
modified. This allows for constraints specified for states that must be met so an action is available
for execution. The combination of the environment composition and the available actions allows
for planning. Planning is utilized to convert the system state from the initial configuration to a
goal state through a sequence of actions. A commonly used method for representation is via Plan-

ning Domain Definition Language (PDDL) [3]. An environment specified in PDDL can then
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be analyzed by a solution system to identify a desirable sequence of actions for the specified goal.
These solutions are generated to utilize the world model and the defined constraints. This enables
identification of viable plans without the need for a learning process such as RL. However, policy
generation via RL with planning-based trajectories can be performed [171].

4.3.3 Applications and Recent Results. To demonstrate the use of a modeling system to enable
deeper understanding, we will discuss the work of Zhi-Xuan et al. [171], which integrates PDDL
into the model for planning based on different likely goals or trajectories. The inclusion of a plan-
ning system was intended to account for suboptimal or failed plans and incorporate them into
estimates of future outcomes. Further, this approach was desired as a method accounting for the
difficulty of the planning phase itself. In [171], it’s noted how many methods attempting to esti-
mate goals fail to consider the difficulty of the planning portion of the process. Additionally, how
most methods require the assumption of optimal behavior or Boltzmann-rational action noise. The
assumption of optimality for all goals would therefore require computation of all goals in advance,
which is intractable. In the proposed approach, the integration of a planning system is used to
represent a boundedly rational agent, where the bounds provide a resource limitation on plan-
ning and plan execution. This model provides a mechanism for Bayesian inference of plans/goals,
even those with suboptimal solutions, requiring backtracking, or irreversible failure. The limita-
tion forces a constraint on the time or resources available to make a decision, which forces the
agent at times to generate only a partial plan up to the level afforded by the constraints.

As noted earlier, the proposed approach represents the states, observations, and goals using
PDDL and a variant supporting stochastic transitions named Probabilistic PDDL. This is accom-
plished by representing states and goals via predicate-based facts, relations, and numeric expres-
sions in PDDL format. This allows for modeling of world state and actions, which are available
when the provided preconditions are satisfied (current state, tool availability, etc.). The combina-
tion of predicates (e.g., relations like “on” or “at”) and fluents (e.g., fuel level) allows the planning
system to identify system state and available resources to generate a chain of actions and outcomes
leading to a goal state. The actions result in a change in predicates and fluents, which signify the
transition between world and system states. For a simple example, consider stacking blocks. A
block that is covered by another would not be available for stacking, so the predicate’s constraint
would not be met for this block. However, uncovered or top-most blocks would be available, so one
from this set would be available for selection for movement. With this representation, the observer
has a prior over goals P (д) specified via a probabilistic program over PDDL goal specifications.

To represent bounded rationality, a budget is defined via:

η ∼ NEGATIVE-BINOMIAL(r ,q), (22)

where r denotes the maximum failure count and q denotes the continuation probability. Therefore,
η sets an upper bound on the solution search. If the bound is reached, the agent executes a
partial plan leading to the most suitable state reachable from the found plans. This allows the
agent to find the best plan they can given the limited resources available. Given the proposed
approach, it is noted this model supports any planner capable of producing partial plans. For the
given scenario, agents are operating in a gridworld environment and utilize a variant of the A∗

algorithm [54] that makes search stochastic.
To test the proposed Sequential Inverse Plan Search (SIPS) approach, several environments

were utilized with goal set G and state space S :

• Taxi (|G | = 3, |S | = 125): A taxi has to transport a passenger from one location to another in
a gridworld.
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• Doors, keys, and Gems (|G | = 3, |S | ∼ 105): An agent must navigate a maze with doors, keys,
and gems.
• Block words (|G | = 5, |S | ∼ 105): Goals correspond to block towers that spell one of a set of

five English words.
• Intrusion detection (|G | = 20, |S | ∼ 1030): An agent might perform a variety of attacks on a

set of servers (20 possible goals corresponding to a set of attacks on up to 10 servers).

The approach is tested against a Bayesian Inverse Reinforcement Learning (BIRL) model gen-
erated by value iteration. This allows for comparison against an approach based on RL solutions.
As a demonstration of effectiveness, the performance of SIPS and BIRL were compared to human
performance in goal prediction. The results indicate a strong match between the SIPS model and
the demonstrated human performance. These results were generated by collecting human goal
inferences on 10 trajectories with six suboptimal or failed, for N = 8 subjects. Human inferences
were collected every six timesteps. For evaluation of accuracy and speed, tests included a dataset of
optimal and non-optimal trajectories. The optimal trajectories were obtained via A∗, and the non-
optimal trajectories were generated using a replanning agent model with r = 2,q = 0.95,γ = 0.1.
Inference is performed on these datasets with a uniform prior over goals. Based on the tests, results
indicate good performance with 10 particles per goal without the use of rejuvenation moves. In
both test cases, the proposed method demonstrates strong performance. Additionally, the perfor-
mance versus computational cost is quite strong in the majority of cases in comparison with the
baseline BIRL.

4.3.4 Additional Relevant Results. For further examples of relevant results, please refer to the
work of Fuchs et al. [41].

5 BOUNDED RATIONALITY AND COGNITIVE LIMITATIONS

In the following sections, we will discuss methods inspired by the cognitive limitations and charac-
teristics demonstrated in human reasoning. The approaches discussed in Section 5.1 demonstrate
how humans utilize heuristics to enable fast and frugal reasoning as well as more deliberative
systems. This combination of systems enables more efficient use of cognitive resources and has
been demonstrated in numerous studies of human reasoning. Related, we see the use of systems
designed to replicate the cognitive and neurological performance (not necessarily the physical
structure) seen in humans (see Section 5.2). These systems are designed to mimic human perfor-
mance on tasks by replicating how humans use knowledge and memories to make decisions and
perform tasks. Next, in Section 5.3, we discuss techniques inspired by how humans attend to stim-
uli and make associations between observed values. This can relate to human vision (i.e., foveation)
or how humans identify correlations between different items in the same context (e.g., the word
book in a sentence would increase the relevance of the word library in the same sentence). Last, we
will outline concepts relating to bounded rationality in the context of Game Theory in Section 5.4.

5.1 Cognitive Heuristics

5.1.1 Relevant Survey(s). For relevant survey papers and related topics, please refer to the work
of Booch et al. [19].

5.1.2 Principles and Definitions. Bounded rationality describes the notion of humans making
rational choices under the constraints ascribed to cognitive limitations of the decision maker
[12, 124, 135]. These constraints are a reflection of the assumed limitations or deficiencies in
a human’s computational abilities/capacity and knowledge. Similarly, these constraints can
be viewed as respecting a notion of cognitive or computational cost. As a reflection of these
limitations, there is an assumption that humans perform decision making in a manner allowing
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them to find a reasonable approximation of the optimal solution while reducing overall cost
or time. Reasonable could be viewed as a “good enough” or satisficing solution. Finding such
an acceptable result is supported by shortcut techniques (i.e., heuristics) that allow a person to
approximate the collection of alternative solutions by finding a set of satisfactory alternatives.

An additional aspect of bounded rationality is the assumption that humans will sacrifice exact-
ness/optimality of a solution for the sake of efficiency. In this context, efficiency can refer to time
required to a solution, cognitive resources needed, and so forth. In general, this alludes to a sense
of frugality when it comes to the cognitive resources a human is willing to dedicate to a decision
process. In most circumstances, this frugality does not cause issues and allows for sufficient stim-
ulus processing. However, there are examples of where this may cause a significant omission of
perception. For example, humans can be tasked with observing a scene and then asked questions
at the end of the observation pertaining to specific content. Often, there can be items or people hid-
den in plain sight due to the observer being distracted by more attention-grabbing stimuli, which
demonstrates possible errors in the use of cognitive heuristics by the human brain [153].

