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Umberto Straccia
ISTI-CNR, Italy

ABSTRACT

This chapter presents anovel approach to fuzzy description logic programs (or simply fuzzy dl-programs)
under the answer set semantics, which is a tight integration of fuzzy disjunctive logic programs under the
answer set semantics with fuzzy description logics. From a different perspective, it is a generalization
of tightly coupled disjunctive dl-programs by fuzzy vagueness in both the description logic and the logic
program component. The authors show that the new formalism faithfully extends both Sfuzzy disjunc-
tive logic programs and fuzzy description logics, and that under suitable assumptions, reasoning in the
new formalism is decidable. The authors present a polynomial reduction of certain fuzzy dl-programs
to tightly coupled disjunctive dl-programs, and we analyze the complexity of consistency checking and
query processing for certain fuzzy dl-programs. Furthermore, the authors provide a special case of fuzzy
dl-programs for which deciding consistency and query processing can both be done in polynomial time

in the data complexity. ‘

INTRODUCTION . so that they can support richer discovery, data inte-
gration, navigation, and automation of tasks. The
main ideas behind it are to add a machine-readable
meaning to Web pages, to use ontologies fora precise
definition of shared terms in Web resources, to use
KR technology for automated reasoning from Web

The Semantic Web (Berners-Lee, 1999; Fensel et
al., 2002) aims at an extension of the current World
Wide Web by standards and technologies that help
machines to understand the information on the Web
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resources, and to apply cooperative agent technol-
ogy for processing the information of the Web.

The Semantic Web consists of several hierar-
chical layers, where the Ontology layer, in form
ofthe OWL Web Ontology Language (W3C,2004;
Horrocks et al., 2003), is currently the highest
layer of sufficient maturity. OWL consists of three
increasingly expressive sublanguages, namely,
OWL Lite, OWL DL, and OWL Full. OWL Lite
and OWL DL are essentially very expressive
description logics with an RDF syntax (Horrocks
et al., 2003). As shown in (Horrocks & Patel-
Schneider, 2004), ontology entailment in OWL
Lite (resp., OWL DL) reduces to knowledge base
(un)satisfiability in the description logic SHIF(D)
(resp., SHOIN(D)). As a next step in the develop-
ment of the Semantic Web, one aims especially
at sophisticated representation and reasoning
capabilities for the Rules, Logic, and Prooflayers
of the Semantic Web.

In particular, there is a large body of work on
integrating rules and ontologies, which is a key
requirement of the layered architecture of the Se-
mantic Web. Significant research efforts focus on
hybrid integrations of rules and ontologies, called
description logic programs (or dl-programs),
which are of the form KB=(L,P), where L is a
description logic knowledge base, and P is a finite
setof rules involving either queries to L in a loose
integration (see especially (Eiteretal.,2008; Eiter
et al., 2004; Eiter et al., 2006)) or concepts and
roles from L as unary resp. binary predicates in
a tight integration (see especially (Lukasiewicz,
2007a; Rosati, 2006)).

Other works explore formalisms for handling
uncertainty and vagueness / imprecision in the
Semantic Web. In particular, formalisms for
dealing with uncertainty and vagueness in ontolo-
gies have been applied in ontology mapping and
information retrieval. Vagueness and imprecision
alsoabound in multimedia information processing
and retrieval. Moreover, handling vagueness is an
important aspect of natural language interfaces to
the Web. There are several recent extensions of
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description logics, ontology languages, and dl-
programs for the Semantic Web by probabilistic
uncertainty and by fuzzy vagueness. In particular,
dl-programs under probabilistic uncertainty and
under fuzzy vagueness have been proposed in
(Lukasiewicz, 2005; Lukasiewicz, 2006b) and
(Straccia, 2006c¢; Straccia, 2006b; Lukasiewicz,
2006a), respectively.

In this paper, we continue this line of research.
We present tightly coupled fuzzy description logic
programs (or simply fuzzy dl-programs) under
the answer set semantics, which are a tight inte-
gration of fuzzy disjunctive programs under the
answer set semantics with fuzzy generalizations of
SHIF(D) and SHOIN(D). Even though there has
been previous work on fuzzy positive dl-programs
(Straccia, 2006c; Straccia, 2006b) and on loosely
coupled fuzzy normal dI-programs (Lukasiewicz,
2006a), to our knowledge, this is the firstapproach
to tightly coupled fuzzy disjunctive dl-programs
(with default negation in rule bodies). The main
contributions of this paper can be briefly sum-
marized as follows:

«  We present a novel approach to fuzzy dl-
programs, which tightly integrates fuzzy
disjunctive programs under the answer set
semantics with fuzzy description logics.
It generalizes the tightly coupled disjunc-
tive dl-programs in (Lukasiewicz, 2007a)
by fuzzy vagueness in both the ontological
and the rule component.

*  We show that the new fuzzy dl-programs
have nice semantic features. In particular,
all their answer sets are also minimal mod-
els, and the cautious answer set semantics
faithfully extends both fuzzy disjunctive
programs and fuzzy description logics.
The new approach also does not need the
unique name assumption.

«  Asan important property, in the large class
of fuzzy dl-programs that are defined over
a finite number of truth values, the prob-
lems of deciding consistency, cautious
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Table 1. Axioms for conjunction and disjunction strategies

Axiom Name

Conjunction Strategy

Disjunction Strategy

Tautology / Contradiction a®0=0 adi=I

Identity a®l=a a®0=a
Commutativity a®b=b®a 4Bb=5bDa
Associativity (a®bYBc=a®(b®c) (aDb)Be=ud(b®c)

Monotonicity

ftb<e,thena®@b<La®e

fb<Le,menadbLade

Table 2. Axioms for implication and negation strategies

Axiom Name

Implication Strategy

Negation Strategy

Tautology / Contradiction

0-5=1, ax1=1, 1&-0=0

o0=1,01=0

Antitonicity

falb thn@az200b

Monotonicity

fa<b thenal>czblc
<al>

fb<Lc,thenalbbsalc

consequence, and brave consequence are
all decidable.

. We present a polynomial reduction for cer-
tain fuzzy dl-programstothetightly coupled
disjunctive dl-programs in (Lukasiewicz,
2007a), and analyze the complexity of con-
sistency checking and query processing for
certain fuzzy dl-programs.

. Furthermore, we delineate a special case of
fuzzy dl-programs where deciding consis-
tency and query processing are both data
tractable.

COMBINATION STRATEGIES

Rather than being restricted to an ordinary bi-
nary truth value among false and true, vague
propositions may also have a truth value strictly
between false and true. In the sequel, we use the
unit interval [0,1] as the set of all possible truth
values, where 0 and 1 represent the ordinary
binary truth values false and true, respectively.
For example, the vague proposition “John is a
tall man” may be more or less true, and it is thus

associated with a truth value in [0,1], depending
on the body height of John.

In order to combine and modify the truth
values in [0,1], we assume combination strate-
gies, namely, conjunction, disjunction, implica-
tion, and negation strategies, denoted ®, @, &,
and @, respectively, which are functions ®, @,
>:[0,1]x{0,1]—{0,1]and @:[0,1]—[0,1] that gen-
eralize the ordinary Boolean operators A, v, —,
and —, respectively, to the set of truth values [0,1].
Fora,be[0,1], we then call a®b (resp., a®b, ar>b)
the conjunction(resp., disjunction, implication) of
a and b, and we call ©a the negation of a.

