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Abstract
The proliferation of sensors and smart Internet of Things (IoT) devices in our everyday environments is reshaping our interac-
tions with everyday objects. This change underlines the need to empower non-expert users to easily configure the behaviour 
of these devices to align with their preferences and habits. At the same time, recent advances in generative transformers, 
such as ChatGPT, have opened up new possibilities in a variety of natural language processing tasks, enhancing reasoning 
capabilities and conversational interactions. This paper presents RuleBot +  + , a conversational agent that exploits GPT-4 to 
assist the user in the creation and modification of trigger-action automations through natural language. After an introduction 
to motivations and related work, we present the design and implementation of RuleBot +  + and report the results of the user 
test in which users interacted with our solution and Home Assistant, one of the most used open-source tools for managing 
smart environments.

Keywords  Conversational interfaces · Trigger-action automations · Smart spaces

1  Introduction

In the era of ubiquitous computing, everyday environments 
are increasingly becoming augmented with a myriad of sen-
sors and smart Internet of Things (IoT) devices,1 aiming to 
enhance the quality of life by providing personalised and 
context-aware services. While these advancements offer 
significant convenience, they also introduce complexity 
in terms of device management and customisation. Non-
expert users often find themselves overwhelmed by the 
technicalities involved in setting up and maintaining the 
desired behaviour of their smart environments. Many lack 

programming experience and are afraid of breaking the sys-
tem, leading the user to rely on the default settings. Even 
when users do attempt customisation, the unintuitive fea-
tures of smart systems and difficulties in translating user 
intentions into automation add to the frustration. In addition, 
the need for ongoing adjustments to meet the changing user 
preferences further complicates the user experience. As a 
result, these issues discourage users from fully utilising their 
smart devices, making the technology less accessible and 
user-friendly [1–3].

To address this gap, there has been a growing interest in 
developing more intuitive methods that allow users to inter-
act with and automate their smart objects without requiring 
technical knowledge and/or programming experience. This 
interest aligns with the broader field of end-user develop-
ment (EUD), where the emphasis is on creating environ-
ments that allow non-expert users without programming 
skills to create or modify their applications.

Leveraging the recent breakthroughs in natural language 
processing, particularly the advent of generative transformer 
models, such as GPT-4, we think that conversational agents 
can play a crucial role in simplifying the process of creat-
ing and managing smart home automations. These agents 
have the potential to deeply understand and generate natural 
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language, enabling a more intuitive and accessible interface 
for users.

This paper introduces RuleBot +  + , a conversational 
agent designed to assist users in creating and modifying 
smart home automations using the trigger-action paradigm. 
RuleBot +  + utilises the capabilities of GPT-42 to process 
user input in natural language and generate the correspond-
ing automation, thereby lowering the barrier for the users in 
customising their smart environments.

To evaluate the effectiveness of RuleBot +  + , we com-
pared it with Home Assistant (one of the leading open-
source platforms for smart home management and automa-
tion) through a user test with 16 participants.

The comparison can be useful to derive insights into the 
strengths and weaknesses of each approach. This helps in 
understanding how exploiting natural language interaction 
can enhance user experience and usability in smart home 
automation.

The following research questions guide our investigation:

•	 How does the use of a conversational agent for creating 
smart home automations, such as RuleBot +  + , compare 
to traditional visual environments, such as Home Assis-
tant, in terms of usability?

•	 What are the issues faced by the users when creating and 
modifying automations through natural language inter-
faces, also with respect to form-based visual interfaces?

•	 Does the usability of the conversational agent vary 
depending on the complexity of the automation created?

By investigating these questions, we seek to contribute to 
the ongoing research on enhancing user experience in smart 
home ecosystems by proposing a chatbot architecture based 
on a large language model (LLM) and evaluating our solu-
tion in comparison to an open-source state-of-the-art tool for 
managing home automations.

2 � Related work

During the last few years, some proposals have been put 
forward in the field of conversational agents applied to the 
Internet of Things environments. Beyond the well-known 
commercial solutions such as Alexa and Google Home, 
some research contributions proposed a conversational 
approach for controlling smart objects and energy consump-
tion, giving assistance to the elderly or impaired, and creat-
ing and modifying automations in trigger-action format [4].

In particular, concerning the solutions for managing auto-
mations, Roffarello et al. [5] propose a voice-based agent 

that allows users to create automations based on the Google 
ecosystem. Starting from a user description of the desired 
behaviour, the agent can create simple automations com-
posed of one trigger and one action and also provide the 
user with the possibility to modify the trigger, the action, or 
the entire created rule. A similar application was proposed 
by Barricelli et al. [6], who developed a multimodal agent 
(combining voice and touch) based on the Alexa ecosys-
tem using Amazon devices equipped with a monitor. In this 
case, the user can create automations composed of one trig-
ger and multiple actions, switching between voice or touch 
interaction based on the user’s need. Concerning text-based 
solutions, Jarvis [7] is a chatbot for managing smart environ-
ments through the execution of instant actions (e.g. “turn on 
the bedroom lights”) and by creating simple automations 
composed of a trigger and an action. One interesting Jarvis 
feature concerns the possibility of asking “causality queries” 
such as “Why did the light turn on?” thus providing a form 
of explanation to the user.

Regarding the creation of more complex automations, the 
earliest RuleBot version [8] aimed to address the problem by 
implementing an architecture that allows the user to create 
automations in trigger-action format composed of multiple 
triggers (distinguishable in events and conditions) and mul-
tiple actions. In fact, exploiting grammatical rules, Rule-
Bot was able to split complex commands (e.g. “turn on the 
light when entering the kitchen and if it’s past 6 p.m.”) into 
simpler chuck (e.g. “turn on the light”, “when entering the 
kitchen”, “and”, “if it’s past 6 p.m.”) to be easily classified.

All the mentioned contributions share the same problems: 
correctly classifying the user input to the right intent and 
efficiently managing the conversational breakdown during 
the interaction. The advances in natural language processing 
with large language models such as ChatGPT opened new 
possibilities for overcoming these problems. For example, 
a recent version of RuleBot [9] implements a hybrid archi-
tecture using the Rasa Framework combined with ChatGPT, 
using the LLM for the management of specific complex 
tasks (i.e. splitting complex commands into simpler single 
commands and managing the conversational breakdown to 
be informative) while applying “classical” machine learning 
intent classification, entity extraction, and dialogue manage-
ment with the support of Rasa.