Dual-System Reasoning. Relating to bounded rationality, there has been extensive interest in
what is referred to as dual-system reasoning or dual-process theory, now extending to topics in
AI [19]. The argument is that humans utilize two systems of reasoning based on the context of
the problem and the limitations of their cognitive systems. The assumption is that the two levels
handle problems at different speeds, fidelity, cognitive cost, and so forth. These distinctions are
based on the belief that humans tend to utilize a lower-cost reasoning system when the penalty
for a suboptimal solution is minor or when the time or cognitive burden of reaching a higher
accuracy solution is too great (see other works [92, 111] for more on cognitive cost). For simplicity,
we follow a common convention and refer to them as System-1 and System-2. For an example of
System-1 reasoning, catching a falling object typically does not leave sufficient time for deeper
reasoning, so we rely on instinctive movements made quickly by System-1. However, System-2
can support deeper reasoning, longer time to a decision, and so forth.

System-1 is commonly assumed to be based on approximations generated via heuristics. These
heuristics provide shortcuts to reasonably accurate solutions. For example, it has been argued that
humans utilize what is known as the availability heuristic, which selects a solution based on the
strongest association between the current situation and memories of potentially similar instances.
This means humans will tend to place higher weight on memories more closely aligned with the
current observations. As such, they will be biased toward solutions with higher likelihood of recall.
This allows humans to use similar past experience to simplify the decision-making process when
using System-1. If the problem is too complex for System-1, then System-2 needs to be utilized for
deeper inspection and the possibility to use/combine multiple underlying processes.

The use of these systems can lead to biases in reasoning and potential incorrect assessments. A
simple example is the Gambler’s Fallacy, which demonstrates how humans tend to believe that a
sequence of flips from a fair coin should be self-correcting [69, 147]. In other words, when the coin
is flipped multiple times, a sequence of identical outcomes is considered less and less likely as the
length of the sequence grows. This misconception leads the person to feeling that the alternate
outcome should be more likely in the next instance. As is apparent from the independence of the
samples, this is in fact incorrect reasoning. Probability theory dictates that the outcomes of each
toss should have no effect on the next toss.

Humans demonstrate additional forms of heuristic-based and biased reasoning. The following
are some additional examples [38]:

• Satisficing: Use a sufficient option rather than the optimal one.
• Affect: Make a decision based on intuition or “gut feeling.”
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• Availability: Estimate the likelihood of a future event based on the strength of recall for
similar past occurrences.
• Representation: Assume X is the same as Y when you notice X is similar to Y in some way(s).
• All or nothing: Simplify decisions by treating remote probabilities as if they were not even

possibilities.

These heuristics/biases demonstrate systems that can generate correct solutions in many cases,
but can also lead to misconceptions or ignored information. As a result, it stands to reason that
methods hoping to model the behavior and reasoning of humans will need to take these potential
inaccuracies into account.

5.1.3 Applications and Recent Results. Lieder et al. [85], the proposed approach demonstrates
an application of the dual-process concept of human reasoning and use of heuristics in an RL
paradigm demonstrating multi-alternative risky choice in the MouseLab scenario (widely used
to study decision strategies). In this scenario, the approach demonstrates the emergence of two
known heuristics: Take-the-Best (TTB) (chooses alternative favored by the most predictive at-
tribute and ignores others) and random choice. It is noted that these are resource-rational strategies
for low-stakes decisions with high and low dispersion of their outcome probabilities, respectively.
Further, how the TTB heuristic is commonly used by humans when under time pressure and one
outcome is much more likely than others. Similarly, [85] demonstrates: how humans tend to ac-
cept random selection when stakes are low in low-dispersion cases. The bounded optimal decision
process is represented as a meta-level MDP by considering the cost of computing a solution that
impacts the utility of a decision or action. The actions are treated as costly computations, necessi-
tating the ability to make decisions with efficiency in mind. This need for efficiency follows those
seen in the justification of the representation and use of heuristics.

An augmentation to the MDP considered in this research is the meta-level MDP. In this case,
actions for the meta-level MDP are cognitive operations C performed in belief states bt ∈ B. Ad-
ditionally, the meta-level MDP has a transition functionTmeta and reward function rmeta ∈ Rmeta .
The operations in C include an operator⊥ that terminates deliberation and subsequently translates
the current belief into an action. The determination to end deliberation and select an action can be
seen as a representation of how humans select System-1 or System-2 reasoning, which then results
in an outcome from the selected system. The reward rmeta combines the cognitive cost c ∈ C with
the expected immediate reward the agent expects to receive once deliberation terminates and an
action is taken. In the case of a computation, the reward is defined as rmeta (bt , c ) = − cost(c ) for

c ∈ C; otherwise, rmeta (bt ,⊥) = argmaxa b
(μ )
t (a), where b

(μ )
t (a) is the expected reward of action

a according to belief bt .
The MouseLab scenario provides a testbed in which agents can improve the likelihood of suc-

cessful decisions by performing additional information acquisitions. Although the acquisition im-
proves the decision, it also incurs a cost. Therefore, the agent should minimize the occurrence of
cognitive costs while maximizing the subsequent game outcome. This promotes a trade-off of deci-
sion quality and decision time, mimicking the similar processes witnessed in human cognition. As
noted in the results, the proposed method rediscovered TTB, WADD (Weight-Additive Strategy),
and then random choice strategy. The additional strategy, WADD, is performed by computing the
expected values of all gambles using all possible payoffs.

There were three noted outcomes regarding the predictions and the pattern that justify use of
heuristics and match the observation of study participants (200 participants on Amazon Mechani-
cal Turk). First, the model predicted fast-and-frugal heuristics should be prioritized/utilized more
frequently in high-dispersion trials (high dispersion means an outcome significantly more likely
than the others, and fast-and-frugal heuristics ignore all outcomes except the most probable).
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Second, the model indicates the utility of simple heuristics, primarily when the stakes are low.
Third, the model indicates the benefit of increased time and effort for high-stake scenarios to
receive the highest possible payoff.

5.1.4 Additional Relevant Results. For further examples of relevant results, please refer to the
work of Fuchs et al. [42].

5.2 Cognitively/Biologically Plausible Representations

5.2.1 Relevant Survey(s). For relevant survey papers and related topics, please refer to the work
of Kotseruba and Tsotsos [78].

5.2.2 Principles and Definitions. With the goal of achieving a general AI (i.e., reaching
human-level intelligence [86]), there have been numerous approaches inspired by the cognitive
mechanisms enabling the intelligence observed in humans. Russell and Norvig [125], several
approaches are noted regarding how reaching human-level general intelligence might be possible.
One noted method relates to the design and justification of cognitive architectures. For cognitive
architectures, the goal is not always to achieve a perfect analog of the human brain and its
neurological function; instead, a common goal is to generate a system capable of demonstrating
the same kinds of abilities and deficiencies seen in human cognition, reasoning, intuition, and so
forth (e.g., perception, memory, attention) [34, 46, 72, 78, 145]. Under these circumstances, the
goal is often the creation of a model of behavior that fits the cognitive/neurological dynamics of
the human brain [7, 11, 78, 123, 137, 140, 149, 159].

As noted in Section 5.1.2, it is generally accepted that humans reason with systems operating
at different levels of fidelity. Humans can make faster and cognitively frugal decisions or utilize
slower and more cognitively burdensome resources. As such, research has been dedicated to
the creation of systems demonstrating these characteristics (and beyond) [78]. These systems
demonstrate an ability to learn behavior as we have seen in previous sections (e.g., RL), but
the distinction in this case is the emphasis on replicating the cognitive performance of humans.
This distinction motivated us to place a higher emphasis on the cognitive and biologically
plausible mechanisms of this portion of the article. Further, there have been studies that show
these representations can provide the best-performing (and likely best-fitting) approximations to
human cognitive performance [138]. For example, cognitive architectures utilize memory systems
to replicate how humans retain information and utilize that information when making decisions.
As a result, we see this section as more suitable in a cognitive limitations and biases context.