As usual, we assume that combination strat-
egies have some natural algebraic properties,
namely, the ones shown in Tables | and 2. Note
that conjunction and disjunction strategies (with
the properties in Table 1) are also called triangu-
lar norms (or t-norms) and triangular co-norms
(or s-norms) (Hajek, 1998), respectively. We do
not assume properties that relate the combination
strategies to each other (such as de Morgan’s
law); although one may additionally assume such
properties, they are not required here.
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Table 3. Combination strategies of various fuzzy logics

Eukasiewicz Logic Giidel Logic Product Logic Zadeh Logic
a®b max(a+b-1,0) min(a, b) ab min(a, b)
adb min(a+b,l) max(a,b) a+b-a-b max(a,b)
. 1 ifa<b ’
ach min(l-a+b,1) T T min(1,b/a) max(1-a,b)
1 ifa=0 1 ifa=0
o e 0 otherwise 0 otherwise .

Example 1. The combination strategies of
various fuzzy logics are shown in Table 3. Some
of their further properties are highlighted in Table
4. Note that we cannot enforce that a choice of the
combination strategies satisfies all these proper-
ties, because then the fuzzy logic would collapse
to classical Boolean propositional logic.

FUZZY DESCRIPTION LOGICS

Weassume fuzzy generalizations of the expressive
crisp description logics SHIF(D) and SHOIN(D),
which stand behind OWL Lite and OWL DL,
respectively. We now recall the syntax and the
semantics of fuzzy SHIF(D)and fuzzy SHOIN(D)
(Straccia, 2005; Straccia, 2006a) (see also (Stoilos
etal., 2005)). For further details and background,
see (Lukasiewicz & Straccia, 2008). There also
exists an implementation of fuzzy SHIF(D) under
Zadeh, Lukasiewicz, and classical semantics,
called the fuzzyDL system, see (fuzzyDL, 2008;
Bobillo & Straccia, 2008a).

Intuitively, description logics model a domain
of interest in terms of concepts and roles, which
represent classes of individuals and binary rela-
tions between individuals, respectively. A descrip-
tion logic knowledge base encodes in particular
subset relationships between classes of individu-
als, subsetrelationships between binary relations,
the membership of individuals to classes, and
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the membership of pairs of individuals to binary
relations. In fuzzy description logics, these rela-
tionships and memberships then have a degree
of truth in [0,1].

Syntax

We first define the syntax of fuzzy SHOIN(D).
The elementary ingredients are similar to the ones
of crisp SHOIN(D), except that we now also have
fuzzy datatypes and fuzzy modifiers. We assume
asetofdatavalues, a set of elementary datatypes,
and a set of datatype predicates (each with a pre-
defined arity n > 1). Adatatype is an elementary
datatype or a finite set of data values. A fuzzy
datatype theoryD=(A®,®) consists of a datatype
domain A” and a mapping -® that assigns to each
data value an element of AP, to each elementary
datatype asubset of A®, and to each datatype predi-
cate of arity n a fuzzy relation over AP of arity »
(that is, a mapping (A”)"—[0,1]). We extend -° to
all datatypes by {v,...,u,}* = {+},...,v°} .

Example 2. A crisp unary datatype predicate
<, Overthenatural numbers denoting the integers
of at most 18 may be defined by <, (z) =1,
if <18, and <4 (2) =0, otherwise. Then,
Minor = Person A age. <, defines a person
of age at most 18.

Non-crisp predicates are usually defined by
functions for specifying fuzzy set membership
degrees, such as the well-known trapezoidal,
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Table 4. Further properties of the combination strategies of various fuzzy lo gics

Property Eukasiewicz Logic

Gidel Logic

Product Logic Zadeh Logic

a®0a=0

a®ea=I

a®a=a

a®a=a

@Ba=a

acb=Qa®b

O(axby=a®0b

O(a®b)=0aBob

O(aDb)=0a®cb

Figure 1. (a) Trapezoidal function trz(x;a,b,c,d), (b) triangular function tri(x;a, b,c), (c) left-shoulder
JSunction Is(x;a,b), and (d) right-shoulder function rs(x;a,b)

LA

(a) (b)

triangular, left-shoulder, and right-shoulder func-
tions (see Fig. 1).

Example 3. A fuzzy unary datatype predi-
cate Young over the natural numbers denoting
the degree of youngness of a person’s age may
be defined by Young(x)=Is(x;10,30). Then,
YoungPerson=Personn3age, Young denotes a
young person.

LetA,R , R ,I,and M be pairwisedisjoint sets
ofatomic concepts, abstract roles, datatype roles,
individuals, and fuzzy modifiers, respectively.
Here, a fuzzy modifier m (Holldobler et al., 2004;
Tresp & Molitor, 1998) represents a function £,
on [0,1], which changes the membership function
of a fuzzy set.

Example 4. The fuzzy modifiers very resp.
slightlymay represent the two functions very(x)=x>

resp. slightly(z) = Jz . Then, the concept of

() (d)

sports cars may be defined as SportsCar=Carn3
speed,very(High), where High is a fuzzy datatype
predicate overthe domain of speed in km/h, which
may be defined as High(x)=rs(x;80,250).

Roles and concepts in fuzzy SHOIN(D) are
defined in nearly the same way as concepts in
SHOIN(D), except that we now also allow fuzzy
modifiers from M asunary operators on concepts.
Arole is any element of R, UR UR | (where
R’ is the set of inverses R of all ReR ). We
define concepts inductively as follows. Each
AeA is a concept, L and T are concepts, and if
a,,.....a cl, then {a,,...,a } is a concept (called
oneOf). If C,C , C,are concepts, R R, UR,
and meM, then (C,1C,), (C,UC,), ~C, and m(C)
are concepts (called conjunction, disjunction,
negation, and fuzzy modification, respectively),
aswellas3R.C,VR.C, > nR,and < nR (called
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existential, value, atleast, and atmost restric-
tion, respectively) for an integer n > 0.IfDis
a datatype and I.T,,....T,€R,, then 37T,,...,T,D,
Y7110 = nT, and <nT are concepts
(called datatype existential, value, atleast, and
atmost restriction, respectively) for an integer
n > 0. We eliminate parentheses as usual.

A crisp axiom has one of the following
forms:

1. CLCD (called concept inclusion axiom),
where C and D are concepts (note that con-
cept inclusion axioms CCD involve fully
general concepts C and D);

2. RCS (called role inclusion axiom), where
either R,S € R,/ UR] or RSeR;

3. Trans(R) (called transitivity axiom), where
ReR ;

4. C(a)(called conceptassertionaxiom), where
C is a concept and a<l;

5. R(ab) (resp., T(a,v)) (called role assertion
axiom), where ReR, (resp., TeR,) and
abel (resp., acl and v is a data value);
and

6. A=b(resp.,a;fb)(equality(resp.,:‘nequa!fq;)
axiom), where a,b€I (note that the equality
(resp., inequality) in equality (resp., inequal-
ity) axioms is crisp).