RuleBot +  + aims to address the challenges outlined in 
previous work, overcoming the limitations given by the rigid 
and somehow unnatural conversation of a classical conver-
sational agent during the creation and modification of smart 
home automations.

2  In particular, we use the model GPT-4 Turbo 1106-preview.
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3 � The proposed solution

RuleBot +  + aims to enable non-expert users to create and 
modify smart home automations simply and intuitively 
through conversation. Based on a user’s request, which 
describes the desired automation behaviour, RuleBot +  + can 
“translate” this description into executable smart home 
automation.

Through these automations, the user can define the 
actions that sensors and smart objects should perform when 
a certain trigger occurs within the context of a smart home. 
We have connected RuleBot +  + to Home Assistant, which 
is employed as automation engine since it offers a robust and 
open-source system for configuring smart devices and man-
aging automation execution. Therefore, RuleBot +  + gen-
erates automations in YAML format that can be executed 
by the Home Assistant engine. During the user session, 
RuleBot +  + can identify which sensors and smart objects 
have been installed in the smart home by accessing a JSON 
file that describes the home configuration, thereby guiding 
the user in selecting and setting the desired event, condi-
tions, and actions. The RuleBot +  + ’s engine leverages the 
powerful natural language understanding, processing, and 
generation capabilities of GPT-4, paired with the execution 
of Python functions (through the function calling model’s 
feature) that enable RuleBot +  + to access devices present 
in the smart home, save automations in a database, retrieve 
automations for modification or explanation, and verify 
automations YAML syntax correctness.

3.1 � Architecture

The architecture of RuleBot +  + (Fig. 1) can be divided 
into three main components: the user interface from which 
the user can send and receive messages and can access the 
list of created automations, the conversation manager that 
implements the chatbot logic through the GPT-4 API calls 
and the execution of the developed Python functions, and 
the information management composed by a database that 
contains the automations created by the user and the conver-
sation logs with RuleBot +  + and a JSON file that indicates 
the configuration of the smart home with its sensors, smart 
objects, and services and their relative unique IDs.

3.1.1 � User interface

The user interface (Fig.  2) is accessible from any web 
browser and is composed of a classical front-end (HTML, 
CSS, and JS) and a Node.js back-end server that implements 
the logic for user registrations and logins, displays the auto-
mations created by users, and manages the sending and 
receiving of messages between the user and RuleBot +  + .

After logging in, the interface is divided into two main 
sections. On the left, users can find their list of created auto-
mations along with the automation name, the automation ID, 
and the automation description. The right side presents the 
chat, where the user can type the message and visualise the 
chatbot’s response. When the user logs in to RuleBot +  + , 
a welcome message is automatically sent to the user to start 
the conversation.

3.1.2 � Conversation manager

The conversation manager is developed in Python and imple-
ments the calls to the OpenAI API, as well as the definition 
and execution of the function that provides the capabilities of 
RuleBot +  + . In this architecture, the GPT-4 model replaces 
the “intent classification” and “dialogue management” mod-
ules of a classic conversational agent based on machine 
learning [10], highlighting the strengths (but also the weak-
nesses) of LLMs, which will be addressed in the following 
paragraphs. The GPT model behind RuleBot +  + is guided 
by the instructions present in the system prompt, describing 
the context and expectations for the ongoing conversation 
and providing an explanation of how to act upon certain 
requests (such as creating or modifying and automation). 
Moreover, the function calling feature provided by Ope-
nAI allows us to provide the model with a set of function 
descriptions, along with the necessary parameters to execute 
them. Through this feature, when the user sends a message 
requiring the use of external resources to be answered (e.g. 
databases, third-party APIs), the model can request the 
execution of the relevant function for retrieving the needed 
information or, more in general, fulfil the user request. The 
output returned by the function will then be used to generate 
a coherent response to the user’s request. We have defined 
and implemented the following Python functions that Rule-
Bot +  + can access for managing users’ automation:

•	 Retrieve Entities: Receives as input the type of entity 
(e.g. light) and/or the reference room and returns the list 
of entities of a certain type or the entities present in a 
room. It can also return the entire configuration of the 
home.

•	 Verify Automation: Receives as input an automation in 
YAML format and returns a success message if all enti-
ties involved in the automation are present in the context 
of the home and if the YAML code is correctly format-
ted. Otherwise, it returns an error message, such as when 
the user requests the activation of a device that is not pre-
sent in the smart home. The error message contains the 
non-existing entities that generated the error to provide 
a more exhaustive message for the user.
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•	 Save Automation: Takes as input the automation in 
YAML format (executable by Home Assistant), the 
input phrase the user used to describe the automation, 
a description of the automation generated based on the 
YAML, and the name to give the automation.

•	 Retrieve Automation: Given the name or the ID of an 
automation, it returns the information to generate an 
explanation or make modifications. It can also return the 
complete list of a user’s automations.

•	 Modify Automation: Starting from an already created automa-
tion (identified by an ID), it modifies the automation YAML, 
the description, and the name based on the user request.

When the user requests the creation of an automation, 
RuleBot +  + first executes the “retrieve entities” function. 
Based on the available smart devices, RuleBot +  + proposes 
a possible automation configuration to the user, explain-
ing which devices would be involved. This is followed by 
a refinement phase in which the user and the chatbot col-
laborate until the user is satisfied with the automation. At 
this point, RuleBot +  + uses the “verify automation” func-
tion to check the correctness of the YAML automation. If 
it presents a formatting error, the user is not informed, but 
the model is instead prompted to generate a new YAML 
code, indicating the lines in which the errors are detected; 

Fig. 1   The RuleBot +  + architecture

Fig. 2   RuleBot +  + web user 
interface
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meanwhile, if the function returns an error related to missing 
entities, the chatbot informs the user and proposes possible 
alternatives. When the automation is successfully verified, 
RuleBot +  + informs the user by providing a description of 
the automation in natural language and asks for confirmation 
to save it. After user confirmation, the “save automation” 
function is executed to update the database with the new 
automation.

The process for modifying an automation is similar. 
RuleBot +  + first uses the “retrieve automation” function 
to obtain the requested automation from the database. 
After applying the desired modification, the automation 
is subjected to the verification process and then saved 
to the database using the “modify automation” function. 
The functions “retrieve entities” and “retrieve automa-
tion” are also used when the user seeks information and 
explanations.