World Representation: Symbolic, Emergent, and Hybrid. To support reasoning and behavior, the
system needs a method for representing the world. For cognitive architectures, there are three
main categories for the underlying representations: symbolic, emergent, and hybrid. As the name
would suggest, symbolic systems use symbols to represent concepts or knowledge. Given the sym-
bols, the system can manipulate them using a given set of instructions provided through if-then
rules or similar means. As can be expected, a symbolic representation allows for accurate plan-
ning and reasoning, but the potential downside being this approach is brittle and does not adapt
to changes in the environment. Emergent systems operate similar to what is seen in Artificial Neu-
ral Network (ANN) systems. Information is processed by the system, and associations are made
through a learning process. This of course increases the system’s responsiveness to changes in an
environment, but can reduce the transparency or the ease of interpreting the system’s behavior.
To utilize the advantages of both systems, with the hope of overcoming the shortcomings, there
are hybrid systems combining the symbolic and emergent approaches.
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Learning Methods. Cognitive architecture can perform learning in several ways, including
declarative, procedural, associative, and so forth [78]. In the declarative case, the system is pro-
vided a collection of facts about the world as well as relationships between them. For instance,
many systems, such as Adaptive Character of Thought–Rational (ACT-R), SAL, CHREST, or
CLARION, utilize chunking mechanisms to declare new knowledge items. For the procedural case,
the system learns skills gradually through repetition, which can be accomplished through the ac-
cumulation of examples of successful execution of a task or problem. More closely aligned to RL,
the associative case is based on observations of rewards or punishments.

Memory. Architectures can be supported by different memory mechanisms depending on the
type of capabilities being replicated. When performing a task, the memory utilized to temporarily
store information related to the task at hand is referred to as working memory [8]. This memory is
updated rapidly as the state of the world changes and actions are taken. Further, there is commonly
an assumption regarding the capacity limitations of working memory for humans. In addition to
working memory, other systems provided a means to accomplish long-term memory storage. This
can support storage of procedural memory to define basic skills or behavior or declarative mem-
ory for knowledge. This allows for the storage of innate skills as well as accumulated knowledge.
Additionally, some systems are defined with a hybridization of long- and short-term memory, re-
ferred to as global memory. This results in all knowledge and memories being represented by the
same system.

5.2.3 Applications and Recent Results. The preceding characteristics are broad aspects covering
different approaches for cognitive architectures. For a specific example, we present a recent result
based on the ACT-R architecture. The approach in [28] presents a cybersecurity game designed
to demonstrate cognitive biases of cyberattackers. This displays how humans are susceptible to
fallacies in reasoning which result in suboptimal and biased behavior. The approach demonstrates
how the models used replicate the biases motivating human behavior patterns in system selection
and the choice of whether to abandon a system and forfeit the previous effort on the current
system.

The proposed approach used an Instance-Based Learning (IBL) model using the ACT-R archi-
tecture. ACT-R is a theory of cognition that models how humans recall “chunks” of information
from memory and problems by splitting them into sub-goals [159]. Knowledge is applied from
working memory as needed to find a pattern of behavior meeting the goal. This model utilizes
techniques designed to mimic human memory retrieval, pattern matching, and decision making.
IBL uses ACT-R’s blending mechanism, interpolating across past experiences to estimate an out-
come. The interpolation is weighted by the contextual similarity between the present observation
or instance and the past experiences. This provides an estimated expected outcome based on the
consensus value V that minimizes the dissimilarity (measured by Sim) from the values contained
in instance i defined as

argmin
V

∑
i

Pi × (1 − Sim(V ,Vi ))2, (23)

where i refers to an instance stored as a memory chunk representing a past state-action-outcome
observation and Pi refers to the retrieval probability (based on IBL-based measures). In the case
where Sim is interpreted as the error, then Equation (23) generates a least-squared error method
[81]. In other words, this finds an estimated value V that best fits the past observations weighted
by their strength of recall. These estimated values are used to make a determination regarding
which action/production should be executed. The measure or threshold that determines whether
an action is available for execution limits the set of possible actions further. This means that the
value is based on a representation that considers how strongly a memory is remembered, how
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similar the memory is to the current context, and the value observed by the choice made in that
past observation. The strength of a memory represented by the retrieval probability utilizes a
Boltzmann softmax equation

Pi =
eAi /τ∑
j e

Aj /τ
, (24)

where τ defines the temperature parameter, which scales probabilities defined by the activation
function. The activation function provides a measure of how strongly a memory is remembered
and associated with the current context. This strength is based on elapsed time since the observa-
tion was made. The activation for a chunk or instance i is defined as

Ai = ln

n∑
j=1

t−d
j +MP ×

∑
k

Sim(νk , ck ) + ϵi , (25)

where tj refers to the elapsed time since the jth occurrence of instance i , d is the decay rate (com-
monly set to 0.5), ck refer to the context elements, νk refer to the instance in memory, and MP is
the mismatch penalty (in this case, set to the default of 1.0). The first term in Equation (25) provides
the measure of strength based on the time elapsed, and the second term is another similarity term
similar to what is seen in Equation (23). MP is a weight term parameter that scales the similarity
scores in the sum, and the last term, ϵi , is a variance parameter providing stochasticity in the ac-
tivation function. Similar to Equation (23), the Sim measure ensures the memories considered are
a suitable match to the current context to prevent consideration of too dissimilar of instances. In
more general terms, the preceding equations define a method for determining which memories
are considered, how strongly they impact the estimate based on past observations, and how the
resulting behavior occurs based on this historically weighted knowledge.

The agents are trained to perform the cyberattacker role. As such, the agents are provided ob-
servation instances that include the probability of a system being monitored, the reward for suc-
cessful infiltration of a system, the penalty for detection, and a warning signal denoting whether
a system is being monitored. The model is then primed with seven instances: five simulating a
practice round and two representing knowledge of occurrences (absent and success, absent and
uncertainty). This provides the system with an initial set of experience to allow for initialization of
learning behavior without relying on random decisions. The model then is trained for four rounds
of 25 trials.

The model was tested in comparison to human performance. Human players were studied to
generate a baseline of behavior and identify any demonstrated biases in outcomes. Based on the
experiments, the results show the human players demonstrating preferences or likelihoods of at-
tack for different systems. They also demonstrated the cognitive systems performing equivalent
preferences/probabilities.

5.2.4 Additional Relevant Results. For further examples of relevant results, please refer to the
work of Fuchs et al. [42].

5.3 Attention

5.3.1 Relevant Survey(s). For relevant survey papers and related topics, please refer to other
works [26, 48, 102, 103].

5.3.2 Principles and Definitions. Humans and other living beings do not process all the available
perceptual information available to them. Instead, they utilize a cognitive and behavioral system
that allows them to reduce the complexity of perception through an objective or subjective selec-
tiveness with respect to information. This selectivity or bias is referred to as attention [26]. A basic
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interpretation justifying the biological need for attention would be the fact that our environment
provides more stimuli than we can reasonably process fast enough. In this case, “fast enough” is
with respect to the actions or behaviors necessary for survival.

When facing a critical situation, timeliness can be crucial; otherwise, an overload of stimuli
could cause a costly delay (e.g., moving out of the path of an oncoming vehicle). As such, our
brains allow us to reduce, or even ignore, information perceived to reduce the cognitive burden.
Further, attention allows us to prioritize the information and assign more or less significance based
on learned/perceived importance. In the oncoming vehicle example, it is likely not important to
note the color of a building in the distance while estimating the speed and trajectory of the vehicle.

From a computational perspective, attention initially was studied primarily in the context of
vision [26] where images were studied under the task of identifying salient regions. Artificial sys-
tems were developed to generate maps that would filter the input for processing. With the growing
popularity of Deep Learning, attention techniques were transitioned to neural network paradigms.
Attention is used to modify the flow or processing of information in the network(s). The task of
learning attention allows the systems to learn how to ignore stimuli, similar to the natural analogs
mentioned. This allows systems to contextually alter the significance of information to better suit
the underlying task. The attention mechanisms utilized in Deep Learning can be categorized as
follows.

Soft Attention. Soft attention uses softmax functions to weight the input elements with a weight
value in (0, 1). This allows the system to learn and utilize an interdependence between different
input parameters. Being based on softmax functions, soft attention provides a differentiable mech-
anism for attention. The soft attention scales the relative intensity of the input parameters.