We define fuzzy axioms as follows: A fuzzy
concept inclusion (resp.,fuzzyrole inclusion, fuzzy
concept assertion, fuzzy role assertion) axiom is
of the form afn, where « is a concept inclusion
(resp., role inclusion, concept assertion, role
assertion) axiom, 6 € {<,=,>}, and ne[0,1].
Informally, a < n (resp., a=n, a = n ) encodes
that the truth value of a is at most (resp., equal
to, at least) n. We often use a fo abbreviate a=1.
A fuzzy (description logic) knowledge base L is
a finite set of fuzzy axioms, transitivity axioms,
and equality and inequality axioms. For decid-
ability, number restrictions in L are restricted to
simple abstract roles; informally, such roles are
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abstract roles with no transitive subroles, where
subrole is the reflexive and transitive closure of
“_” between roles (see (Horrocks etal., 1999) for
details). Notice that L may contain fuzzy concept
inclusion axioms (between general concepts).

Fuzzy SHIF(D) has the same syntax as fuzzy
SHOIN(D), but without the oneOf constructor and
with the atleast and atmost constructors limited
to 0 and 1.

Example 5 (Shopping Agent). A fuzzy de-
scription logic knowledge base L encoding a car
selling Web site (such as, e.g., the one at http:/
www.autos.com) may contain in particular the
following axioms:

CarsUTrucksUVanslUSUVsCTV ehicls; (D)
PassengerCarsULuxuryCarsCCars; (2)

CompactCarsuMidezeCarsLJSponyCarsI;Pas
sengerCars (3)

CarsC(3hasReview.Integer)(hasnvoice.
Integer)

M(3hasResellValue. Integer)\(FhasMaxSpeed.
Integer)

M(3hasHorsePower.Integer)...; 4)

MazdaMX5Miata:SportyCarsT(3hasInvoic
e.18883)

M(3hasHorsePower.166)1...; (5

MitsubishiExlipseSpyder:SportyCarsT\(3hasInv
oice.24029)

M(3hasHorsePower.166)1... (6)

Egs. 1-3 describe the concept taxonomy ofthe
site, while Eq. 4 describes the datatype attributes
of the cars sold in the site. For example, all cars,
trucks, vans, and SUVs are vehicles, and every
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car is related via the datatype role hasReview to
an integer value. Furthermore, Eqs. 5-6 describe
the properties of some sold cars. For example, the
MazdaMX5Miata is a sports car, costs 18883 €,
and has a power of 166 HP.

We may then encode “costs at most about
22000 €” and “has a power of around 150 HP” in
a buyer’s request through the following concepts
¢ and D, respectively:

C=3hasInvoice. LegAbout22000 and
D=3hasHorsePower.Around150

where LegAbout22000 and Aroundl50 are fuzzy
datatype predicates for “at most about 22000
€” and “around 150 HP”, which are defined
by LegAbout22000(x)=Is(x; 22000.25000) and
Around150(x)=tri(x; 125,150.175) (see Fig. 1),
respectively. The former is modeled as a left
shoulder function stating that if the prize is less
than 22000 €, then the degree of truth (degree of
buyer’s satisfaction) is 1, else the truth is linearly
decreasing to 0, reached at 25000 €. In fact, we
are modeling a case were the buyer would like
to pay less than 22000 €, though may still accept
a higher price, up to 25000 €, to a lesser degree.
Similarly, the latter models the fuzzy concept
“around 150 HP” as a triangular function with
vertice in 150 HP.

Semantics

We now define the semantics of fuzzy SHIF(D)
and fuzzy SHOIN(D). The main idea behind it is
that concepts and roles are interpreted as fuzzy
subsets of an interpretation’s domain. Therefore,
rather than being satisfied (true) or unsatisfied
(false) in an interpretation, axioms are associated
with adegree of truth in [0,1]. In the following, let
®, ®, >, and © be arbitrary but fixed conjunction,
disjunction, implication, and negation strategies
(see Table 3), respectively.

Afuzzy interpretation 1-(A',-Vrelative to a fuzzy
datatype theory D=(AP,-?) consists of a nonempty
set A' (called the domain), disjoint from A®, and
of a fuzzy interpretation function -' that coincides
with -® on every data value, datatype, and fuzzy
datatype predicate, and it assigns

. to each individual @€l an element a'e A";

«  to each atomic concept A€A a function
A:A'—[0,1];

. to each abstract role ReR, a function
R:A'<A'—[0,1];

«  to each datatype role TR, a function
T':A'xA°—[0,1];

. to each fuzzy modifier meM the modifier
function m'=f :[0,1]—[0,1]. For properties
of such modifier functions, we refer the
reader to (Hajek, 1998).

The mapping ' is extended to all roles and
concepts as follows (where x,yeA'):

(R_:'f(""'t;if) = R¥(y,=x);
T (2) -
1* () = 0

1 ifxe {nlI.,,.,u"’};

T
hyeeeylh F =
(et} () 0 otherwisc;

(c,n Cv’!)z[::;} = Cf(z)® C_‘f(:l.‘);

(C1 u C_I)I(::.'} = CJI (i) € C_:l ()

(—~C) () = @C =)

(m(C))* () = w*(C*(x));

(AR.C)* () = uurr)R’{::,y)ooCI(y):

VROF() = mfR(n)o O

(= nR) () = ¢ HuUp é R (z,y,)
Byt WAT e, N =1

(< nR) () - iuf (@R (=) & 0;
neery li!\r.rlcl....:“ Ill-- wl iml

wmp (@ T (x,,)) 8 D°(y,,-.-, 4, %

FrL
Bt BADin)

(3T,....T..DY(x)

]

Wl (@ TE@1) D DOt )

pyeon, @A imt

(V... T, D) z)

(= HT)I(:::}

Il

sup é Tx(-"'h.'f,);

o 1
LR R R li=n

(€ nT) (x)

it (& T (51) > 0.

D
DL L TR LT
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The mapping T is extended to concept inclu-
sion, role inclusion, concept assertion, and role
assertion axioms as $\top$ follows (where a,bel
and ve AP):

(CED) = infC*(z)> D*(z);
:EAI

(RCS)Y = ianRI (z,y) > 87 (z,y);
ERTLTAY

@TEUy = inf  T*(z,y) > U*(z,y);
[.-r:‘y)E&Ix:'_\.D g

(C)* = O (%)

(R(a,b))" = R*(a%,b%);

(T(a,v))* = T*(a*,v")

The notion of a fuzzy interpretation I satisfy-
ing a transitivity, equality, inequality, or fuzzy
axiom E, or I being a model of E, denoted IFE,
is defined as follows:

e [FTrans® iff

RI (I: y) 2 Supze,r_\IRI (‘T": Z) ® RI (‘31 y)

for all x,yeA';
- IEa=b iff a'=b', and IFa#b iff a'#b'; and
. IFabn iff alfn

A concept C is satisfiable iff there exists an
interpretation I and an individual xe Al s'ch that
CI(x>0. We say 1 satisfies a fuzzy description
logic knowledge base L, or I is a model of L,
denotedI=L, iff | satisfies every E€L. We say L
is satisfiable iff there exists a model of L. 4 fuzzy
axiom E is a logical consequence of L, denoted
LEE, iff every model of L satisfies E.