3.1.3 � Information management

The functionalities for saving, modifying, and retrieving 
automations have access to a MongoDB database from 
which the chatbot can retrieve and insert the information 
needed (e.g. new automation). All the operations return a 
result used by the chatbot to inform the user in case of errors 
or confirm the operation’s success (e.g. after successfully 
saving an automation return a confirmation message along 
with the ID assigned to the automation).

The information regarding the smart home configura-
tion is encoded in a JSON file containing the list of sen-
sors and devices along with their unique identifiers. We 
explored different ways to describe the smart home in the 
JSON file. Initially, we structured the configuration by 
dividing it into rooms. For each room, we listed the vari-
ous sensors and devices present. This approach allowed for 
an intuitive and organised representation, making it easy 
to query the file to get the sensors and devices located in 
each specific room. For instance, the living room might 
have been detailed with entries for a temperature sensor, 
a smart TV, and smart lights, each with their unique iden-
tifiers. This room-based structuring is effective for sce-
narios where the interactions and automations were pre-
dominantly confined within single rooms. However, this 
approach results in a lengthy and repetitive description 
file when certain types of sensors or devices are present 
in multiple rooms throughout the house (e.g. every room 
can have a temperature sensor, a smart light, and a motion 
sensor). When the model requires the entire file (e.g. when 
the user asks which sensors are present in the house or if 
the user is unclear about which rooms are to be involved in 
the automation), it consumes many tokens, slowing down 
the process execution, especially when requested multiple 
times during the conversation. To address this, we moved 

into organising the JSON file based on the type of devices 
and sensors. Using this approach the device or sensor type 
is the primary organising principle, with each type being 
a key at the highest level (e.g. “lights”, “motion_sensors”, 
“temperature_sensors”), under which the list of rooms 
in which the device is present is contained as well as a 
unique identifier. In this case, the identifier is composed 
of a fixed and a variable part, filled with the name of the 
room at runtime (e.g. the identifier for a motion sensor 
is “binary_sensor.motion_[room]”, where “[room]” is 
replaced by one of the listed rooms).

3.1.4 � Prompting the model

Prompting a large language model refers to the process of 
designing and refining the initial input to instruct the model 
on how to behave and to guide its responses and actions. 
Despite different prompting techniques have been developed 
to enhance the models’ capabilities (e.g. chain of thought, 
few-shot learning [11, 12]), and despite the development 
of general guidelines on prompt engineering,3 creating a 
prompt for a model remains a task that requires a trial-and-
error approach.

The composition of the prompt for RuleBot +  + fol-
lowed an iterative process, starting from brief and simple 
prompts to very long and detailed ones. Initially, prompts 
were limited to defining the identity (e.g. “You are Rule-
Bot, a conversational agent for creating automations…”) 
and a generic description of the designated tasks (e.g. 
“you can create and modify automations, retrieve the list 
of sensors…”). This led to the model exhibiting different 
behaviours with each new interaction, such as inconsist-
ency in calling functions from the same user message. We 
then evolved to a more extensive, detailed, and structured 
definition of the tasks and their respective steps, achiev-
ing consistent interactions across different sessions. It is 
important to note that, given the non-deterministic nature 
of these models, the chatbot’s response can slightly vary 
at the syntactic and lexical level. To limit this variability, 
we set the model’s sampling temperature4 to 0. The final 
prompt includes an initial part where the RuleBot +  + ’s 
identity and a high-level description of its functionalities 
are defined, followed by a set of generic rules that the 
chatbot must apply during conversations with the user. The 
prompt continues by defining the necessary steps and rules 

3  https://​platf​orm.​openai.​com/​docs/​guides/​prompt-​engin​eering
4  The temperature parameter (a value between 0 and 2) influences 
the model randomness in the selection of the next token. With a high 
value, the output is more random (https://​platf​orm.​openai.​com/​docs/​
api-​refer​ence/​chat/​create).

https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/api-reference/chat/create
https://platform.openai.com/docs/api-reference/chat/create
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to correctly manage the conversation (for the complete 
prompt see Appendix).

In addition, further instructions are added at the end of 
the functions output to contextually guide the model in the 
response generation. For instance, upon successfully saving 
automation, the “save automation” function includes the fol-
lowing instructions:

The response message must contain the automation 
description in natural language following this pattern: 
When [here the events], If [here the conditions], [here 
the actions].

Similarly, appended to the output of the “retrieve entities” 
function is the following:

The motion sensors can be utilized to detect the pres-
ence in a room. Do not include the 'entity_id' in the 
message generated for the user.

3.1.5 � Example of a conversation with RuleBot +  + 

The following is an example of a conversation session 
between a user and RuleBot +  + for the creation of one auto-
mation. The System messages describe the internal processes 
of the chatbot.

RuleBot ++: Hello! I’m RuleBot, your virtual assis-
tant for managing sensors and smart objects in your 
smart home. I can help you create automations, modify 
them, and provide you with information about the sen-
sors in your intelligent home. How can I assist you 
today?

User: Hi, I don’t have an alarm system at home, but 
I’d like to set up an automation that alerts me in case 
of intrusions.

System: The function “retrieve entities” is executed 
to retrieve the full list of sensors and smart objects 
in the home. The output is used to generate the next 
RuleBot +  + message.

RuleBot ++: Great, in your smart home, you have 
motion sensors that we can use to detect intrusions.

We can set up an automation that, when it detects 
motion in a specific area of the house while you're not 
there, sends you a notification on your phone and, if 
you want, can also activate the alarm. To proceed, I 
need to know in which area of the house you want to 
detect motion (like the entrance, kitchen, living room, 
etc.) and if you want the alarm to sound only under 

certain conditions, such as at a specific time or only 
when you’re not at home. Could you provide me with 
this information to create the automation?

User: Let’s use the sensor at the entrance. I’d like to 
activate it when I’m not at home or when I’m sleeping 
at night.

RuleBot ++: I’ve got it! We’ll set up the automation 
so that the motion sensor at the entrance detects pres-
ence when you’re not at home or if it’s night and you’re 
sleeping.

To do this, we can use your phone’s tracker to know 
if you’re away from home and the presence sensor on 
your bed to determine if you’re sleeping. When the 
motion sensor detects presence under these conditions, 
we can set up a notification to be sent to your phone 
and, if you wish, we can also trigger an alarm sound 
through the audio player. Does that work for you?

Before proceeding with the configuration, could you 
specify the time range you consider as “night” for your 
home? And what message would you like to receive in 
the notification on your phone?