Hard Attention. Hard attention, as the name suggests, is the complement of soft attention. It
utilizes weights in {0, 1} to generate a mask to signify whether information is used or entirely ig-
nored. As a result, the hard attention mechanism is non-differentiable. This necessitates a learning
process for determining where to assign the weight values. In this case, there is a distinct exclusion
of regions of the input domain while the remainder is observed at normal scale.

Self-Attention. In self-attention, the system is learning an interdependence between sequential
input elements. This allows a system to identify and utilize a notion of relation between items in the
same input sequence. As a result, self-attention can be useful in understanding deeper relationships
between items in the input rather than a holistic view of the input. For example, Vaswani et al. [151]
introduce the transformer network, which performs self-attention using representations of queries
Q , keys K , and values V :

Attention(Q,K ,V ) = softmax

(
QKT

√
dk

)
V , (26)

where dk refers to the dimension. In this case, the attention mechanism learns associations be-
tween different components of the input and their corresponding strengths via a representation as
keys K and queries Q . This allows the model to learn a relationship between the current task, the
input data, and the current query. The associations are learned as weight matrices, which scale the
input values and give the weighted strength of association. This generates a weighted association
between elements of the input and forms a compatibility measure of the values.

5.3.3 Applications and Recent Results. The approach presented in [105] demonstrates the use
of attention with an RL agent to control simulated traffic lanes. The motivation for the use of
attention provided references the fact that traditional systems would require retraining for a new
lane configuration. The use of attention allows for more flexible representations and can handle
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different numbers of roads/lanes. The proposed algorithm is tested against several baselines and
demonstrates strong performance in traffic regulation.

For a road with intersection m ∈ M, define the traffic characteristics st
l

of lane l ∈ L at time t ,

where L denotes the set of all approaching lanes to the intersection. Additionally, Lin and Lout

refer to entering and exiting lanes, respectively, and so L = Lin ⋃Lout . Further, define traffic

movement νl as a set that maps traffic of lane l ∈ Lin to possible leaving lanes l ′ ∈ Lout . In this
context, the set of valid traffic movement p ∈ P during a green light are called a phase. Define
participating lanes Lp as the set of lanes that have appeared in at least one traffic movement of
phase p. Note that each phase has a minimum time, and following that time, a decision about the
next phase should be made.

The definition of the RL problem requires translating the domain into states, actions, and re-
wards. They are modeled utilizing the traffic characteristic st

l
as the state at time t . For actions,

this is represented by the assigned active phase at time t + 1. Additionally, two attention mecha-
nisms to define the policy π t to select the next action at time t (i.e., the next phase). Specifically,
the first attention mechanism are used defines weights to be used in considering the states of the
corresponding lanes. This attention step, modeled in Equation (27), generates a vector of weights
wt

p � {wt
l
, l ∈ Lp }, where each weight corresponds to a specific lane relevant for phase p (i.e.,

l ∈ Lp ). The weights depend on a function (r t
p ) of the current states (st ) of these lanes, and the

average of the function across all relevant lanes, qt
p . Intuitively, this attention allows focusing the

mechanism on lanes depending on their closeness to the “average” (relevant) lane.

wt
p = state-attention(r t

p ,q
t
p ),∀p ∈ P (27)

The weights are used to compute a representation of each phase p, as zt
p =

∑
l ∈Lp

wt
l
× д(st

l
). The

representations of the possible phases p ∈ P are then fed into an LSTM to capture the sequential
dependence between phases. The output of the LSTM (ot ) is used, together with the representation
of the possible phases zt

p , p ∈ P for the second attention mechanism, modeled as in Equation (28).

Specifically, this provides the probability π t � {π t
p ,p ∈ P} of switching to any of the phases of

the next timestep.

π t = action-attention({zt
p ,p ∈ P},ot ) (28)

The reward is based on the negative of the intersection pressure defined in the work of Wei et al.
[158]. The intersection pressure relates the lane capacity and the lane flow:

w (l ,m) =
νl

νmax
l

− νm

νmax
m

(29)

for incoming and outgoing lanes l andm, where νmax
l

refers to the maximum lane capacity for lane
l . Note that this is an indication of the incoming and outgoing flow of traffic. Based on this para-
digm, the RL agent learns a policy π that suggests a phase for the next timestep for the current state
st . This policy is learned based on the algorithm illustrated earlier and uses the cumulative rewards
for policy updates. This provides the means to map states to actions in the AttendLight algorithm.

The AttendLight algorithm was tested using three-way and four-way intersections with varying
numbers of lanes, phases, and flow rates. The states st

l
represent chunks c ∈ {1, 2, 3} of the road

leading up to the intersection for lane l and are 100-m segments of a 300-m length of the lane. Each
lane l has a corresponding number of vehicles α t

l,c
in a chunk c at time t . Further, lanes also may

contain waiting vehicles and the quantity of waiting is represented by β t
l
. Therefore, the traffic

characteristic for a lane is defined as st
l
� [α t

l,1
,α t

l,2
,α t

l,3
, β t

l
]. The proposed algorithm is tested

against a number of reference baselines in the literature, showing a significant improvement in
terms of lower Average Travel Time (ATT).
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5.3.4 Additional Relevant Results. For further examples of relevant results, please refer to the
work of Fuchs et al. [42].

5.4 Game Theory

5.4.1 Relevant Survey(s). For relevant survey papers and related topics, please refer to other
works [97, 127]. Note that since Game Theory is a widely investigated and well-known topic,
in the following we only sketch very briefly the key ideas behind this theory. The main reason
for mentioning it in this survey is to place it in the overall context of human behavioral models.
Additionally, we do not mention explicitly applications and results, as the literature is extensive
and pinpointing only a (few) specific example(s) would be not that useful for the readers.

5.4.2 Principles and Definitions. Extending and utilizing the notion of rational behavior, Game
Theory focuses on the interdependence of choices when the circumstances involve a collection
of individuals [97]. In Game Theory, the decision maker, often referred to as the player, is oper-
ating with an assumed feedback signal. The feedback (payoff) provides a value associated with
how desirable or costly an outcome might be for the player. Based on the payoff and anticipated
behavior of other players, a player can attempt to optimize their choice (action) to best ensure an
acceptable outcome. In this case, rather than attempting to learn a policy of behavior, the models
of utility define the constraints of an optimization problem. Based on these constraints, the players
of a game can find a suitable solution that follows the assumptions of rationality.

More formally, a player i will have a set of available actions A from which they can select an
action ai . The optimality of an action is dependent on multiple factors. First, the player has a payoff
function u : A → R that will map an action to a value. This mapping depends on the definition
of the problem and the interdependence of actions to values between the players. The values u (a)
given byu allow the player to generate a preferential ordering of actions, which indicates a player’s
need to identify desirable actions. Therefore, if the preferences of the player satisfy the following,
then that player is considered rational under certainty [12]:

(1) (Completeness) a1 � a2 or a2 � a1;
(2) (Transitivity) If a1 � a2 and a2 � a3, then a1 � a3.

The payoff values and the assumptions relating to rationality can then be utilized to identify an ap-
propriate action or behavioral policy. In Game Theory, the behavioral policy of a player is referred
to as the player’s strategy or strategy profile.

The strategy of a player is a distribution over actions indicating the likelihood of selecting an
action. A strategy that places the mass on more than one action would be considered a mixed
strategy, which indicates that a player does not select a particular action 100% of the time in a
given scenario (i.e., a pure strategy).

The identification of a strategy is the process of finding an equilibrium. In a Nash equilibrium,
the player strategies are such that deviation from the current strategy for any player would
be undesirable, as it would lead to another player having the means to take advantage of the
change to achieve a better result. Depending on the game, it is possible to find zero, one, or even
multiple equilibria. In the case of multiple equilibria, it is possible for the payoff for a particular
player to vary between the equilibria, but it remains true that a deviation from the equilibrium
from a single player would be undesirable [97].

