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Abstract. This study aims to assess wildfire hazard in north-

ern Portugal by combining landscape-scale wildfire spread

modeling and connectivity analysis to help fuel management

planning. We used the Minimum Travel Time (MTT) al-

gorithm to run simulations under extreme (95th percentile)

fire weather conditions. We assessed wildfire hazard through

burn probability, fire size, conditional flame length and fire

potential index wildfire descriptors. Simulated fireline inten-

sity (FLI) using historical fire weather conditions were used

to build landscape networks and assess the impact of weather

severity in landscape wildfire connectivity (Directional Index

of Wildfire Connectivity, DIWC). Our results showed that

27 % of the study area is likely to experience high-intensity

fires and 51 % of it is susceptible to spread fires larger than

1000 ha. Furthermore, the increase in weather severity led

to the increase in the extent of high-intensity fires and highly

connected fuel patches, covering about 13 % of the landscape

in the most severe weather. Shrublands and pine forests are

the main contributors for the spread of these fires, and highly

connected patches were mapped. These are candidates for

targeted fuel treatments. This study contributes to improving

future fuel treatment planning by integrating wildfire connec-

tivity in wildfire management planning of fire-prone Mediter-

ranean landscapes.

1 Introduction

In the last decades, wildfires have had growing economic,

environmental and social impacts with human life losses as

a result of changes in climate and land use in the Mediter-

ranean basin, despite increased suppression efforts (Bowman

et al., 2017; Tedim et al., 2018). Concomitantly, wildfire

management policies focused on fire suppression, ignoring

ongoing climate change and landscape-scale fuel buildup and

resulting in very severe wildfires (Curt and Frejaville, 2018;

Rodrigues et al., 2019). The large number of simultaneous

fire ignitions that often burn at high-fire intensities jeopar-

dize the suppression system, putting it beyond the limits of

extinguishing capacity (Plucinski, 2019). Hence, tackling the

increased frequency of intense and large wildfires requires

combining fire suppression and fuel reduction strategies in

landscape-level wildfire management plans. Currently, the

effectiveness of such plans has been assessed via reduction

in burned area extent, rather than through limitation of dam-

ages and losses (Moreira et al., 2011, 2020). The failure of

that objective has raised the need for a paradigm shift in wild-

fire management practices towards rebalancing between sup-

pression efforts and prevention measures (Ingalsbee, 2017;

Moreira et al., 2020; Palaiologou et al., 2020; Wunder et al.,

2021).

There is evidence of past profound socio-economic

changes that led to the rural exodus in several countries of

the Mediterranean basin. In Portugal, since the 1960s exten-
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sive land abandonment and afforestation have led to a signifi-

cant decrease in agricultural and pastoral activities, which re-

sulted in large changes in landscape configuration and com-

position. These circumstances have promoted the increase in

the fuel load, availability and contiguity (Fernandes et al.,

2019; Moreira et al., 2020), which, associated with unusu-

ally severe meteorological conditions, led to the tragic fire

season of 2017. This year had a record-breaking 557 400 ha

of burned area, millions of euros in economic losses and a

total of 119 fatalities (Castellnou et al., 2018; Ribeiro et al.,

2020). From then on, fire management has gained relevance

and visibility in the public and political discussion, leading to

development of a fuel management plan to be implemented

from 2020 to 2030, aiming to reduce national-level exposure

to wildfires (RCM, 2021).