User: Alright, that’s fine… set it from 12:30 am to 
05:30 am and use a generic message for the notifica-
tion.

System: The model generates the YAML code of the 
automation and the function “verify automation” is 
executed: the code is successfully verified, meaning it 
contains only existing devices in the home and is well 
formatted. The YAML code is assigned to a variable 
eventually used when saving the automation.

RuleBot ++: The automation has been successfully 
verified. Here’s the summary of your rule:

Trigger:  When the motion sensor at the entrance 
detects presence.

Conditions: If you are not at home (as detected by 
your phone’s tracker) or if it’s night (from 12.30 AM 
to 05:30 AM) and the presence sensor on the bed indi-
cates you are sleeping.

Actions: Send a notification to your phone and start an 
alarm sound through the audio player.

Would you like me to proceed with saving this auto-
mation?
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User: Yes.

System: The function “save automation” is executed, 
creating a new element in the database containing the 
automation ID, the previously verified YAML code, 
the name and the description of the automation. The 
function returns a success message containing the ID 
of the automation.

RuleBot ++: The “Intrusion Alarm” automation has 
been successfully saved with the following ID: 1.

Here is the description of the automation in natural 
language:

“When the motion sensor at the entrance detects pres-
ence, if you are not at home or if it’s night (from 12.30 
AM to 05:30 AM) and you are sleeping, send a noti-
fication to your phone with the message ‘Intrusion 
Alert!’ and start an alarm sound.”

If you need any more automations or modifications, 
I’m here to help!

4 � User test

To better understand the system’s usability and the differ-
ences between a conversational approach and a traditional 
graphical interface, we conducted a user test comparing 
RuleBot +  + with the visual interface available on Home 
Assistant. It is the reference open-source software platform 
for smart environments (more than 340,000 active instal-
lations until May 20245), designed for managing a wide 
range of sensors and smart devices from different manufac-
turers, allowing the creation, modification, and execution 
of automations.6

Home Assistant offers two ways to create automations. 
In YAML configuration, experienced users can write and 
modify automations directly in YAML format, which pro-
vides maximum flexibility and control. In graphical user 
interface (Fig. 3), for users non-familiar with coding, Home 
Assistant provides a graphical form-based interface to create 
automations, offering a more user-friendly approach. During 
the test, users created the automations using the graphical 
user interface. Before starting the tests, they received a brief 
tutorial about the main elements of the interface and had 

approximately 5 min to familiarise themselves with it and 
pose any questions to the researchers regarding its features.

4.1 � Test organisation

Before starting the test, users were required to fill out a 
questionnaire that collected personal information, includ-
ing age, gender, programming experience, familiarity with 
virtual assistants, and experience in creating automations. 
Following this, a brief instructional session on trigger-action 
programming was conducted, where users learned basic con-
cepts, such as distinguishing between an event and a condi-
tion and using logical operators to link multiple elements in 
automation. In this phase, users were given task descriptions 
and asked to identify the event, any relevant conditions, and 
the actions required. This phase was crucial for assessing 
whether users had understood the necessary concepts and 
to reduce doubts during the test.

This study involved sixteen participants, ten males and six 
females, aged between 26 and 60 (mean = 31, median = 29, 
St. dev = 8.53). Participants were recruited through mail-
ing lists and direct contacts using snowball sampling [13]. 
We selected participants who provided positive feedback 
and expressed interest in using smart homes to perform the 
test. Since real-world smart home users may have varying 
levels of programming expertise [14], we did not prioritise 
selecting users with specific types of experience. The pro-
posed solution is designed to be accessible to a wide range 
of users with varying levels of programming skills. Most 
participants (13 out of 16) reported sporadic use of digital 
assistants such as Alexa or Google Home, often in the homes 
of friends or relatives. Regarding the creation of automa-
tions, experience levels varied: seven participants had no 
experience, eight participants had occasionally used applica-
tions such as IFTTT, Alexa, and Google Home, and one user 
used automations tool regularly. In terms of programming 
language proficiency, five participants had no programming 
experience, six had moderate experience with at least one 
language (e.g. HTML, CSS or JavaScript), two had good 
knowledge of the languages they used, and three participants 
had almost professional programming experience. Educa-
tional backgrounds were varied, with seven holding master’s 
degrees, five with bachelor’s degrees, three with diplomas, 
and one PhD. We tested the tool with a varied group of users 
as RuleBot +  + was not designed for a specific type of user, 
thus reflecting the potential diversity in smart home users.

The following four scenarios were presented to the 
participants, asking them to create the described automa-
tions using RuleBot +  + and Home Assistant; users were 
instructed to use—preferably but not necessarily—the term 
“when” to identify an event and “if” for a condition when 
writing to RuleBot +  + .5  https://​analy​tics.​home-​assis​tant.​io

6  https://​github.​com/​home-​assis​tant

https://analytics.home-assistant.io
https://github.com/home-assistant


	 Personal and Ubiquitous Computing

Fig. 3   The Home Assistant automation editor shows an example of complex automation. Some element configuration windows are collapsed for 
brevity
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Scenario 1 (1 event + 1 action): You often work remotely, 
and your desk is located in your bedroom. Your task is 
to create an automation that detects the air quality and, 
when it is not good (usually over 1300 ppm), automati-
cally activates the air purifier.
Scenario 2 (1 event + 1 condition + 1 action): Imagine 
waking up every working day between 7:00 and 7:30 
in the morning. The first thing you always do is have a 
coffee to start the day. Your task is to create an automa-
tion that turns on the coffee machine when you get out 
of bed during this time interval and checks that it is a 
working day.
Scenario 3 (1 event + 2 conditions + 3 actions): You have 
recently moved into a new apartment and have not yet had 
the opportunity to install an alarm system. Your task is to 
create an automation that, when motion is detected at the 
entrance, while you are not at home or if it is night (e.g. 
between 00:00 and 06:00), activates a series of actions 
to ensure your safety. Red lights turn on at the entrance 
and in the corridor to create a visual deterrent effect, an 
alarm sound is activated to alert anyone nearby, and you 
immediately receive a notification on your phone. The 
user’s location is detected through the phone’s location.
Scenario 4 (add 1 condition + 1 action): Modify the auto-
mation created during Scenario 1. You must check that 
there is someone in the bedroom before turning on the 
purifier. Additionally, the bedside lamp with blue light 
should also turn on.