Based on the problem definition, the approach for finding an equilibrium often comes down to
an optimization problem. Given a set of N players N = {1, . . . ,N } where each player ν has their
own strategy xν ∈ Xν ⊆ Rnν , each player has an objective function θν (xν ,x−ν ) and constraints
дν

i (xν ,x−ν ) ≤ 0, (i = 1, . . . ,mν ), which depend on their strategy and the strategy of others
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x−ν � (xν ′ )ν ′�ν , an equilibrium in a Nash Game can be found as the solution to the optimization
problem [76]:

minimize
xν

θν (xν ,x−ν )

Pν (x−ν ) subject to дν
i (xν ,x−ν ) ≤ 0, i = 1, . . . ,mν

xν ∈ Xν .

The payoffs and assumption of rationality provide the constraints for an optimization-based
solution method. However, the interdependency of the behaviors, outcomes, and payoffs can
increase the difficulty of finding a suitable solution.

6 UNCERTAINTY AND IRRATIONALITY

In the following sections, we discuss topics relating to the modeling of uncertainty and biases. In
Section 6.1, we discuss the use of quantum representations to accommodate for uncertainty and
support a quantum representation of states. For Section 6.2, we discuss topics focusing on the
resulting biases that come from the use of heuristics and similar shortcuts in reasoning. Further,
these limitations in reasoning generate immediate and long-term effects, motivating studies on
fairness.

6.1 Quantum Representations of Decisions and Irrational Thinking

6.1.1 Relevant Survey(s). For relevant survey papers and related topics, please refer to other
works [4, 32, 67, 90, 95].

6.1.2 Principles and Definitions. It has been argued that traditional probabilistic representations
do not fully represent the reasoning of humans [94] or can require exponentially more complex
representations [90, 95]. Instead, researchers have suggested the use of quantum-based methods
for representing the statistical/probabilistic relationships between knowledge [67]. The argument
is that the superposition-like representation better demonstrates how humans can have varying
beliefs, which might not directly match the assumptions or requirements of probability (e.g., sum-
ming to 1). This allows for a representation in cases where reasoning operates in a state represent-
ing multiple possible outcomes or outcomes representing the same indefinite state. This is also
a proposed method to account for potentially irrational or probability-violating reasoning of hu-
mans [32, 63]. The use of quantum representations also allows for replicating or modeling fallacies
in human reasoning [4]. A common method for this representation is the use of a quantum-based
Bayesian Network. In this case, a similar representation of the Bayesian Network is utilized, but
the dynamics are represented using quantum representations of probabilities.

Quantum Dynamics for Decision Models. As defined in Section 3.1, sequential decision making
can be modeled using an MDP. This representation provides a mechanism for representing the
transition between world states based on a decision or action. Such a representation enables learn-
ing associations between actions and outcomes to build a model of behavior. Busemeyer et al. [21] a
quantum dynamics model is proposed to represent brain processes as a replacement for the classic
MDP model. The quantum representation enables transitioning from a “single path” assumption
to one that represents unknown previous states as a “superposition of states.” The superposition
model allows for modeling interference effects for unobserved paths, which violates the Markov
representation.

As noted by Busemeyer et al. [21], a key distinction in the representations is as follows:

According to the Markov model, for any given realization, the unobserved system
occupies exactly one basis state |j〉 at each moment in time. A sample path of the
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Markov process is a series of jumps from one basis state to another, which moves
like a bouncing particle across time. A different path is randomly sampled for each
realization of the Markov process. According to the quantum model, for any given
realization, the unobserved system does not occupy any particular basis state at each
moment in time. A realization of the quantum process is a fuzzy spread of membership
across the basis states, which moves like a traveling wave across time. Each realization
of the quantum process is identical, producing the same series of states across time. All
of the randomness in the quantum model results from taking a measurement.

Hence, the quantum representation supports the notion of wave interference in the dynamics
representation.

From a modeling standpoint, the main difference between a Markov and a Quantum representa-
tion is therefore the following. In a specific realization of a Markov process, the state at any point
in time is deterministic and can be represented with |P (t )〉 as follows:

|P (t )〉 =
∑
j ∈Ω

w j (t ) · |j〉, (30)

where j denotes the possible states, Ω is the set of possible states, andw j (t ) ∈ {0, 1} is an indicator
variable. Essentially, |P (t )〉 provides the (unique) state of the process at time t for the specific
realization.

On the contrary, in a quantum representation, the specific realization, at any point in time t is
not deterministically in one and only one state, but is in a superposition of all possible states, each
with a given weight. In other words, even for a specific realization the process can be in any of
the possible states, whereas the uncertainty can be only removed by “measuring” the specific state
of the process. Specifically, the state, at time t of the realization, denoted as |ψ (t )〉 is modeled as
follows:

|ψ (t )〉 =
∑

ψj (t ) · |j〉, (31)

whereψj (t ) is a complex number representing the probability amplitude that the process is in the
specific state |j〉 at time t . As in any quantum superposition case, note that the squared magni-
tude of ψ must be unity (i.e., |ψ |2 = 1) to ensure the squared amplitudes produces a probability
distribution over the possible states.

Finally, transitions between states become specific quantum operations over the representation
of the states provided by |ψ (t )〉, which translate the traditional concept of transition probabilities
between states of deterministic Markov processes.

6.1.3 Applications and Recent Results. He and Jiang [55], quantum representations are inves-
tigated in the context of categorization. The use of a quantum model is intended to represent
interference effects observed in categorization and the resulting impact of decision making. The
inclusion of a quantum system allows the modeling of a state that represents uncertainty in the
reasoning process. This models how humans demonstrate hesitance when facing a decision. Two
paradigm conditions were considered in the experiments: categorization decision making (C-D)
and decision alone (D alone). In the C-D condition, participants were shown pictures of faces
varying along two dimensions: face width and lip thickness. Participants were asked to categorize
the face as a “good” (G) guy or a “bad” (B) guy and then make a decision to “attack” (A) or to
“withdraw” (W ). In the D alone condition, the participants were asked to make a decision directly
without categorizing, but the faces shown were the same as in the C-D condition.

Proposed Method. Although categorization happens in the belief representation, it can influence
the action part by producing the interference effect, which can also model the disjunction fallacy
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(i.e., the false judgement that the probabilityP (A∪B) is less than either P (A) or P (B)). Consequently,
the proposed approach utilized a method to predict it. In the given problem space, the initial state
involves six combinations of beliefs and actions:

{|BGAA〉, |BGAU 〉, |BGAW 〉, |BBAA〉, |BBAU 〉, |BBAW 〉}, (32)

where, for example, |BGAA〉 symbolizes a participant categorizing the face as good while still in-
tending to attack. Since participants are assumed to have some potential to be in any of the six
quantum states, the person’s state is a superposition of the six basis states

|ψ 〉 =ψAG · |BGAA〉 +ψU G · |BGAU 〉 +ψW G · |BGAW 〉 (33)

+ψAB · |BBAA〉 +ψU B · |BBAU 〉 +ψW B · |BBAW 〉
with initial state corresponding to an amplitude distribution

ψ (0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψAG

ψU G

ψW G

ψAB

ψU B

ψW B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (34)

where |ψX Y |2 is the probability of observing state |BXAY 〉 initially. As an assumption, the initial
state is treated as equally distributed. In the process of decision making, updated information
regarding a player’s beliefs causes a transition in belief states. The decision maker must convert
this transition in reasoning states into a decision. To convert the observations and measurements
into actions, participants must convert the uncertain state U to either A or W . This represents
when the decision maker transitions from uncertainty due to hesitation to a decision state. In this
case, Pignistic Probability Transformation (PPT) was utilized. This provides the following total
probability of attacking given that the face is categorized as G or B, respectively:

P (A|G ) =
����
����Ψ(A|G ) +

1

2
Ψ(U |G )

����
����
2

, (35)

P (A|B) =
����
����Ψ(A|B) +

1

2
Ψ(U |B)

����
����
2

, (36)

where Ψ(A|X ) is the conditional amplitude (i.e., quantum equivalent of conditional operator) of
attacking given the face is categorized asX ∈ {G,B}. The preceding denotes an even attribution of
the probability of transitioning from the uncertain state to decision. This then provides the means
to calculate the total probability of attacking:

P (A) = P (G )P (A|G ) + P (B)P (A|B)

=
∑

X ∈{G,B }

(
|ψAX |2 + |ψU X |2 + |ψW X |2

)
·
����
����Ψ(A|X ) +

1

2
Ψ(U |X )

����
����
2

. (37)

A similar approach is utilized for P (W ) and in the D alone condition. This allows a model of repre-
senting the state of uncertainty encountered before a decision is made and the process of convert-
ing updated beliefs into an action. Based on this model, the action likelihoods can be represented
and estimated using a quantum modeling approach.