One of the main challenges to scientists and wildfire man-

agers is to increase landscape heterogeneity by creating inter-

ruptions in large, continuous expansions of forests and shrub-

lands. Measures to break landscape connectivity, like inter-

spersing different land use–land cover (LULC) classes, re-

ducing fuel load and contiguity (fuel breaks, wide area treat-

ments and prescribed fires, among others), may hinder the

hazardousness of the landscape to large and intense wildfires,

promoting the change to less fire-prone regions (Moreira et

al., 2020). In wildfire research, connectivity concepts have

been applied, for example to study the relationship between

forest connectivity and burned areas (Martín-Martín et al.,

2013), the link between climate change and fuel connectivity

(Fletcher et al., 2016; Keeley et al., 2018), the impact of dif-

ferent weather and forest connectivity levels on fire spread

(Duane et al., 2021), and the location of the best subset of

fuel treatment units that minimize the impact of the worst-

case wildfire (Liberatore et al., 2021). Recently, to quantify

the influence of the spatial arrangement of fuels in fire spread

connectivity, a new connectivity index was developed, which

integrates estimated fireline intensity and the effect of wind

direction on fuel connectivity (Aparício et al., 2022). Infor-

mation derived from this wildfire connectivity index can be

useful to prioritize fuel treatment units and to identify fire

suppression opportunities and ultimately define operational

tactics.

Fire spread models can estimate fire spread and behavior

under different weather conditions and alternative fuel man-

agement scenarios, producing information that can be used

in support of wildfire management decisions (Finney, 2006).

These models have been widely used to assess wildfire haz-

ard, exposure and risk (Alcasena et al., 2021; Palaiologou et

al., 2020; Salis et al., 2013); wildfire transmission (Oliveira

et al., 2016; Salis et al., 2021); and the impact of fuel treat-

ments (Benali et al., 2021; Salis et al., 2016a, 2018). In

Portugal, fire spread simulations have been used at regional

and local scales to analyze the effectiveness of fuel-break

treatments and fire risk transmission in the Algarve region

(Oliveira et al., 2016); to propose strategic prioritization of

fuel treatments over time in commercial eucalypt plantations

(Martín et al., 2016); and to compare the impact of differ-

ent landscape levels of fuel treatments on wildfire hazard re-

duction (Benali et al., 2021), the impact different intensity

levels of forest management have in financial outcome from

timber productions (Barreiro et al., 2021) and the fire risk

assessment of human settlements affected by large wildfires

(Oliveira et al., 2020), all developed in the center of Portugal.

Recently, wildfire spread modeling was also used to quantify

national wildfire exposure of Portuguese communities and

protected areas to large fires, as a response to support na-

tional plan of future wildfire risk mitigation (Alcasena et al.,

2021). Commonly, wildfire hazard assessments are based on

a set of fire spread descriptors used to locate the most fire-

prone areas and hence identify where fuel management ac-

tions ought to be implemented, given pre-defined objectives

(e.g., lower intensities, smaller burned areas). Fuel reduction

strategies decrease the intensity of fires and can also create

opportunities for wildfire suppression, ultimately leading to a

reduction in exposure and risk to people, infrastructures, and

ecosystems and their services (Alcasena et al., 2021; Moudio

et al., 2021).

Actual wildfire hazard assessments still ignore the rele-

vance of characterizing wildfire connectivity and of identi-

fying the main fuel patches responsible for the spread of in-

tense fires over the landscape. We propose to address this

research gap by combining fire spread simulation with land-

scape connectivity analysis in a study area located in north-

western Portugal. Specifically, our study aims to (1) assess

the landscape wildfire hazard under extreme weather condi-

tions, (2) characterize landscape wildfire connectivity, and

(3) identify landscape fuel patches where treatments can be

most effective in breaking the connectivity of intense and

large fires. Results can be used to enrich the information used

in wildfire hazard assessment and to help fuel management

planning in other fire-prone Mediterranean landscapes.

2 Data and methods

2.1 Study area

The study area (ca. 200 000 ha) is in the northwestern Portu-

gal and is centered at Serra da Cabreira (“goat-herder moun-

tain”, in Portuguese). The terrain is rugged, with its high-

est peak at 1262 m of altitude (Fig. 1). Vegetation is adapted

to heat and relative dryness, but the influence of both fac-

tors is decreased by the regular presence of moist and fresh

air masses that come from the Atlantic Ocean (Costa et

al., 1998). The combination of abundant winter precipitation

with dry, warm summers influences the distribution and com-

position of the vegetation communities in the mountain. In

this northwestern pyro-region there are two annual peaks of

fire activity: one relatively small, centered in March, associ-

ated with pastoral burning, and the main one in August. The
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summer fire season typically extends from July to September

(Calheiros et al., 2020).