We asked the users to perform the four tasks, presented 
as scenarios, of increasing complexity with both conditions 
(RuleBot +  + and Home Assistant). The study followed a 
within-subject design protocol, so all the participants tested 
both tools. To balance the learning effect, the user’s starting 
order was randomised, meaning that half of the users started 
the test using RuleBot +  + first, then Home Assistant, and 
vice versa.

The tests were conducted remotely, with the user sharing 
their screen. During the execution of the tests, the times 
taken to complete each task were collected and notes were 
made on the user’s behaviour while using the two tools. 
Upon completing the test with each tool, users were asked 
to fill out a brief custom questionnaire that focused on their 
experience in creating and modifying automations, followed 
by a system usability scale (SUS) questionnaire [15].

4.2 � Task error analysis

We have analysed the errors present in the rules created with 
the two tools, comparing each automation created by the 
users with the expected correct automation configuration. 
In the case of Home Assistant, we analysed the automa-
tion specified in the user interface, while for RuleBot +  + , 

we analysed the YAML code generated when saving the 
automation.

The number of errors is limited for both tools. Home 
Assistant automations present a total of 17 errors (task 1, 1; 
task 2, 1; task 3, 12; task 4, 3), while RuleBot +  + present 
a total of 19 errors (task 1, 0; task 2, 8; task 3, 2; task 4, 
9). In the case of Home Assistant, the errors are focused 
on the task described in scenario 3. Specifically, the most 
common error concerns the configuration of the “OR” con-
nector to concatenate the two conditions (12 users out of 
16) in which some of them placed an element in the wrong 
position out of the OR scope. Despite its concentration on 
a single element, this error significantly affects the correct 
execution of the rule, because all rules created in this way 
would lead to unexpected behaviour of the automation or its 
non-activation. The second type of error involves the inver-
sion between the event and the condition (5 users out of 
16) in task 1, task 2, and task 4. For example, in task 4, the 
condition on the presence inside the room was used as an 
event, while the event on the air quality level was placed as a 
condition (three users out of five). This error could also lead 
to unexpected behaviour or non-activation of the automation 
(e.g. if the user is present in the room before the air quality 
decreases, the automation will not be activated).

Regarding RuleBot +  + , we observe a broader set of error 
types. We can distinguish between errors made by the user, 
errors from lexical ambiguities leading to misunderstand-
ings between the user and RuleBot +  + (therefore considered 
“shared”), and errors due to the hallucinations of the model 
used. The errors that relate exclusively to users are found in 
task 2 (one user) and task 3 (two users) and concern either an 
inversion between the event and the condition or a more gen-
eral incorrect description of the automation. Some lexical 
ambiguities in the user message led to an inversion between 
an event and a condition (3 users out of 16, exclusively in 
task 2). For example, P7 described the automation for task 
2 as “If it is a working day, check that I have got out of bed 
between 7 a.m. and 7.30 a.m, in that case switch on the cof-
fee machine”. Based on this description RuleBot +  + cre-
ated an automation described as “When it is a working day 
(Monday to Friday), and the time is between 7 a.m. and 
7.30 a.m., if the bed presence sensor does not detect your 
presence, activates the coffee machine” that was incorrect 
since indicates the days as event, while the time and the 
bed presence as conditions. Anyway, the user confirmed 
and saved the incorrect automation. The final category of 
errors pertains exclusively to RuleBot +  + and involves the 
model’s hallucinations. Such hallucinations occurred when 
the chatbot generated the YAML specifications. The use of 
a wrong value in the configuration of triggers or actions (e.g. 
“on” instead of “off” about the state of a sensor) was present 
in three automations created during task 2, and, again in 
task 2, the addition of an unrequested trigger occurs in one 
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automation. Another hallucination type involves configur-
ing one sensor instead of another: the “bed presence” sen-
sor was selected instead of the “room presence” sensor for 
detecting the user presence in task 4 (9 users out of 16). It 
is important to note that in cases of lexical ambiguity, Rule-
Bot +  + correctly described the automation created (as in the 
above P7 example), whereas, in the case of the hallucina-
tions detected, they occurred in the RuleBot +  + ’s genera-
tion of the YAML code, which as not visible to the user. For 
instance, as described above, in task 4, users requested the 
detection of presence in the bedroom to trigger the activation 
of the air purifier. In this scenario, the model configured the 
YAML automation to utilise the bed presence sensor instead 
of the motion sensor (despite it being instructed to use the 
motion sensor for detecting the user’s presence), without 
notifying the user.

4.3 � Task time

The task completion times were gathered, beginning from 
the user’s initial interaction (either a mouse click or the first 
keystroke when using RuleBot + +) and ending upon the 
successful saving of the automation within the system.

Figure 4 shows the average time users needed to com-
plete each task on both platforms. The data reveal that 
the performance of RuleBot +  + and Home Assistant is 
similar for tasks 1, 2, and 4. However, there is a noticeable 
difference in task 3, which required the creation of more 
complex automations. Here, RuleBot +  + is more efficient, 
as it consistently takes less time than Home Assistant.

A statistical analysis using Wilcoxon’s signed-rank test 
confirms that the difference in completion times for task 
3 is significant. The test results in a p-value < 0.001 with 
an effect size of 0.972 (using the rank-biserial correla-
tion), indicating RuleBot +  + ’s effectiveness in manag-
ing complex automation tasks with statistical significance, 

supporting the conclusion that RuleBot +  + provides a 
more efficient interface for complex task completion com-
pared to Home Assistant. The other tasks’ times do not 
present statistically significant differences.

4.4 � Thematic analysis of user feedback

Participant feedback was solicited through both a custom 
questionnaire and the system usability scale to provide 
comprehensive insights into the strengths and weaknesses 
of each system. In addition, participants were requested 
to provide verbal feedback (which was transcribed by the 
researcher conducting the tests) regarding their impressions 
of the two tools. Utilising the qualitative data gathered, a 
thematic analysis was undertaken to identify and categorise 
recurring themes within the various feedback. This analy-
sis adhered to the well-established guidelines proposed by 
Braun and Clarke [16, 17], employing an inductive approach 
where participant feedback was subjected to open coding. 
Our initial step involved an extensive review of all feedback, 
during which preliminary annotations were made to gain an 
understanding of the content within the feedback. Follow-
ing this initial screening, these annotations were reviewed 
and normalised, leading to the identification and definition 
of the codes (N = 10). The subsequent phase involved the 
research and definition of themes. Here, existing codes were 
grouped into preliminary themes, with each being assigned 
a representative name and an encompassing description that 
reflected the definitions of its constituent codes. Finally, 
these themes (N = 4) underwent further revision, involv-
ing the review of feedback corresponding to the codes that 
formed each specific theme.