For experiment conditions, the proposed method was tested against prior observations of
human-generated data as well as prior prediction model results. In the data generation process,
26 participants were asked to categorize the face as good guy (G) or bad guy (B) and then make
a decision to attack (A) or to withdraw (W ). The faces roughly fall into two categories: “narrow”
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faces (narrow width and thick lips) or “wide” faces (wide width and thin lips). Participates were
informed that “narrow” faces had a 0.6 probability of belonging to the “bad guy” population. Simi-
larly, participants were informed that “wide” faces had a 0.60 probability of belonging to the “good
guy” population. Rewards were given for choosing attack for B and withdraw forG. In the D alone
condition, the participants were asked to make a decision directly without categorizing, but the
faces shown to participants were the same as those in the C-D condition. Each participant pro-
vided 51 observations for the C-D condition and 17 observations for the D alone condition. The
proposed approach showed a strong alignment with the pattern of behavior observed in the human
participant results.

Performance of the proposed approach with respect to sensitivity analysis was also demon-
strated. The experiment outcomes show how sensitive the results of the method are to a ±5%
change in the original human results. In this test, the method again shows strong performance,
but results indicated a stronger sensitivity to changes in the B case versus theG case. For a plot of
these results, please refer to the original article [55].

6.1.4 Additional Relevant Results. For further examples of relevant results, please refer to the
work of Fuchs et al. [42].

6.2 Biases and Fairness in Representations and Understanding

6.2.1 Relevant Survey(s). For relevant survey papers and related topics, please refer to other
works [19, 29, 29, 45, 73, 84, 89, 104, 124, 141].

6.2.2 Principles and Definitions.

Bias. Humans demonstrate multiple forms and sources of bias. In one case, humans can demon-
strate skewed interpretations of data, probabilities, confidence, and so forth. [84]. This kind of
irrationality and bias is often attributed to the use of cognitive heuristics. It is argued that the
use of heuristics causes humans to often accept coarse analysis and suboptimal solutions. This
demonstrates how humans can violate the traditional notions of rational behavior. Further, the
use of heuristics and other shortcuts can lead to skewed interpretations of information. These bi-
ases and coarse representations can lead to sensitivity regarding the interpretation of rare events,
risk, probability, and more. Related, it has also been shown how humans tend to under-react to
probabilistic information and also fail to follow belief updates modeled by Bayes’ rule [29].

Another aspect of bias can come in the form of inattentiveness, which could be linked to the
bounded computational power of human cognition. Humans also demonstrate a resistance to
changes in views or opinions when facing contradictory information [89]. In fact, it is common
for people to become more deeply convicted in their views rather than convinced they might have
been wrong. Bias can also come in the form of inductive bias introduced in architecture design and
algorithmic choices made by the humans generating algorithms. Both implicitly and explicitly, hu-
mans introduce inductive biases into the artificial systems they are developing. In fact, Goyal and
Bengio [47] note how much of the success of Deep Learning models could be attributed to the
inclusion of inductive bias in these systems. Further, how the use of inductive biases might be a
requirement for the creation of generalized artificial intelligence. In [47], it is noted how biases
allow for assumptions regarding the problem being solved or the interpretation of information,
which makes the system better suited for adaptation to broader datasets.

Probability-Based Models of Behavior and Reasoning. To model deficiencies or biases in under-
standing and reasoning in humans, researchers have investigated Bayesian representations and
related topics. For instance, (Hierarchical) Bayesian models can demonstrate how humans reason
about likelihoods of outcomes/scenarios [29, 30, 119, 144, 148, 172], and how human reasoning
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shows flawed interpretations or skewed scales of importance (high or low). This illustrates how
humans can under-react to probabilities [29, 30] or estimate likelihoods based on observed frequen-
cies. Studies have shown how people tend to select options at a similar frequency to their proba-
bility of good outcome rather than developing a bias to the choice with the highest likelihood of
a good outcome [172]. Similarly, Bayesian models can replicate the performance of human study
participants when tasked with selecting in a multi-arm bandit problem [122]. This type of repre-
sentation of understanding can also be extended to a causal model, which models the cause and
effect relationship between different environment aspects [51]. Causal models are an important
aspect of human reasoning as they allow for predictions and retrospective reasoning.

Fairness. With the use of algorithms, a consideration needs to be made with respect to the
fairness of outcomes. As noted in the work of Lee [82], fairness requires equal or equitable
treatment of everyone based on their performance or needs. As a concept, this is straightforward.
There should be as little (preferably none) bias as possible in the treatment of individuals. We
would prefer the outcome of a human’s decision be fair, so it is natural to desire the same behavior
from an algorithm. Fairness can be a quantity measured with respect to a metric [57], or fairness
can represent a qualitative impression people have about a feature or outcome [49, 82]. These
measures provide an indication of how people perceive the features of an algorithm or its behavior.
The notion of fairness can also be considered with respect to longer timescales and deeper conse-
quences. In the work of Heidari et al. [57], the longer effects of fairness measures and decisions
are weighed to indicate how strongly an approach may impact the behavior of the humans
affected.

6.2.3 Applications and Recent Results. Heidari et al. [57], population-level changes at the macro
scale that are caused by algorithmic decisions and how this relates to fairness are modeled. Using
measures of segregation from sociology and economics, the proposed models quantified these
changes. This allowed measuring different directions of shift in the group-conditional distribution
based on the different models demonstrated. In this context, [57] notes how most notions or mea-
sures of fairness assume a static population. It is argued that this approach fails to account for
long-term welfare and prosperity. Therefore, the proposed measure considers a notion of effort

based on economic literature on Equality of Opportunity. The effort function highlights the idea
that the necessary changes for a desirable outcome often are more difficult for a member of a disad-
vantaged group compared to an advantage counterpart. Based on this concept, effort unfairness is
formulated as the discrepancy in effort required for members in different groups to obtain desired
outcomes.

In the proposed approach, individuals are assumed to imitate an exemplar individual who
demonstrates a more desirable algorithm outcome, which is related to social learning—the assump-
tion being that the observer would believe this imitation offers a higher likelihood of a better out-
come, which suggests an individual would exert effort to attain a replication of the exemplar’s
social model if doing so could result in higher overall utility. To model this dynamic, the approach
uses a group-dependent, data-driven measure of effort, which is inspired by the literature on Equal-
ity of Opportunity. This is noted as the effort it takes individual i to improve their feature k value
from x to x ′. This effort is assumed proportional to the difference between the rank/quantile of x ′

and x in the distribution of feature k in i’s social group. An individual who successfully replicates
the role model obtains a positive utility (reward minus effort).

In this context, the approach utilizes a standard supervised learning setting with training data
set D = {(xi ,yi )}ni=1 of n instances zi = (xi ,yi ), where xi ∈ X specifies the feature vector for
individual i and yi ∈ Y , the ground truth label for him/her. Further, let si refer to the sensitive
feature value (e.g., race, gender, or their intersection) for individual i . To measure the impact of a
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change in label, define benefit function b : X,Y × Y → R that quantifies the benefit of a change
in label from y to ŷ and is assumed a linear function.

To formally define measures of effort, reward, and utility, refer to the following definitions.
For deployed model h and individual characterized by z = (x ,y), let Rh (z, z ′) specify the re-
ward/benefit as a result of characteristic change from z to z ′:

Rh (z, z ′) = b (h(x ′),y ′)α − b (h(x ),y)α , (38)

where α > 0 is a constant specifying the individual’s degree of risk aversion. Again, this demon-
strates a measure that considers the impact on an individual’s outcome when they change a char-
acteristic. For instance, a person could attain a degree or find a new job. Let Eh (z, z ′) specify the
effort required for a qualification change from z to z ′. The overall utility of the individual is then
Uh (z, z ′) = Rh (z, z ′) − Eh (z, z ′) (i.e., utility equals reward minus effort).