The main land cover classes are shrublands (25 %), mar-

itime pine forests (17 %), and oaks and other hardwood

forests (15 %) as extracted from the last national LULC

classes of 2018 (DGT, 2021). Agriculture covers approxi-

mately 16 % of the area, mainly in the valleys (Fig. 1c). Most

of the agricultural areas and eucalypt plantations (11 %) are

located southwest of the study area, near the interface with

an urban area. The largest continuous patch of pine forest

(ca. 7600 ha) is located at the eastern limit of the mountain,

and it is divided to the north by a patch that burned in 2010.

In Serra da Cabreira, there are herds of wild horses, cattle and

goats. Fire is traditionally used for disposing of agricultural

stubble and for pasture renewal, which are important causes

of ignition within its boundaries and to the southwest of the

study area (ICNF, 2021b).

2.2 Fire history

Historical wildfire data for the study area were extracted

from the national fire atlas with 46 years of burned area

perimeters (ICNF, 2021b; Oliveira et al., 2012). We selected

fires larger than 100 ha that occurred between 2001 and 2019,

corresponding to a total of 200 burned area perimeters, which

accounted for 64 % of the total burned area in this period.

In this subset, there are nine fires (5 %) larger than 1000 ha,

contributing to ca. 25 % of the area burned; ca. 85 % of the

burned area perimeters have less than 500 ha (Fig. 2d). The

largest burned area is 4300 ha, located at the eastern edge of

the mountain (Fig. 2b).

We extracted fire ignition locations from the Portuguese

Forest Service fire database, with the start and end dates of

the corresponding fires. Different sources of errors may af-

fect the accuracy of this database, such as incorrect location

or data loss or misplacement (Pereira et al., 2011). We used

satellite data to complement and improve the accuracy of the

location of ignitions and individual duration following pre-

viously developed research (Benali et al., 2016b). Based on

this information, we calculated the frequency distribution of

fire durations for the analyzed 200 fire perimeters.

An ignition probability surface was produced by interpo-

lating the ignition points using an inverse distance weight-

ing algorithm with a fixed radius of 6 km, corresponding to

the peak distance above which spatial clustering of ignitions

decreases (Fig. 2a). The highest probability of ignition is lo-

cated to the south of the study area and in two distinct regions

of the mountain range. Fires were historically more frequent

in the southern region (Fig. 2b), but the largest fires occurred

mainly in the central and eastern regions, where the proba-

bility of ignition is lower (Fig. 2c).

2.3 Fire weather

Weather variables of temperature (T ), relative humid-

ity (RH), wind speed (WS) and wind direction (WD) were

compiled for the spread days of the 200 wildfires. Weather

data were estimated from simulations of the Weather Re-

search and Forecasting model (Skamarock et al., 2019). The

regional model is based on the configuration described and

validated by Marta-Almeida et al. (2016) and has a spatial

resolution of 5 km. Temperature and RH were extracted at

2 m, and WS and WD were extracted at 10 m above the sur-

face, both with 3 h frequency. Each weather variable results

from daily average for the period 12:00–20:00 LT because it

commonly represents the hotter, windier part of the day when

fire spread is faster and more intense. This time window

choice is because fire simulations are run for spread dura-

tions smaller than 24 h with constant weather conditions, and

thus it was necessary to exclude milder weather conditions

that typically occur during the evening and morning periods.

The eventual averaging effects of the extreme weather con-

ditions is compensated by tuning the duration of fire spread

(Sect. 2.4.4). A summary of the distribution of average daily

values of the selected fire weather variables is shown in Ap-

pendix A.

Fire weather data were classified into clusters where cen-

troids represent daily averaged values of T , RH and WS.

We used a model-based clustering classification (Stahl and

Sallis, 2012) where each cluster obtained was assigned a

weather type. Details of the clustering method and assump-

tions are shown in Appendix B.