Table 1 displays the identified themes, along with the 
codes that constitute them, and provides example references 
drawn from these codes.

4.4.1 � Ease of use

This theme explores user perceptions regarding the ease of 
use and intuitiveness of the interfaces and features of dif-
ferent tools, as well as the consistency in presenting and 
utilising these features. The feedback analysis highlights 
inconsistencies and challenges encountered in navigating 
and locating options and devices within Home Assistant. 
Participant 1 points out the lack of intuitiveness, saying, “It 
is not intuitive to find the functionalities of various objects, 
for example, some are under devices, others under services, 
others under media”. Participant 7 also notes difficulties in 
navigating the interface, especially when defining a rule: 
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“It was difficult to navigate through the various options”. In 
contrast, the use of natural language significantly enhances 
the perceived ease of use. Users have expressed positive 
feedback for RuleBot +  + in this regard. Participant 4 appre-
ciates the guidance provided by the chatbot, stating, “No 
need to search […], with the chatbot you are guided step by 
step”. They also express a preference for the simplicity and 
immediacy offered by using natural language, highlighting 
the difference in user experience between the two tools.

4.4.2 � Automation management

This theme focuses on the feedback regarding the manage-
ment of automations and their associated concepts and, in 
some cases, highlights a distinction in the specific applica-
tions of the two tools. Also for this theme, users express 
a preference for using natural language over a form-based 
interface. Participant 8 notes the speed and ease of this 
method, stating, “Very fast, I don’t have to search for sensors 
or available devices but can ask the bot directly”. Similarly, 
Participant 4 finds it “much simpler to create automation 
rules with natural language compared to Home Assistant”, 
adding that this method is also quicker.

Challenges arise in the Home Assistant interface, particu-
larly in differentiating between events and conditions. Partic-
ipant 6 observes, “There are some details where it becomes 
difficult to understand the difference between an event and 
a condition”. Participant 10 echoes this sentiment, noting 
the lack of immediacy in distinguishing between events and 
conditions.

The feedback also delves into the specific use cases for 
the two tools. Participant 1 states, “For quick editing, I 
would first use Rulebot +  + because it’s faster. If I wanted 
to analyse things in detail, I would switch to HA”. In con-
trast, user 4 suggests, “With Home Assistant, it’s not a 
problem to create simple rules, but I think Rulebot +  + is 
simpler for creating complex rules”.

4.4.3 � Information quality and quantity

This theme encompasses the two most extensive codes 
in terms of the number of comments, which concerns 
the users’ confidence in using the system. This includes 
considering the utility of their feedback (both quantita-
tively and qualitatively) and, hence, their perception of 

Table 1   Themes and codes with examples

Themes Examples Codes

Ease of use - “I appreciated the simplicity and immediacy [of Rulebot + +]”
- “The mode of selection for the ‘OR’ operator is counter-

intuitive”
- “HA is somewhat cumbersome in searching for devices, dis-

playing inconsistency in the device selection process”

- Intuitiveness of the interface
- Interface comprehensibility and clarity
- Consistency of the functionality presented

Automation management - “For quick editing, I would use Rulebot because it’s faster. If I 
wanted to analyse things in detail, I would switch to HA”

- “It is much simpler and faster to create automation rules using 
natural language […]”

- “Sometimes [with HA] is difficult to understand the difference 
between a trigger and a condition”

- System use cases
- Creating and modifying automations
- Distinction between event and condition

Information quality and quantity - “[HA] lack of a final summary of what has been created at the 
time of saving”

- “I did not like the multiple requests for confirmation [Rule-
Bot + +]”

- “I feel more secure using HA because it is more formalized”
- “RuleBot is simpler and provides feedback; I am not sure if I 

have correctly set the ‘OR’ operator in Home Assistant”

- Information quality and quantity
- System feedback and reliability

Learning curve - “With HA, you need someone to initially explain how to do 
things”

- “[RuleBot + +] does not require any technical knowledge or 
expertise”

- “When there are uncertainties, RuleBot presents clear questions 
to help choose the preferred option”

- Need for prior knowledge
- System suggestions and help
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reliability. In the context of Home Assistant, aside from 
the challenges related to the overwhelming amount of 
information presented during automation creation, a 
preference for complete control over options is noted 
by two users. Participant 16 expresses a preference for 
a traditional form-based interface, valuing access to all 
functionalities simultaneously: “I’m used to using clas-
sic visual-based software and prefer to have access to all 
functionalities at once”. Participant 14 echoes this senti-
ment, appreciating the visibility of all options in Home 
Assistant: “With Home Assistant, I have all the options 
in front of me”. Moreover, the need for improved system 
feedback is a recurring theme. Participant 7 observes a 
lack of guidance in creating and operating rules in Home 
Assistant: “[…] HA doesn’t even provide feedback/help in 
compiling the automation and its operation”. Participant 
3 expresses uncertainty regarding the correct setting of 
conditions: “[…] I’m not sure if I have set OR correctly 
in Home Assistant”. Participant 13 points out the absence 
of a conclusive summary upon saving: “[HA] lacks a final 
summary of what has been created at the time of saving”.

Similarly, despite the feedback and summaries pro-
vided by RuleBot +  + , its less formalised approach raises 
concerns about clarity and confidence among users. Par-
ticipant 16 states: “[…] I don’t feel secure about what the 
chatbot is actually doing”. Also, participant 1 feels that 
the structured approach of Home Assistant boosts is con-
fidence: “I feel more secure using Home Assistant because 
it’s more rigid”.

User feedback also reveals a divide in opinions regarding 
RuleBot’s confirmation requests during automation defini-
tion and saving. While some users find these confirmations 
excessive (participant 7: “I liked less the fact that [Rule-
Bot] asked me for too many confirmations before saving a 
rule”, participant 11: “I didn’t like the fact of the continuous 
requests for confirmation”), others appreciate this feature 
for ensuring accuracy and control (participant 15: “I liked 
the summary provided by [RuleBot] and the request for 
confirmation of automations”, participant 13: “the fact that 
[RuleBot] asked for confirmation before proceeding made 
me realize I was making a mistake”).