Example 6 (Shopping Agent cont’d).
Consider again the fuzzy description logic
knowledge base L in Example S. It is not dif-
ficult to verify that L is satisfiable, and that
the crisp axioms PassengerCarsCVehicles and
SportyCars(MazdaMX5Miata) are logical con-
sequences of L. Informally, all passenger cars
are vehicles, and the MazdaMX5Miata is a sports
car, respectively. The following fuzzy axioms are
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some other logical consequences of L (under the
Zadeh semantics of the connectives):

C(MazdaMX5Miata)=1.0;
C(MitsubishiExlipseSpyder)=0.32;

D(MazdaMX5Miata)=0.36;
D(MitsubishiExlipseSpyder)=0.52

Informally, the two cars MazdaMX5Miata and
MitsubishiEclipseSpyder cost atmostabout 22000
€tothe degrees of truth 1.0 and 0.32, respectively,
and they have a power of around 150 HP to the
degrees of truth 0.36 and 0.52, respectively.

FUZZY DESCRIPTION
LOGIC PROGRAMS

In this section, we present a tightly coupled
approach to fuzzy disjunctive description logic
programs (or simply fuzzy dl-programs) under
the answer set semantics. We extend the tightly
coupled disjunctive description logic programs
in (Lukasiewicz, 2007a), which have very nice
features compared to other tightly coupled descrip-
tion logic programs; see (Lukasiewicz, 2007a)
for more details on these crisp programs and a
comparison to related works in the literature.
Note that differently from (Lukasiewicz, 2006a)
(in addition to being a tightly coupled approach
to fuzzy dl-programs), the fuzzy dl-programs here
additionally allow for disjunctions in rule heads.
We first introduce the syntax of fuzzy dl-programs
and then their answer set semantics.

The basic idea behind the tightly coupled ap-
proach in this section is as follows. Suppose that
we have a fuzzy disjunctive program P. Under
the answer set semantics, P is equivalent to its
grounding ground(P). Suppose now that some of
the ground atoms in ground(P) are additionally
related to each other by a fuzzy description logic
knowledge base L. That is, some of the ground
atoms in ground(P) actually represent concept
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and role memberships relative to L. Thus, when
processing ground(P), we also have to consider
L. However, we only want to do it to the extent
that we actually need for processing ground(P).
Hence, when taking a fuzzy Herbrand interpreta-
tion ICHB,, we have to ensure that / represents a
valid truth value assignment relative to L. In other
words, the main idea behind the semantics is to
interpret P relative to Herbrand interpretations
that also satisfy L, while L is interpreted relative
to general interpretations over a first-order do-
main. Thus, we modularly combine the standard
semantics of fuzzy disjunctive programs and
of fuzzy description logics as in (Lukasiewicz,
2006a), which allows for building on the standard
techniques and the results of both areas. However,
our new approach here allows for a much tighter
integration of L and P.

Syntax

We assume a function-free first-order vocabulary
® with nonempty finite sets of constant and predi-
cate symbols. We use @_ to denote the set of all
constant symbols in ®. We also assume pairwise
disjoint denumerable sets A, R, R, I, and M of
atomic concepts, abstract roles, datatype roles,
individuals, and fuzzy modifiers, respectively, as
in the previous section. We assume that ®_is a
subset of L. This assumption guarantees thatevery
ground atom constructed from atomic concepts,
abstract roles, datatype roles, and constants in
®_ can be interpreted in the description logic
component. We do not assume any other restric-
tion on the vocabularies, that is, ® and A (resp.,
R UR ) may have unary (resp., binary) predicate
symbols in common.

Let X be a set of variables. A term is eithera

variable from X or a constant symbol from ®. An
atom is of the form p(¢,,..., ), where p is a predi-
cate symbol of arity " 2 0 from @,and L,....t,are
terms. A literal ] is an atom p or a default-negated
atom notp. Note that the default-negated atom nozp

refers to the lack of evidence about the truth of
the atom p, and thus has a different meaning than
the classically negated atom —p, which refers to
the presence of knowledge asserting the falsehood
of the atom p. A disjunctive fuzzy rule (or simply
fuzzy rule) r is of the form

("l Vv eV Q. — :

* gk “y

b A, A, A b A
1778y "hiey L

not, b A, A,

not, b >w,
ke+1 Feal Zm=1 St

(7

where [ >1, m>k>0,a,...,a, b, ,....b, are
atoms, b],...,bk are either atoms or truth values
from [0,1], ®,,...,®,, are disjunction strategies,
®p---,®,,, are conjunction strategies, ©,, .- -,O
are negation strategies, and ve[0,1]. We refer to
a, V@1 \/$1_1 a, asthe head of r, while the con-

junction b, /\Q_o] Ny MOt

m—1 Tm

We define H(r)={a,,...,a,} and B(r)=B*(r)uB(r),
where B*(r)={b,,...,b,} and B(ry={b,,s---sb,}- A
disjunctive fuzzy program (or simply fuzzy pro-
gram) P is a finite set of fuzzy rules of the form
(7). We say P is a normal fuzzy program iff =1
for all fuzzy rules (7) in P. We say P is a posi-
tive fuzzy program iff I=1 and m=k for all fuzzy
rules (7) in P. -

A disjunctive fuzzy description logic program
(or simply fuzzy dl-program) KB=(L,P) consists
of a fuzzy description logic knowledge base L
and a disjunctive fuzzy program P. It is called a
normal fuzzy dl-program iff P is a normal fuzzy
program. It is called a positive fuzzy dl-program
iff P is a positive fuzzy program.

Example 7 (Shopping Agent cont’d). A
fuzzy dl-program KB=(L,P) is given by the fuzzy
description logic knowledge base L in Example 5
and the set of fuzzy rules P, which contains only
the following fuzzy rule (where x®y=min(x,y)):

m

b isthebodyofr.

m

SportyCar(x) A, hasInvoice(x,3,) A, hasHorsePower(z,y,) A
LeqAbout22000(y,) A, Around150(y,) 2 1.

query(z) —,
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Informally, the predicate query collects all
sports cars, and ranks them according to whether
they cost at most around 22000 € and have around
150 HP (such acar may be requested by acar buyer
with economic needs). Another fuzzy rule is given
as follows (where ©@x=1-x and Around300=tri(x;
250,300.350)):

querf(z) —, SportyCar(z) Ay : nvoice(z,y,) Ay hasMazSpeed(z, nl}i\a
not, LeqAbout22000(y,) A, Around300(y,) 2 1.

Informally, this rule collects all sports cars,
and ranks them according to whether they cost
at least around 22000 € and have a maximum
speed of around 300 km/h (such a car may be
requested by a car buyer with luxurious needs).
Another fuzzy rule involving also adisjunction in
its head is given as follows (where x®y=max(x.y)
and GegAbout15000(x)=rs(x; 12000. 15000)):

Small(z) v, Old(z) «, Car(z) A, hasInvoice(z,y) A,
not_ GeqAbout15000(y) = 0.7.