Table 1 shows the three classified weather types: (1) “fre-

quent/hotter (H )” – the most frequent fire weather, which has

the highest mean T ; (2) “drier/windier (DWi)” – the second

most frequent fire weather, which has the lowest mean RH

and the highest mean WS; and (3) “cooler/wetter (CWe)” –

the least frequent fire weather corresponding to the lowest T

and highest RH values. The latter weather type is associated

with wildfires occurring outside the regular fire season or un-

der milder weather conditions often observed during the final

stages of fire spread. The most frequent wind directions are

from the northeast (41 %) and west (20 %). The remaining

directions have frequencies lower than 10 % and are, in de-

scending order, from the east, south, north, northwest, south-

west and southeast.

The 95th percentile of T and WS and the 5th percentile

of RH were calculated to characterize an extreme weather

condition. This corresponds to T of 30 ◦C, RH of 24 % and

WS of 22 km h−1. The frequencies of WD in this subset of

days were 36.5 % for the east, 36.5 % for the south, 18 % for

the northeast and 9 % for the north.

Hence, we defined two weather conditions: (1) historical,
characterized by the three weather types, and (2) extreme,

corresponding to the 95th percentile of the fire weather

dataset. The first was used to calibrate the fire spread simula-

tion system and to obtain a reference fire spread simulation.
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Figure 1. (a) Study area centered in Serra da Cabreira and its relative position to the Iberian Peninsula, (b) elevation and Portuguese

municipalities, and (c) main land use–land cover classes.

Figure 2. Historical wildfire data description for burned area perimeters larger than 100 ha, from 2001 to 2019: (a) probability of ignition,

(b) frequency of burning, (c) fire sizes, and (d) percentage of the number of fire perimeters and burned area perimeters by classes of area.
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Table 1. Weather types obtained from the classification of the 326 fire weather days (N_days) according to the average values of tempera-

ture (T ), relative humidity (RH) and wind speed (WS). For each weather type (with frequency Fr), the percentage of each wind direction (WD)

was calculated. In bold, wind direction frequencies above 10 %.

Weather N_days Fr T RH WS WD (%)

type (◦C) (%) (km h−1) N NE E SE S SW W NW

H 190 0.58 25.6 43.5 10.4 10.1 28.1 11.2 1.1 9.0 6.7 27.0 6.7

DWi 105 0.32 24.6 30.3 14.4 7.5 60.4 3.8 5.7 9.4 1.9 7.5 3.8

CWe 31 0.10 14.2 63.7 10.4 0.0 50.0 25.0 0.0 0.0 0.0 16.7 8.3

The latter was used to simulate hypothetical large and intense

wildfires.

2.4 Fire spread simulation system

2.4.1 FlamMap

We performed fire spread simulations using the Minimum

Travel Time (MTT) fire growth algorithm as implemented in

the FlamMap simulation system (Finney, 2006). The MTT

algorithm calculates fire growth by searching for the set of

pathways with minimum spread time among cells in the two-

dimensional gridded landscape at an arbitrary user-defined

spatial resolution (Finney, 2002). Wildfire spread is pre-

dicted using Rothermel’s model (Rothermel, 1972), which

estimates fire descriptors in the direction of the maximum

rate of spread. This algorithm has been used in several fire-

prone areas worldwide to address different wildfire manage-

ment objectives (Alcasena et al., 2021; Palaiologou et al.,

2018; Parisien et al., 2019). In Portugal, it was used to sim-

ulate extreme wildfires and evaluate the impact of fuel treat-

ments in decreasing landscape wildfire hazard and risk (Be-

nali et al., 2021; Oliveira et al., 2020) and exposure of com-

munities and protected areas to large wildfires (Alcasena et

al., 2021).

2.4.2 Input data

The fire spread simulation system requires a set of in-

put data that includes spatial grid layers to describe the

landscape, a list of fire ignition locations, and information

about fire weather conditions and corresponding fuel mois-

ture contents. We compiled fire weather data (T , RH, WS

and WD), fire regime descriptors (burned area, ignition loca-

tions, and corresponding fire sizes and durations), vegetation

(tree cover and surface fuels) and elevation data to character-

ize the landscape and its fire regime. Elevation was obtained

from the 30 m Shuttle Radar Topography Mission (SRTM,

Farr et al., 2007), and the corresponding grids of slope and

aspect were derived and resampled to 100 m. Vegetation and

topography data were assembled in a common geographic

100 m resolution grid.