4.4.4 � Learning curve

This theme focuses on user feedback related to their ini-
tial engagement with the tool, the perceived necessary 
knowledge for effective usage, and the learning curve asso-
ciated with the tools. Specifically, comments regarding 
RuleBot +  + highlight the tool’s helpful suggestions and 

guidance. Participant 1 appreciates RuleBot’s proactive 
approach, mentioning, “I also liked that RuleBot in some 
cases suggested further specifics, for instance, it asked me 
if I wanted to add an additional condition, which I hadn’t 
thought of”. Participant 8 praises RuleBot +  + ’s flexible 
understanding and decision-making assistance: “RuleBot 
understood every request […] even making decisions for me 
when I had no specific preferences”. Participant 14 values 
the clarity provided by RuleBot +  + in uncertain situations: 
“I liked the fact that when there are uncertainties, Rule-
Bot presents clear questions to help choose the preferred 
option”.

When discussing the learning curve of the tools, Rule-
Bot +  + is perceived as more immediate and user-friendly. 
Participant 10 points out the prerequisite knowledge for Home 
Assistant (HA): “HA requires prior knowledge of automations 
and terminology”. Participant 11 notes the initial difficulty 
with HA: “Tool [HA] is not very easy to understand at first 
approach”. However, users indicate that familiarity with HA 
improves over time. Participant 12 observes, “With HA, you 
need someone initially to explain how to do things. Once you 
understand where to click, it’s not difficult”. This sentiment is 
echoed by participant 6: “Once you get into the mechanism, 
the tool is comprehensible”. Meanwhile, participant 5 con-
trasts the two tools: “The chat [RuleBot + +] is more imme-
diate and doesn’t require specific knowledge. For the second 
[HA], more knowledge is required, but it’s more straightfor-
ward”. This feedback illustrates a balance between immediate 
usability and depth of understanding of the two tools.

4.5 � System usability scale and custom 
questionnaire results

Finally, we report the results obtained from the two question-
naires to which the users were subjected. Each participant 
completed a SUS and a custom questionnaire immediately 
after completing tasks with each of the two tools (thus, each 
user filled out two SUS and two custom questionnaires). 
While the SUS provides an overview of the system’s usabil-
ity, the custom questionnaire is targeted to aspects related to 
the creation and modification of automations.

Specifically, the custom questionnaire includes the fol-
lowing statements, to which users assigned a score on a scale 
from 1 (totally disagree) to 5 (totally agree):

S1: “It is easy to create a simple automation with [Rule-
Bot/Home Assistant]”.
S2: “It is easy to create a complex automation with [Rule-
Bot/Home Assistant]”.
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S3: “It is easy to concatenate two conditions using OR 
with [RuleBot/Home Assistant]”.
S4: “It is easy to modify an automation with [RuleBot/
Home Assistant]”.
S5: “It is clear whether I am defining an event or a condi-
tion with [RuleBot/Home Assistant]”.

We define a “complex” automation as one that integrates 
at least a trigger event, a condition, and an action; a “simple” 
automation does not contain conditions.

Table 2 summarises the scores related to the different state-
ments. As can be seen, RuleBot +  + received excellent evaluations 
on all analysed aspects, showing consistency among the scores 
received from different users. The data relating to Home Assistant 
present particularly low scores in the phase of defining automa-
tions (S1, S2, S3), especially for creating complex automations 
(S2) and inserting connectors (in this case, “OR”) between two 
or more conditions (S3). The reported p-values and the relative 
effect sizes demonstrate a significant difference between the user 
evaluation of the two tools for S1, S2, S3, and S4.

The SUS (system usability scale) results also support the 
observations made so far, with RuleBot +  + scoring, on aver-
age, 89.8 (min = 85, max = 95, St. dev = 3.35) against Home 
Assistant’s average final score of 62.9 (min = 17.5, max = 95, 
St. dev = 19.64). The Shapiro–Wilk test confirmed that the 
data are normally distributed, as indicated by p-values > 0.05 
for both RuleBot +  + and Home Assistant. The statistical 
analysis using the Student t-test revealed a significant dif-
ference between the scores, with a p-value < 0.001 and a 
Cohen’s d effect size of 1.321. The outlier analysis using 
the Z-score method at a 95% confidence level (critical Z 
value of ± 1.96) identified one outlier in the Home Assistant 
SUS scores, specifically the minimum value of 17.5. Upon 
removing this outlier, the recalculated average SUS score for 
Home Assistant increased to 66 (min = 37.5, St. dev = 16). 

The Student t-test, reassessed after outlier removal, main-
tained a p-value < 0.001 (effect size = 1.382). Using the rat-
ing scale proposed by Bangor et al. [18], we can classify 
RuleBot +  + between “good” (> 70) and “excellent” (> 90) 
and Home Assistant between “ok” (> 50) and “good”.

5 � Discussion

RuleBot +  + ’s broader range of errors, including those 
stemming from lexical ambiguities and the model’s hal-
lucinations, contrasts with the more focused and less fre-
quent errors observed in Home Assistant. Notably, the 
Home Assistant’s errors primarily pertained to the misuse 
of logical connectors and the inversion of events and condi-
tions in specific scenarios, which, while fewer, significantly 
impacted the perceived ease of use.

Focussing on the LLM hallucinations, different studies 
aim to somehow give an explanation and a categorisation for 
why and when they occur. For example, Ji et al. [19] distin-
guish between “intrinsic” (the generated output contradicts 
the source content) and “extrinsic” (the generated output 
cannot be verified from the source content) hallucinations, 
while Zhang et al. [20] propose a classification into “input-
conflicting” (LLMs generate content that deviates from 
the source input provided by users), “context-conflicting” 
(LLMs generate content that conflicts with previously gen-
erated information by itself), and “fact-conflicting” (LLMs 
generate content that is not faithful to established world 
knowledge) hallucination.

In the case of RuleBot +  + , hallucinations primarily 
concern the consistency between the data generated dur-
ing the conversation, especially between the automation 
in YAML format and its textual description. Indeed, in 
the highlighted cases, the chatbot automation description 

Table 2   Results of the custom 
questionnaire: p-values are 
calculated using Wilcoxon’s 
signed-rank test, and the effect 
sizes are calculated using the 
rank-biserial correlation

Statement System Median Mean St. dev p-value Effect size

S1 RuleBot +  +  5 4.75 0.44 0.004 0.879
Home Assistant 4 3.81 0.83

S2 RuleBot +  +  5 4.50 0.50 0.003 0.945
Home Assistant 3 3.00 0.81

S3 RuleBot +  +  5 4.69 0.47 0.006 0.939
Home Assistant 3 3.31 1.30

S4 RuleBot +  +  5 4.75 0.44 0.02 1.0
Home Assistant 4 4.37 0.61

S5 RuleBot +  +  4 4.31 0.60 Not significant Not significant
Home Assistant 5 4.37 0.80
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aligns with the user’s request, but the generated YAML 
code actually includes elements that are inaccurately 
reported—either in whole or in part. Following the defi-
nitions mentioned earlier, we could say that the hallucina-
tions concerning RuleBot +  + are “intrinsic” and “context-
conflicting” since the errors are based on the generated 
source content.