This rule says that a car costing at most around
15000 € is either small or old. Observe here that
Small and Old may be two concepts in the fuzzy
description logic knowledge base L. That is, the
tightly coupled approach to fuzzy dl-programs
under the answer set semantics also allows for
using the rules in P to express relationships
between the concepts and roles in L. This is not
possible in the loosely coupled approach to fuzzy
dl-programs under the answer set semantics in
(Lukasiewicz, 2006a), since the dI-queries of that
framework can only occur in rule bodies, but not
in rule heads.

Semantics

We now define the answer set semantics of fuzzy
dl-programs via a generalization of the standard
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Gelfond-Lifschitz transformation (Gelfond &
Lifschitz, 1991).

In the sequel, let KB=(L,P) be a fuzzy dl-pro-
gram. A ground instance of arule r€ P is obtained
from 7 by replacing every variable that occurs in
r by a constant symbol from @_. We denote by
ground(P) the set of all ground instances of rules
in P. The Herbrand base relative to @, denoted
HB,, is the set of all ground atoms constructed
with constant and predicate symbols from @.
Observe that we define the Herbrand base relative
to @ and not relative to P. This allows for rea-
soning about ground atoms from the description
logic component that do not necessarily occur in
P. Observe, however, that the extension from P
to @ is only a notational simplification, since we
can always make constant and predicate symbols
from @ occur in P by “dummy” rules such as
constant(c)«— and p(c)<—p(c), respectively. We
denote by DL, the set of all ground atoms in HB,,
that are constructed from atomic concepts in A,
abstract roles in R, concrete roles in R, and
constant symbols in @ .

We define Herbrand interpretations and the
truth of fuzzy dl-programs in them as follows.
An interpretation I is a mapping LHB,_, .. We
write HB, to denote the interpretation I'such that
I(a)=1 for all ae HB,. For interpretations /and J,
we write IcJ iff I(a) < J(a) forall ac HB,, and
we define the intersection of I and J, denoted
INJ, by (INJ)(@y=min(/(a),/(a)) for all acHB,,.
Observe that ICHB, for all interpretations /. We
say that I is a model of a ground fuzzy rule r of
the form (7), denoted JF=r, iff

1) ®, -+ ®,, I(4) ®,6,,10,,) fm2}
Ia)®, & _ I(a) 2 ®,,, " ®., 0 Ib,)®,v
v otherwise.

(8)

Here, we implicitly assume that the disjunc-
tion strategies @,,...,®,, and the conjunction
strategies ®,,...,®, ,®, are evaluated from

left to right (as they may not coincide). Notice
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also that the above definition implicitly as-
sumes an implication strategy t> that is defined

by ab>b=sup{c€[0,1]la®,c<b} forall "

a,be[0,1] (and thus for n,me[0,1] and a=n, it
holdsthat a b2 m iff b 2 n® m, if we as-
sume that the conjunction strategy &, is continu-
ous). Observe that such a relationship between
the implication strategy > and the conjunction
strategy ® (including also the continuity of ®)
holds in Lukasiewicz, Gédel, and Product Logic
(see Table 3).

We say that / is a model of a fuzzy program P,
denoted JEP, iff Ier for all re ground(F). We say [
is a model of a fuzzy description logic knowledge
base L, denoted IFL, iff Lu{a=Ka)acHB,} is
satisfiable. Intuitively, I is compatible with L.
An interpretation ICHB, is a model of a fuzzy
dl-program KB=(L, P), denoted I=KB, iff I=L and
J=P. We say KB is satisfiable iff it has a model.

The Gelfond-Lifschitz transform of a fuzzy
dl-program KB=(L,P) relative to an interpreta-
tion ICHB,, denoted KB, is defined as the fuzzy
dl-program (L, P'), where P' is the set of all fuzzy
rules obtained from ground(P) by replacing all
default-negated atoms not_ b, by the truth value

@JI(bj), We are now ready to define the answer set
semantics of fuzzy dl-programs as follows.

Definition 8. Let KB=(L,P) be a fuzzy dl-
program. An interpretation ICHB, is an answer
set of KB iff I'is a minimal model of KB'. We say
that KB is consistent (resp., inconsistent) iff KB
has an (resp., no) answer set.

Example 9 (Shopping Agent cont’d). Con-
sider again the fuzzy dl-program KB=(L,P) of
Example 7. It is not difficult to verify that KB
has an answer set, and so is consistent. In fact,
KB has a unique answer set M, and the following
holds for M.

M(query(MazdaMX5Miata))=0.36; M(query(Mi
tsubishiEclipseSpyder))=0.32

For example, the first value follows from

min(min(min(min(min(1,1),1),s(1 8883;
22000,25000)),2i(166; 125,150,175)).1)=0.36

We finally define the notions of cautious (resp-,
brave) reasoning from fuzzy dl-programs under
the answer set semantics as follows.

Definition 10. Let XB=(L,P) be a fuzzy dI-
program. Let ae HB, and ne[0,1]. Then, @ 2 n
isa cautious (resp., brave) consequence of a fuzzy
dl-program KB under the answer set semantics
iff I(a) = n for every (resp., some) answer. set
Iof KB.

Example 11 (Shopping Agent cont’d). Con-
sideragain the fuzzy dl-program KB of Example7.
ByExample9, query(MazdaM X5Miata) 2 0.36
and query(Mz’tsubishz’Eclz’pseSpyder) > 0.32are
both cautious and brave consequences of KB.

SEMANTIC PROPERTIES

In this section, we summarize some important
semantic properties of fuzzy dl-programs under
the above answer set semantics.

Minimal Models

The following theorem shows that, like for ordi-
nary disjunctive programs, every answer set ofa
fuzzy dl-program KB is also a minimal model of
KB, and the answer sets of a positive fuzzy dl-
program KB are the minimal models of KB.
Theorem 12. Let KB=(L,P) be a fuzzy dl-
program. Then; (a) every answer sel of KB is a
minimal model of KB, and (b) if KB is positive,

then the set of all answer sets of KB is given by

the set of all minimal models of KB.
Faithfulness
An important property of integrations of rules and

ontologies for the Semantic Web is that they are
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a faithful (Motik et al., 2006) extension of both
rules and ontologies.

The following theorem shows that the answer
set semantics of fuzzy dl-programs faithfully ex-
tends its counterpart for fuzzy programs. That is,
the answer set semantics of a fuzzy dl-program
KB=(L,P) with empty fuzzy description logic
knowledge base L coincides with the answer set
semantics of its fuzzy program P.

Theorem 13.Let KB=(L,P) be a fuzzy dl-pro-
gram such that L=Q. Then, the set of all answer
sets of KB coincides with the set of all answer
sets of the fuzzy program P.

The next theorem shows that the answer set
semantics of fuzzy dl-programsalso faithfully ex-
tends the first-order semantics of fuzzy description
logic knowledge bases. That is, for ac HB, and
ne[0,1], it holds that @ > n istrue in all answer
sets of a positive fuzzy dl-program KB=(L,P) iff
a 2 n is true in all fuzzy first-order models of
Luground(P). The theorem holds also when a is
a ground formula constructed from HB, using A
and v, along with conjunction and disjunction
strategies ® resp. ©.

Theorem 14.Let KB=(L,P) be a positive
fuzzy dl-program, and let ac HB and ne[0,1].
Then, a > n is true in all answer sets of KB iff
a = n is true in all fuzzy first-order models of
Luground(P).