Based on the preceding assumptions and definitions, [57] defines several effort-based measures
of unfairness, including the following.

Definition 6.1 (Effort-Reward Unfairness). For a predictive model h, the effort-reward unfairness
is the inequality of the following metric across different groups:

Eq∼P :si=s max
z∈Z
Uh (zi , z). (39)

This provides a measure of the performance of the highest-utility members of a group achieved
by a higher level of effort. The impact of both threshold δ and the models are noted. It is demon-
strated that δ and the model can cause a significant change in outcome and effort level for the
same data.

To measure performance, several techniques from sociology measuring segregation were uti-
lized. First, evenness measures how unevenly the minority group is distributed over areal units.
The evenness value is maximized when all units have equivalent relative numbers of minority and
majority members as the whole population. For a formal definition, the proposed approach used
the Atkinson Index, which measures inequality. The second measure, centralization, is the degree
to which a group is spatially located near the center of an urban area. This can be measured by
comparing the percentage of minority residents living in the central areas of the city. Further, the
approach utilized the Centralization Index, which is defined as∑

i centralmi

m
, (40)

where m is the total minority population. The third measure of segregation, the Absolute Clus-
tering Index, “expresses the average number of [minority] members in nearby [areal units] as a
proportion of the total population in those nearby [areal units].”

To demonstrate the impact of differing measures and concepts of fairness, the primary cases of
interest were that of linear regression. The model was trained by minimizing the mean squared
error while imposing welfare constraints defined in the work of Heidari et al. [56]. The results
demonstrate the impact of the fairness constraints on the three segregation measures defined ear-
lier when females are the minority group considered. It is noted that the expectation would be such
that the constraints would result in reduced segregation in the long run, but the results demon-
strate deviations. Let τ denotes a minimum threshold onU (i.e.,U ≥ τ ) with respect to learning
with the loss function LD . The results show that in the case of small τ values, enforcing fairness
constraints can generate a reduction in the degree of clustering. Conversely, larger values of τ
can generate the opposite effect. Regarding evenness, this measure is relatively unchanged for all
tested values of τ . As noted in [56], the results indicate (1) a label of desirable for some members
of the disadvantaged group motivates those members to remain unchanged, and (2) the positively
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labeled members can serve as role models for other group members and motivate positive changes
in others.

6.2.4 Additional Relevant Results. For further examples of relevant results, please refer to the
work of Fuchs et al. [42].

7 CONCLUSION

In this article, we demonstrated methods focusing on multiple aspects of human behavior and cog-
nition in addition to how humans interact with artificial systems. The types and end uses for these
interactions vary, but a key concept is the ability to learn from or adapt to humans. The pervasive
diffusion of AI systems provides exceptional opportunities to build next-generation autonomous
and adaptive systems in several application areas (which we have described briefly in Section 2).
To gain full advantage of this opportunity, it is of paramount importance that AI systems “learn to
know and anticipate” the behavior of the involved users. This is a cornerstone of HCAI systems
for autonomous and adaptive behaviors, which require embedding practical models of the human
behavior that can be used to interpret users’ actions and anticipate their reactions with respect to
(certain or likely) stimuli. Humans use multiple advanced skills daily to navigate the world and
their interactions with others. Researchers have investigated several topics such as ToM, IRL, AL,
and more in an attempt to capture some of these capabilities and imbue systems with more ad-
vanced capabilities. This enables systems to better understand and operate in the world, including
cases in which there are humans to account for and support, or when systems are expected to op-
erate autonomously. Further, it enables systems to perform tasks more skillfully by replicating the
level of skill demonstrated by humans. In addition to learning from humans, these techniques of-
ten serve to enable richer and more intuitive interactions between humans and artificial systems.
This enables both the interactions as well as the system’s ability to account for the human and
potentially gain further knowledge as a result of the interaction. This approach gives systems a
way in which to account for the cyclical nature of these relationships to improve performance and
learn.

7.1 Relevant Pros and Cons

In this section, we discuss some of the relevant benefits and detractors for the topics presented
in this article. The following details will not be comprehensive, but instead provide preliminary
impressions. These impressions are meant to guide readers in their effort to determine suitable
methods for their own purposes.

7.1.1 Learning Human Behaviors by Experience and Feedback.

• Reinforcement Learning: Pros
– Learns from exploration (i.e., trial and error) based on behavior-related feedback to learn

behavior best fitting the definition of desired behavior.
– Support for discrete and continuous representations of actions and environment.
• Reinforcement Learning: Cons

– Exploration can be inefficient/expensive (i.e., can require large number of training
episodes).

– Learning sensitive to feedback definition (i.e., agent behavior can be unexpected if the
reward is inadequately defined).

• Inverse Reinforcement Learning and Imitation Learning: Pros
– Behavior learned via given examples of desirable behavior.
– For IRL, an estimation of the underlying feedback motivating behavior is generated.
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– For IL, the estimation of the feedback is omitted, reducing the complexity of the learning
method.

• Inverse Reinforcement Learning and Imitation Learning: Cons
– Requires access to examples of behavior and a sufficient-sized dataset to help avoid over-

fitting.
– In IRL, a two-step process (estimating feedback and policy learning) increases the com-

plexity of the learning process.
• Active Learning: Pros

– Access to a teacher for representation of desirable behavior/labels for the learning method.
– Reduction in size of labeled data as the learner is motivated to prioritize input with lower

confidence regarding accuracy of the model (i.e., higher “curiosity” for items of lowest
confidence).

– Reduced exploration complexity via teacher feedback/guidance.
• Active Learning: Con

– Requires access to a reliable teacher and accurate labels.

7.1.2 Belief and Reasoning Approaches.

• Meta-reasoning and Meta-learning: Pros
– Agents learn to map context/task to a suitable model/representation to guide behavior.
– Enables constraints on resource usage to learn when to learn and when to use shortcuts

(e.g., heuristics).
• Meta-reasoning and Meta-learning: Cons

– High complexity of learning (need to learn a mapping between the context and behavior
model as well as learning the behavior model).

– Forgetting can occur as a result of new experiences overcoming previously learned knowl-
edge.

• Theory of Mind: Pros
– Enables estimation of private information and mental states of others (including recursive

levels of representation to model the view of self from another perspective).
– Performance improvement given an accurate model of ToM via estimated anticipated be-

havior of others.
• Theory of Mind: Cons

– Can require an extensive amount of training.
– Can rely on increased levels of domain knowledge to model the mental state of others.
• Simulating Human Knowledge of World for Learners: Pros

– Replaces the need for an agent to learn the model of world dynamics to reduce learning
complexity and improve planning.

– Improves accuracy/realism of the world model in representation of an expected environ-
ment.

• Simulating Human Knowledge of World for Learners: Con
– Models can be challenging and/or costly to define.

7.1.3 Bounded Rationality and Cognitive Limitations.

• Cognitive Heuristics: Pros
– Model inaccuracies and shortcuts defined based on observations of human reasoning.
– Heuristics/Rules can be easier to implement and use than learned models.
• Cognitive Heuristics: Con

– Rely on domain knowledge and potentially coarse representations of human reasoning.
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• Cognitively/Biologically Plausible Representations: Pros
– Provide a modeling system to portray aspects of human reasoning/behavior.
– Can mimic cognitive limitations, biases, and so forth found in humans.
• Cognitively/Biologically Plausible Representations: Cons

– Many of the popular models rely on extensive/expensive world models.
– Can require large numbers of training samples in the learning case.
• Attention: Pros

– Representation of how humans ignore or reduce the significance of stimuli that can sup-
port Deep Learning methods.

– Models can learn relationships across various input values to learn deeper associations.
• Attention: Con

– As with many Deep Learning scenarios, these methods can be difficult to train, require a
large amount of samples, result in highly complex networks, and so forth.