The surface fuel model map for 2020 was derived by as-

signing the Portuguese (Fernandes et al., 2009) and Ameri-

can (Anderson, 1982) fuel model typologies to the national

LULC classes of 2018 and updated in recently burned areas.

Tree cover density for 2018 was downloaded from the pan-

European High Resolution Layers in the Copernicus Land

Monitoring Service (EEA, 2018). The historical wildfire ig-

nition probability grid (Fig. 2a) was used to randomly sort

the simulated fires.

Temperature and RH were used to calculate the initial val-

ues of fuel moisture content (1, 10 and 100 h time-lag dead

fuels classes) using available equations from the literature

(Anderson et al., 2015; Nelson, 2000). The herbaceous and

woody live fuel moisture contents were set equal to 60 % and

90 %, respectively. The WD prevailing distribution frequen-

cies were those from the described historical and extreme

weather conditions.

2.4.3 Simulation settings

Fire modeling was conducted at 100 m resolution using the

landscape input data and considering temporally constant

weather and fuel moisture conditions throughout the simu-

lation time. We estimated wildfire descriptors for the histor-

ical and extreme fire weather conditions and the fuel model

grid for 2020. The landscape was saturated with 100 000 fires

randomly sampled using the historical probability of ignition

and an unburnable mask extracted from the fuel model grid.

Simulation spread durations and corresponding frequencies

were those obtained from model calibration (Sect. 2.4.4):

300 min (60 %), 540 min (25 %) and 780 min (15 %). Fire

suppression efforts and crown fires were not simulated.

2.4.4 Calibration

We calibrated the fire spread simulation system using the his-

torical wildfires (burned area, ignitions and durations) larger

than 100 ha from 2001 to 2019, the fire weather conditions

(weather types) and fuel model grids derived from the Por-

tuguese LULC maps of 1995 and 2010 (DGT, 2021) rep-

resentative of historical vegetation cover of the study area.

The two fuel maps, three fire weather types and three fire

duration classes were combined in a calibration matrix cor-

responding to each variable combination of frequencies. The

two fuel model maps were assigned a frequency according to

the total burned area before and after 2010; each weather type

https://doi.org/10.5194/nhess-22-3917-2022 Nat. Hazards Earth Syst. Sci., 22, 3917–3938, 2022



3922 A. C. L. Sá et al.: Coupling wildfire spread simulations and connectivity analysis for hazard assessment

frequency was obtained from the model-based classification;

and initial fire durations and corresponding frequencies were

obtained from the wildfire database.

This calibration matrix was then used to set the number

of random fire ignitions used in each simulation run (Ap-

pendix C). We sampled a total number of 100 000 random

fires using the historical ignition probability and the fuel

model maps (to exclude ignitions located in non-burnable ar-

eas). We calibrated the fire spread modeling system by run-

ning the MTT algorithm for each combination of variables

in the calibration matrix, adjusting the duration of fire spread

until obtaining a satisfactory reproduction of the historical

fire frequency distribution.

The capability of the fire simulation system to reproduce

historical fire pattern in the study area was assessed by com-

paring a set of the descriptors: (i) observed vs. estimated fire

size frequency distributions; (ii) estimated burn probability

vs. observed fire incidence in the historical period (2001–

2019); and (iii) simulated vs. reference burned perimeters for

historical wildfires larger than 1000 ha (9 fires), for which

Sørensen’s similarity index (Sørensen, 1948) was calculated.

2.5 Fire hazard

2.5.1 Wildfire descriptors

We analyzed simulated fireline intensity (FLI, henceforth fire

intensity) and burn probability (BP) and frequency distribu-

tions of flame length (FL) and fire size (FS). Fire intensity has

a relationship with flame length (FL, m) based on Byram’s

equation (Byram, 1959):

FL = 0.0775 × FLI0.46. (1)

The MTT algorithm estimates FL distribution from multiple

fires burning each pixel, from which the conditional flame

length (CFL, m) can be calculated as follows:

CFL =
20∑
i=1

(FLPi ) (FLi ) , (2)

where FLPi is the flame length probability of a fire at the

ith flame length class and FLi is the midpoint of each of

the 20 ith classes of 0.5 m flame length. CFL represents the

probability-weighted flame length given a fire occurs and has

been used as a proxy for fire hazard (Alcasena et al., 2021;

Salis et al., 2013).