As an immediate corollary, we obtain that
a > n is true in all answer sets of a fuzzy dl-
program KB=(L,d) iff a > n is true in all fuzzy
first-order models of L.

Corollary 15.Let KB=(L, P) be a fuzzy dl-pro-
gramwithP=J, andletac HB andn<[0,1). Then,
a > n istrue in all answer sets of KB iff a > n
is true in all fuzzy first-order models of L.

Unique Name Assumption

Another aspect that may not be very desirable in
the Semantic Web (Horrocks & Patel-Schneider,
2006) is the unique name assumption (which says
thatany two distinctconstantsymbols in @ _repre-
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sent two distinct domain objects). It turns out that
we actually do not have to make this assumption,
since the fuzzy description logic knowledge base
of a fuzzy dl-program may very well contain or
imply equalities between individuals. Intuitively,
since we have no unique name assumption in L,
we also do not have to make the unique name
assumption in P.

Example 16. The unique an-
swer set of the fuzzy dl-program
KB = (L, P) = ({a = b}, {p(a) > 0.7}), where
a,be® NI and pe®NA, associates with both
ground atoms p(a) and p(b) the value 0.7, since L
contains the equality axiom a=b, and P contains
the fuzzy fact p(a) > 0.7.

Thisresultis included in the following theorem,
which shows an alternative characterization of
the satisfaction of L in ICHB,: Rather than being
enlarged by a set of axioms of exponential size,
L is enlarged by a set of axioms of polynomial
size. This characterization essentially shows that
the satisfaction of L in 7 corresponds to checking
that (i) / restricted to DL, satisfies L, and (ii) /
restricted to /B -DL  does not violate any equal-
ity axioms that follow from L. In the theorem, an
equivalence relation ~on @ _is admissible with an
interpretation ICHB, iff I(p(c,,...,c ))=I(p(c,.,...
.c,.)) forall n-ary predicate symbols p, where n>0,
and constant symbols AR D R ®_such
that erc, for all ie {1,...,n}.

Theorem 17.Let L be a fuzzy descrip-
tion logic knowledge base, and let ICHB,.
Then, Lu{a=I(a)lacHB,} is satisfiable iff
Lu{a=Ka)lac DL} {c#c'|c~c'} is satisfiable

Jfor some equivalence relation ~ on ®_ admis-
sible with L.

REDUCTION OF FUZZY
DL-PROGRAMS TO DL-PROGRAMS

In this section, we present a polynomial reduc-
tion of fuzzy dl-programs to the tightly coupled
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dl-programs in (Lukasiewicz, 2007a). Hence,

reasoning in fuzzy dl-programs under the answer ‘

set semantics can be reduced to

1. reasoning in tightly ooupled dl-programs
under the answer set semantics, and
2. reasoning in fuzzy description logics.

Similarly, reasoning in fuzzy description log-
ics is additionally reduced to reasoning in crisp
description logics, as shown in (Bobillo et al,,
2006; Bobillo & Straccia, 2008b; Bobillo et al.,
2008; Straccia, 2004).

The reduction applies to all fuzzy dl-programs
KB that

1. are closed under TVH={0,l/n,...,n/n} for
some n>0, and

2. contain only combination strategies from
Zadeh Logic. '

Here, KB is closed under TV iff

1. everydatatype predicate in KB is interpreted
by a mapping to TV,

2. every fuzzy modifier m in KB is interpreted
by a mapping f,: TV,— IV,

3. every truth value in KB is from TV, and

4. every combination strategy in KB is closed
under TV, (which holds, e.g., for the com-
bination strategies of Lukasiewicz, Godel,

and Zadeh Logic).

Note that for fuzzy dl-programs KB that
are closed under TV, the problems of deciding
consistency, cautious consequences, and brave
consequences are all decidable, since we only
have to consider the finite number of interpreta-
tions ICHB to TV,

We first give some preparative definitions
as follows. We denote by @ the alphabet that is
obtained from the alphabet @ by replacing every
predicate symbol p by the new predicate sym-

bols p*with & € TV," =TV, \ {0}. For atoms
a=p(t,,...,t)and c € TV, theatoma“over Pnis
defined by aa™a(",... tk). Every fuzzy interpreta-
tion [cCHB®i associated with thebinary interpreta-
tont(I) = {a" |a € HB,, « € TV, I(a) > a}.

We are now ready to define the polynomial
reduction of fuzzy dl-programs to the tightly
coupled dl-programs in (Lukasiewicz, 2007a). The
crisp transform of a fuzzy dl-program KB=(L,P)
is the crisp dl-program t(KB)=(t(L),t(P)), where
t(L) is the crisp transformation of L according
to (Bobillo et al., 2008) and t(P) is the set (i)
of all rules p’¢1, ,xk)«—p°(*/,... xk) uch that p
is a k-ary predidéte symbol from ®, x1,.. xk
ae distinct variables, o €TV] \{1/n},
and B=a-1/n, and (ii) of all rules
a V- Va' bl A Ab Amnot bl A--Anot by
such that a rule of the form (7) belongs to P,
ac TV:’, a £ v,andy=/-o+1/n. Note here that
the generated crisp description logic componeht
t(L) and the generated crisp logic program com-
ponent t(P) have both a polynomial size in KB
and TV“Jr (assuming a unary number encoding
for the truth values).

Example 18 (Shopping Agent cont’d). The
last fuzzy dl-rule of Example 7 is translated into
the following dl-rules in the crisp transform (for
TVI, {0,0.1,...,1}):

Small* () v Old* (%)
Sall® () v OW"* ()
Small®ee) Vv Ol ()
Smalt* (5} v OW™ ()
Small" () v OW** (x)
Smalt* ™) v Old""(i)
Small"T (v) v OLd"7 ()

Car (i) A howbnooiee™ (z,9) A not Ceydbout 15000 (4),
v, ) A nol Clege bout 15000" (),
i, %) A nol CogAbout! S000™ (),
Car™ () /\‘!umlmmica &, 4} A nal Cegadbout L5000 (),
Car* () A hastnovice”® (2, g} A not GegA boutl 8000 (),
Car*® () A hastnvoive”" (e, y) A not ClegAbout 1 5000" (),
Car™ () A hastuvoiee"™ (e,9) Anol Geg:Ahout 15000" ().

Clar™ () A hastnvoice

Car”* () A haxfnnoice

IR IR IR R A

The following theorem shows that, for certain
fuzzy dl-programs KB, the answet sets of KB cor-
respond to the answer sets of the crisp transform
of KB.

Theorem 19.Let KB=(L, P) be a fuzzy dl-pro-
gram that (1) is closed under TV ={0,1/n,....n/n}
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for some n>0 and (ii) contains only combination
strategies from Zadeh Logic. Then, ICHB s

an answer set of KB iff ((I) is an answer set of

KKB).