• Game Theory: Pros
– Incorporates assumed rational behavior to model outcomes.
– Identify appropriate behavior based on the payoff received corresponding to selected ac-

tions.
• Game Theory: Cons

– Relies on conservative assumptions regarding human behavior (not all humans behave
rationally).

– Representation of more realistic scenarios can have high levels of complexity.

7.1.4 Uncertainty and Irrationality.

• Quantum Representations of Decisions and Irrational Thinking: Pros
– Enables rich models of uncertainty including those that would violate traditional proba-

bility rules (e.g., summing to 1).
– Model fallacies in reasoning (e.g., disjunction fallacy).
– Supports modeling of an interference effect for unobserved paths in Markov models rather

than assuming a single path.
• Quantum Representations of Decisions and Irrational Thinking: Cons

– Model complexity when compared to traditional models.
– Access to quantum computing resources or systems that can represent the quantum mod-

els.
• Biases and Fairness in Representations and Understanding: Pros

– Incorporates models representing human biases in reasoning, interpretation of informa-
tion, and so forth.

– Enables considerations regarding effort, unfairness, biases, and so forth for decision
models.

• Biases and Fairness in Representations and Understanding: Con
– Costly and difficult to generate models.

7.2 Complementary Concepts

In this section, Table 1 denotes our interpretation of the complementarity of the various topics
described in this article. As this is primarily a qualitative analysis, there will of course be a level
of subjectivity to the assessment. Therefore, the table should serve as a preliminary indication of
relation, compatibility, and so forth for the various topics. We will not discuss all relationships
presented in the table, but instead will provide particular examples to illustrate our reasoning.
For instance, the significant number of entries relating RL to other topics can be attributed to
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Table 1. Levels of Complementarity: < (Low),� (Medium),≪ (High)

Topic 3.1 3.2 3.3 4.1 4.2 4.3 5.1 5.2 5.3 5.4 6.1 6.2

3.1: Reinforcement Learning – ≪ ≪ � � ≪ < � � < <

3.2: Inverse Reinforcement Learning
and Imitation Learning ≪ – � < �

3.3: Active Learning ≪ � – < < �
4.1: Meta-reasoning and Meta-learning � < < – � �
4.2: Theory of Mind � < – <
4.3: Simulating Human Knowledge of
World for Learners ≪ – �
5.1: Cognitive Heuristics < � – � � �
5.2: Cognitively/Biologically Plausible
Representations

� � < � � –

5.3: Attention � � –
5.4: Game Theory < –
6.1: Quantum Representations of
Decisions and Irrational Thinking

< –

6.2: Biases and Fairness in
Representations and Understanding

� � � –

the fact that several of these topics rely on similar notions of relating behavior/determinations
to a feedback signal denoting desirable outcomes/behavior. Further, utilizing concepts from ToM,
Attention, and so forth enables the use of RL in more complex environments, with more human-
like ingestion of input, compensation for others, and more. In the case of AL, we can see that
there is indeed a motivation to consider topics such as biases in reasoning. For example, the bias of
behavior exhibited by the teacher can have a significant impact on the outcomes with respect to the
learning process. With respect to cognitive architectures and related biologically plausible systems,
it is apparent that the inclusion of simulations can prove useful. The assistance of simulations
allows systems to more accurately mode the dynamics of the world to replicate how a human
might predict physical motion. This enables richer modeling from the cognitive architecture and
allows for more true-to-life modeling/reasoning.

7.3 Relevant Open Problems and Challenges

In the following sections, we discuss general aspects regarding several topics presented in this
article and how shortcomings of current approaches motivate future work. This is not meant as a
comprehensive list, but rather examples of topics for future consideration.

7.3.1 Reinforcement Learning.

Dynamic Programming Algorithms. In RL, many methods rely on learning methods and algo-
rithms utilizing Dynamic Programming. According to Levine et al. [83] and Prudencio et al. [112],
poor performance can occur in the offline settings due to issues such as distributional shift—the
underlying cause being the distributional shift of the actions due to the discrepancy between the
behavior policy and the current learned policy. It is noted that policy constraints and explicit uncer-
tainty estimation can help mitigate these issues, but these are not without their own shortcomings.
Further, as is seen in Deep Learning and related topics, limited access to training data can result
in overfitting, brittle representations, and a lack of generalizable behavior. Similarly, methods can
further struggle when they encounter out-of-distribution states. This can impact various aspects
of the underlying model, including the state densities. Consequently, the resulting output of the
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Dynamic Programming algorithms can have high inaccuracy in the case of these lower probability
states. According to Prudencio et al. [112], a remaining issue is the lack of realistic scenarios and ac-
cess to corresponding data. This can significantly reduce the accuracy of the representation and its
suitability for the real world. Related, the generation of large amounts of accurately labeled is still
quite challenging and costly. As such, the access to realistic and accurate data remains a concern.

7.3.2 Inverse Reinforcement Learning and Imitation Learning.

Inverse Reinforcement Learning. According to Arora and Doshi [9], IRL suffers from ambiguity
regarding valid solutions. This is due to the fact that multiple representations of reward can result
in a representation explaining the sample data. Similarly, the accuracy of the resulting model can be
measured in several ways. These measures of accuracy consider/prioritize different aspects: policy,
value, and so forth. The method for defining accuracy will of course then determine which aspects
are considered significant. For instance, measuring the variance in policies could result in a small
divergence despite the difference occurring in a critical state. Therefore, careful consideration is
needed when determining which details are measured regarding the accuracy. With respect to
IL, Zheng et al. [170] provide multiple examples of open challenges: diverse behavior learning,
suboptimal demonstrations, finding globally optimal solutions (as opposed to locally optimal), and
so forth.

7.3.3 Meta-learning and Meta-reasoning. As indicated in the work of Huisman et al. [64], some
relevant concerns regarding Meta-learning and Meta-reasoning include topics such as overfitting,
access to realistic domains/data, and fair comparison of methodologies. In the case of overfitting,
this follows many related topics as many examples of Meta-learning and Meta-reasoning are based
on Deep Learning approaches, so they are susceptible to the same overfitting concerns as seen in
Supervised Learning and other related topics. Regarding the comparison of methodologies, [64]
indicates how different techniques can utilize different underlying backbones. Consequently, it is
more challenging to distinguish whether the variance in performance is indeed methodological.

7.3.4 Cognitive Architectures. Regarding cognitive architectures, Kotseruba and Tsotsos [78]
demonstrate several relevant open challenges. For instance, the importance of perception and the
lack of systems that effectively support perception in observation and reasoning. Additionally, it
is argued that many approaches instead rely on simulations to replace perception aspects, such
as vision. Further, [78] notes how biologically inspired models commonly are unable to match
the level of range and efficiency needed for practical applications as compared to those based on
heuristics and related methods.

7.3.5 Attention. For topics related to Attention, Niu et al. [102] demonstrate several concepts
of interest. Regarding the concepts of the query and key in self-attention, some work has demon-
strated how these can be effectively combined. Therefore, further research should be performed
to determine the importance of independent or combined representations for keys and queries.
Additionally, there is still room for improvement regarding the computational complexity of at-
tention models. As well, [102] notes the desirability of further investigations into the translation
of techniques across use cases—for instance, applying a self-attention method from Natural Lan-
guage Processing in a Computer Vision domain. As a final example, we can also note the need for
effective performance indicators to better demonstrate the utility of various attention methods.

7.4 Concluding Remarks

Overall, we believe that the approaches and goals presented motivate the topics discussed in this
article and serve to promote further investigation into how humans and artificial systems interact
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and learn from each other. We can conclude there is not a one-size-fits-all approach to best model
the human behavior in HCAI. Each approach has its own merits and deficiencies, and the best
choice largely depends on the specific problem at hand. However, the literature on this topic is
quite vast, which allows designers of HCAI systems to leverage an extensive toolbox to equip AI
agents with practical approaches to model human behavior. Therefore, we believe that this area
is going to emerge as one of the most active in the coming years, cutting across autonomous and
adaptive systems, pervasive environments, and advanced AI agents.
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