Another important point of discussion, highlighted 
both by the error analysis and user comments, concerns 
the distinction between events and conditions, related to 
both RuleBot +  + and Home Assistant. From this per-
spective, the main difference between the two tools lies 
in the explicitness with which events and conditions are 
defined. Despite users having verbally formalised the 
rules before implementing them and despite the interface 
of Home Assistant being quite clear on where to insert 
the event and where the conditions, users still emphasised 
the difficulty in differentiating the two components. On 
the other hand, when using natural language, it becomes 
more complex to uniquely identify an event and a condi-
tion, given the nature of the language itself. Users were 
instructed to use—preferably but not necessarily—the 
term “when” to identify an event and “if” for a condition. 
Despite this, many users, especially for complex rules with 
multiple conditions, followed a more intuitive interaction 
not strictly adhering to the terms “when” and “if” [21]. 
It is, therefore, clear that for non-expert users, the dif-
ference between the two components is not immediately 
obvious [22, 23], highlighting a need to explicitly repre-
sent the concepts. In the specific case of the conversation, 
the agent should intelligently understand which elements 
of the automation should take on the role of events and 
which others of conditions, guiding the user to the correct 
implementation.

Finally, we want to address a problem related to the per-
ception of RuleBot +  + ’s transparency. Indeed, some users 
have pointed out feeling unsure about what the chatbot was 
doing “behind the scenes” during the creation of automa-
tions, in contrast to Home Assistant’s explicit interface. 
In fact, RuleBot +  + does not expose the system status 
except through the messages it sends to the user (e.g. “I 
have verified the automation”, “I have saved the automa-
tion”). According to the heuristics developed by Nielsen 
[24], showing the system status is one of the key usabil-
ity aspects. Therefore, it is likely that showing the user 
what is happening during the conversation consistently 
and independently from the messages sent by the chatbot 
(e.g. notifying when the chatbot is executing a function) 
could increase the perceived transparency and reliability. In 
addition, since we noticed that some hallucinations could 

occur when RuleBot +  + describes in natural language the 
obtained YAML specification, it can be useful to include 
also alternative representations obtained deterministically.

6 � Conclusions and future work

This study introduces RuleBot +  + , a conversational agent 
leveraging large language models to facilitate the creation 
and modification of smart home automations, offering non-
expert users an intuitive alternative to traditional form-based 
or simple voice command interfaces.

The user test demonstrates how the conversational 
approach can significantly simplify interactions with smart 
home systems by facilitating the configuration of auto-
mations as highlighted by the comparison between Rule-
Bot +  + and Home Assistant. Results show better usability 
and intuitiveness, especially for tasks requiring the integra-
tion of multiple triggers and actions.

However, this study also revealed some inherent chal-
lenges in adopting language models for developing conver-
sational interfaces. Issues such as linguistic ambiguity and 
“hallucinations” of the model can lead to errors or misunder-
standings in interpreting user requests, highlighting the need 
for integrating more robust verification and confirmation 
mechanisms and improving the transparency of the system 
to mitigate such issues.

This study has been useful in exploring the role and pos-
sibilities of ChatGPT in supporting a conversational agent 
for automation creation. The number of user test participants 
is limited, which may impact the generalisability of the find-
ings. Moreover, the architecture and the designed prompt 
could be improved for optimisation purposes.

In future studies, we plan to recruit more specific and 
larger participant groups to gain a deeper understanding of 
the user experience for specific user types (e.g. only users 
without any programming experience) with the proposed 
approach.

Additionally, in-the-wild evaluations (e.g. a 1-month 
trial in users’ homes) could offer further insights into Rule-
Bot +  + ’s impact across a variety of home scenarios of 
everyday life. They can be carried out while exploring the 
integration with a wider range of IoT devices.

In conclusion, RuleBot +  + highlights both the potential 
of conversational interfaces in the domain of home automa-
tion and the challenges and opportunities for future research 
in this dynamic and rapidly evolving field by proposing an 
intuitive and powerful interface for configuring automations 
in intelligent environments.
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Appendix

RuleBot +  + system prompt

The original prompt is in Italian, here is the translated 

English version.
Task: You are now RuleBot, a virtual assistant that helps users manage sensors and smart objects integrated in a smart 

home in natural language. RuleBot can create automations, modify automations and give information about the sensors in 
the smart home.

Task Info:

–	 An automation can also be called a ‘rule’, ‘routine’, ‘trigger-action rule’
–	 Usually a trigger EVENT is identified by the term “when”
–	 Usually a CONDITION is identified by the term “if” or “while”

Task Rules:

–	 Always play the RuleBot role and never step out of the RuleBot character
–	 Always use a simple language that can be understood by non-expert users
–	 Never use YAML or other programming languages or data structures when talking to the user
–	 Do not talk about ‘entity_id’ with the user
–	 If it is not clear whether a trigger is an event or a condition, ask the user if he/she wants to define that trigger as an ‘event’ 

or ‘condition’
–	 If not explicit, always ask the user for values to be assigned to the elements of triggers and actions (e.g. temperature, time, 

brightness, text)

RuleBot functionalities:
“retrieve_entities”:

–	 When you receive the automation description, immediately use ‘retrieve_entities’ and check whether the required devices 
are available in the house

–	 Do not invent sensors/smart objects/information not in the list
–	 When creating, verifying and modifying an automation use only the present ‘entity_id’

“verify_automation”:

–	 Always use this functionality to check if a rule is correct before saving or editing
–	 If the verification is successful, summarise the rule and ask the user if he wants to save it

“save_automation”:

–	 Before being saved, a rule must be successfully verified
–	 ALWAYS ask the user for confirmation before saving an automation

“modify_automation”:

–	 Before editing, an automation must be successfully verified
–	 Always summarise the rule to the user and ask for confirmation before saving the modified automation
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