COMPLEXITY

The following theerem shows that, for certain
fuzzy dl-programs, consistency checking and cau-
tious / brave reasoning are complete for NEXPN?
and co-NEXPY /NEXT™, respectively, and thus
have the same complexity as consistency check-
ing and cautious / brave reasoning for the tightly
coupled disjunctive dl-programs in (Lukasiewicz,
2007a). These results follow from the complex-
ity of consistency checking and cautious / brave
reasoning for the tightly coupled disjunctive
dl-programs in (Lukasiewicz, 2007a): the lower
complexity bounds, because the tightly coupled
disjunctive dl-programs in (Lukasiewicz, 2007a)
are a special case of fuzzy dl-programs, and the
upper complexity bounds, because of the poly-
nomial reduction in Theorem 19.

Theorem 20.Given (i) a finite set of truth
values TV ={0,1/n,...,n/n} with n>0, (ii) a fuzzy
dl-program KB=(L,P) such that (ii.1) KB is
closed under TV, (ii.2) KB has only combina-
tion strategies from Zadeh Logic, and (ii.3) L is
in fuzzy SHIF(D) or fuzzy SHOIN(D), and (iii)
aeHB and ve[0,1],

(a) deciding whether KB has an answer set is
complete for NEXP™?, and

(b) deciding whether o Z vis true in every
(resp., some) answer set of KB is complete
for co-NEXP™(resp., NEXPN?).

TRACTABILITY RESULTS

In this section, we present a special class of fuzzy
dl-programs KB for which the problems of decid-
ing consistency and of query processing are both
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datatractable. These fuzzy di-programs are defined
relative to fuzzy DL-Lite (Straccia, 2006b) (see
also (DLMedia, 2008; Straccia & Visco, 2007)),
which is a fuzzy generalization of the description
logic DL-Lite (Calvanese et al., 2007). Note that
DL-Lite and its variants are able to capture the
main notions of both ontologies and conceptual

- modeling formalisms in databases and software

engineering (Calvaneseetal., 2007). By (Straccia,
2006b) (resp., (Calvanese et al., 2007)), deciding
whether aknowledge base in DL-Lite (resp., fuzzy
DL-Lite) is satisfiable can be done in polynomial
time, and conjunctive query processing from a
knowledge base in DL-Lite (resp., fuzzy DL-Lite)
can also be done in polynomial time in the data
complexity.

We first recall DL-Lite and fuzzy DL-Lite. Let
A, R, and I be pairwise disjoint sets of atomic
concepts, abstract roles, and individuals, respec-
tively. A basic concept in fuzzy DL-Lite is either
an atomic concept from A or an existential restric-
tion on roles 3R, T (abbreviated as 3R), where
ReR,UR]. A literal in DL-Lite is either a
basic concept b or the negation of a basic concept
—b. Concepts in DL-Lite are defined by induction
as follows. Every basic concept in DL-Lite is a
concept in DL-Lite. If b is a basic concept in DL-
Lite, and ¢, and ¢, are concepts in DL-Lite, then
—b and ¢ M ¢, are also concepts in DL-Lite. An
axiom in DL-Lite is either

1. aconceptinclusion axiom bC¢, where bisa
basic concept in DL-Lite, and ¢ is a concept
in DL-Lite, or

2.  a functionality axiom (functR), where
ReR,UR],or '

3. aconcept assertion axiom b(a), where b is
a basic concept in DL-Lite and acl, or

4. arole assertion axiom R(a,c), where ReR,
and g,cel.

A fuzzy concept (resp., role) assertion axiom is
of the form b(a) > n (resp., R(a,c) > n ), where
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b(a) (resp., R(a,¢)) is a concept (resp., role) asser-.
tion axiom in DL-Lite,and ne[0,1]. A fuzzy axiom,
in DL-Lite is eithera fuzzy conceptassertion axiom
orafuzzy role assertion axiom. A fuzzy knowledge
base in DL-Lite L is a finite set of concept inclu-
sion, functionality, fuzzy concept assertion, and
fuzzy role assertion axioms in DL-Lite.

We next define a preparative transformation
on certain fuzzy dl-programs. For the conjunc-
tion strategies of Godel and Zadeh Logic, every
knowledge base in fuzzy DL-Lite L can be trans-
formed into an equivalent one in fuzzy DL-Lite
trans(L) in which every concept inclusion axiom
is of form bCEL, where b (resp., L) is a basic
concept (resp., literal) in DL-Lite. For fuzzy dlI-
programs KB=(L,P) with L in DL-Lite, we then
define trans(KB)=(L,trans(P)) by trans(P)=Pu
{b’(X)—b(X)|bCh etrans(L),b’ is a basic con-
cept JU{FR(X)— R NReR NO}YU{IR (V)
R(XY)|ReR ND}.

We now define the notion of local stratification
for disjunctive fuzzy programs. Alocal siratifica-
tion of a disjunctive fuzzy program P is a map-
ping A:HB,—{0,1,...,k} such that Aa) 2 A(B)
(resp., Ma)>M(P)) for each re ground(P), a.c H®,
and PeB*(r) (resp., e B(r)), where k = 0 isthe
length of \. We say P is locally stratified iff it has
a stratification A of some length k > 0.

We are now ready to define fuzzy dl-programs
in DL-Lite as follows. We say that a fuzzy di-
program KB=(L,P) is defined in DL-Liie iff

1. L is in fuzzy DL-Lite and interpreted rela-
tive to the conjunction strategies of Godel
or Zadeh Logic,

2. Trans(P) is normal and locally stratified,
and

3. KB is closed under TV ={0,1/n,...,n/n} for
some n>>0, where we assume a unary encod-
ing of the numbers in IV .

Like for the crisp case (Lukasiewicz, 2007a),
consistency checking and query processing for
fuzzy dl-programs in DL-Lite are both data trac-

table. This result follows from the fact that such
programs have either no or a unique answer set,
which can be computed by a finite sequence of
fixpoint iterations. ‘ ’

Theorem 21.Let KB be a fuzzy dl-program in
DL-Lite. Then,

(a) deciding whether KB has an answer sel,
and

(b) computing the truth value of a ground atom
a€HB,in the answer set of KB can both
be donme in polynomial time in the dala
complexity.

Example 22 (Shopping Agent cont’d).
Consider the fuzzy dl-program KB=(L, P), where
L is a finite set of concept and (abstract) role
assertion axioms, with truth values from some
TV ={0,1/n,...,n/n} with n>0, and P is the first
rule of Example 7. Then, KB is defined in DL-
Lite, KB is satisfiable, and the truth values of all
query® in the answer set of KB can be computed
in polynomial time in the data complexity.

RELATED WORK

Most closely related to the presented approach
are other integrations of rules and ontologies that
allow for handling fuzzy vagueness. Also related
are integrations of rules and ontologies that allow
for handling probabilistic uncertainty.

The earliest works on fuzzy dl-programs are
(Straccia, 2006b) and (Lukasiewicz, 2006a),
which propose tightly coupled positive fuzzy
dl-programs ‘under the canonical least model
semantics and loosely coupled normal fuzzy di-
programs under the answer set semantics, respec-
tively. Moreover, (Lukasiewicz & Straccia, 2007b)
presents an efficient top-k retrieval technique in
this context, while (Venetis et al., 2007) studies a
fuzzy extension of the mapping between ontolo-
gies and rules in (Grosof et al., 2003).

251




The earliest work on probabilistic dl-programs
(Lukasiewicz, 2005) is based on loosely coupled
normal dl-programs under the answer set and
the well-founded semantics. Recent extensions
include especially a tractable variant (Lukasie-
wicz, 2007b), particularly for probabilistic data
integration, aunified framework for handling both
fuzzy vagueness and probabilistic uncertainty
(Lukasiewicz & Straccia, 2007a), and a tightly
coupled disjunctive version (Cali & Lukasiewicz,
2007; Cali et al., 2008), particularly for repre-
senting and reasoning with mappings between
ontologies. A related (less expressive) approach
is (Predoiu & Stuckenschmidt, 2007), which is
based on Bayesian logic programs, combining
dl-programs with Bayesian networks.

CONCLUSION

We have presented tightly coupled fuzzy dl-
programs under the answer set semantics, which
generalize the tightly coupled disjunctive dlI-
programs in (Lukasiewicz, 2007a) by fuzzy
vagueness in both the description logic and the
logic program component. We have shown that
the new formalism faithfully extends both fuzzy
disjunctive programs and fuzzy description logics,
and that under suitable assumptions, reasoning
in the new formalism is decidable. We have pre-
sented a polynomial reduction for certain fuzzy
dl-programs to tightly coupled disjunctive dl-
programs, and we have analyzed the complexity
of consistency checking and query processing for
certain fuzzy dl-programs. Finally, we have also
provided a special case of fuzzy dl-programs for
which deciding consistency and query processing
are both data tractable.

An interesting issue for future work is the
implementation of the presented framework and
its experimental testing along applications in
practice.
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APPENDIX: PROOFS

Proof of Theorem 12. (a) Let /ICHB, be any answer set of KB. That is, I is a minimal model of
KB'=(L,P"). In particular, (i) /=L and (ii) JFr for every re P!, This is equivalent to (i) =L and (ii) JEr -
for every reground(P). That is, I is a model of XB. We now show that / is also a minimal mode! of
KB. Towards a contradiction, suppose that there exists a model J—J of KB. That is, (i) JEL and (ii) J&=r
for every reground(P). By the monotonicity and antitonicity of conjunction and negation strategies,
respectively, (i) JFL and (ii) J&=r for every reP’. That is, J is also a model of KB'. But this contradicts /
being a minimal model of KB'. In summary, this shows that / is a minimal model of XB.

(b) Since KB'=(L,ground(P)) for every positive fuzzy dl-program KB=(L,P), it follows that the set of
all answer sets of KB, that is, the set of all minimal models of KB, coincides with the set of all minimal

models of KB. o

Proofof Theorem 13. Observe first that ICHB, | is a model of KB'=(L, P") iff (i) /=L and (ii) IFr for every
reP'. Since L=, this is equivalent to I=r for every re P/, Thus, IZHB, is a minimal model of KB iff
is a minimal model of P'. That is, ICHB, is an answer set of KB iff I is an ordinary answer set of P. o

Proof of Theorem 14. Observe first that, by Theorem 12, since P is positive, the set of all answer sets
of KB is the set of all minimal models /ICHB,, of KB. Observe then that forac HB,, a 2 7 is true in all
minimal models /ICHB, of KB iff a > n is true in all models ICHB, of KB. It thus remains to show that
a 2 n is true in all models ICHB,, of KB iff a 22 n is true in all first-order models of Lugound(P):

(=)Suppose a 2 n istrueinall models ICHB  of KB. Let] be any fuzzy first-order model of Lgound(P).
Let ICHB,, be defined by /(6)=I(b) forall be HB, . Then, lisamodel of L' = LU {a = I(a)| a € HB,},
and thus L is satisfiable. Hence, [ is a model of L. Since I is a model of ground(P), also J is a model
of ground(P). In summary, I is a model of KB. Hence, @ = n is true in /, and thus @ = 7 is true in 1.
Overall, a 2 n is true in all first-order models of LZugound(P). '

(<=)Suppose a = n is true in all first-order models of Lugound(P). Let ICHB, be any model of KB.
Then, L' = LU{a = I(a)|a € HB,} is satisfiable. Let I be a first-order model of L*. Then, I is in
particular a model of L. Furthermore, since / is a model of ground(P), also 1 is a mode! of ground(P).
In summary, I is a model of Zugound(P). It thus follows that a 2 n is true in I, and thus a 2 n is also
true in I Overall, @ 2 7 is true in all models ICHB, of KB. 0 ‘

Proof of Theorem 17. (=>)Let | be a first-order model of ' = LU{a = I(a)|a € HB,}. Let the
equivalence relation ~ on @_be defined by c~d iff ¢'=d'. Since [ is a model of L, it follows that ~ is
admissible with I Furthermore, it follows that I is a model of Lu{a=Il(a)lac DL} {ctc |c~’}.

(<)Let I be a model of Lu{a=la)lacDL }{ctc’lc~ '} for some equivalence relation ~ on @, ad-

missible with 7. Thus, I can be extended to a model I of Lu{a=Ia)lac HB,} by I’(b)=I(b), for all
beHB DL . o
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Proof of Theorem 19. Recall that every fuzzy interpretation ICTHB, (to 77,) corresponds to the binary
interpretation ¢(I) = {a® |a € HB,, « € TV, I(a) > «} . Hence, every a*encodes that the truth value
of a is at least a. Thus, the rules pB{”,..._xk)<—pu(x"...,xk) s ch that p is a k-ary predicate symbol from
®, x1,..., k ar, distinct variables, & € TV" \ {1/ n}, and p=a-1/n encode all the logical relationships
between the aa’s, *"ile the other rules in t(P) encode the instances of every rule in P under every pos-
sible truth value combination of its body atoms. Then, for every fuzzy interpretation ICHB®, (i) the
_ Gelfond-Lifschitz transform of P relative to I directly corresponds to the Gelfond-Lifschitz transform of
| t(P) relative to t(I), and (ii) L directly corresponds to t(L) (Bobillo et al., 2008; Straccia, 2004). This then
implies that the fuzzy interpretation ICHB® is a_answer set of KB iff #(1) is an answer set of t(KB). o

r Proof of Theorem 20. As for the lower bounds, fuzzy dl-programs generalize tightly coupled disjunctive
dl-programs, and consistency checking and cautious / brave reasoning in the latter are hard for NEXPNP
an®co-NEXPNP / NEXPNP (L*asiewicz, 2007a), respectively.

As for the upper bounds, to solve the three problems, we first transform KB=(Z,P) into its crisp equiva-
lent t(KB)=(#(L),t(P)), as described in the body of the paper. Note that both the crisp description logic
component t(L) and the crisp logic program component t(P) have a polynomial size in KB and Ty,
By Theorem 19, KB has an answer set iff t(K.B) has an answer set. As shown in (Lukasiewicz, 2007a),
deciding the latter is in NEXPNP.By Theorem 19, a > v is true in every / some answer set of KB iff av
s true in every / some answer set of t(XB). As shown in (Lukasiewicz, 2007a), deciding the latter is in
co-NEXPNP/NEXPNP o

Proof of Theorem 21 (sketch). Like for the crisp case (Lukasiewicz, 2007a), it can be shown that
fuzzy dl-programs in DL-Lite have either no or a unique answer set, which can be computed by a finite
sequence of fixpoint iterations, as usual. Hence, for such programs, consistency checking and query
processing are both data tractable. o
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