Burn probability represents the likelihood that a grid cell

will burn considering the total number of simulated fires. It

is calculated as follows:

BPp =
(

Fp

Np

)
, (3)

where Fp represents the number of times a pixel p burns and

Np is the number of simulated ignitions. The BP has been

routinely used to assess wildfire hazard, exposure and risk,

useful for supporting wildfire and forest management plans

(e.g., Benali et al., 2021; Lozano et al., 2017; Salis et al.,

2013).

The FS is a list of ignition points with geographical co-

ordinates and burned area extents. These points were inter-

polated using an inverse distance-weighted algorithm to pro-

duce a grid of the expected FS. The combination of FS with

the historical ignition surface (IP) was then used to map the

fire potential index (FPI) as follows:

FPI = FS × IP, (4)

where high values of FPI indicate a high likelihood of fire

ignitions growing into large fires. Understanding how FPI

changes with distance from urban areas can be used to strate-

gically protect villages or infrastructures from fire or imple-

ment preventive fuel reduction measures.

Previous wildfire descriptors were compared for the ex-

treme and historical (reference) weather conditions to as-

sess the increase in wildfire hazard with the increase in the

weather severity. Furthermore, for the extreme weather con-

dition, we also combined the estimated BP and FLI to iden-

tify areas most likely to be affected by high-intensity fires,

which can also be used as a proxy for wildfire hazard. FLI

was reclassified into four classes according to its relation-

ship with fire suppression difficulty (Alexander and Cruz,

2019; Appendix D), and BP was divided into quartiles. For

simplicity of writing, high-intensity and very high-intensity

fires will henceforth be indiscriminately referred to as high-

intensity or high-FLI fires. Lastly, we analyzed how the esti-

mated fire hazard descriptors and FPI changes with distance

to urban areas, relating these with the main fire-affected land

cover types.

As a simple validation exercise, we evaluated if areas that

were classified in the past with forest fire loss in the “Global

forest loss due to fire” dataset (Tyukavina et al., 2022) are

expected to have higher intensities in 2021, as estimated by

the CFL. This dataset has a higher spatial resolution, and

we only used pixels coded with moderate and high certainty

in the analysis. Comparison with the forest fire loss (FFL)

dataset was done by summing the total area of FFL divided

in three periods (before 2010, between 2010 and 2016, and

after 2016) and quantifying the area of the estimated CFL

divided in two classes (below and above 2.5 m, based on its

relationship with FLI).

2.5.2 Wildfire connectivity

The spatial configuration of fuel patches needs to be consid-

ered in fuel and wildfire management planning, since fuel

connectivity influences fire spread, fire size and fire intensity

(Duane et al., 2021; Fernandes et al., 2014). A new metric to

assess wildfire connectivity was recently proposed (Aparício

et al., 2022): the Directional Index of Wildfire Connectiv-

ity (DIWC). This metric calculates the connectivity of fuel

Nat. Hazards Earth Syst. Sci., 22, 3917–3938, 2022 https://doi.org/10.5194/nhess-22-3917-2022
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Figure 3. Wildfire descriptors estimated with the extreme weather fire spread simulations: (a) burn probability (BP), (b) fire size (FS),

(c) conditional flame length (CFL) and (d) fire potential index (FPI). FPI is shown in 20th percentile classes.

patches using simulated fire intensities and wind direction as

the main driver of fire spread direction. It is calculated as

follows:

DIWC =

n∑
i=1

n∑
j=1

(ai × FLIi ) × (
aj × FLIj

) × Wij

A2
L × FLI2

max

, (5)

where ai , aj , FLIi and FLIj are the area and fireline inten-

sity in patches i and j , respectively. AL is the total landscape

extent, and FLImax is the maximum FLI patch value in the

study area. The weight matrix W is defined as 1−|sin(α)| or

1 − |cos(α)| depending on wind direction quadrant. Wij is 1

when the neighboring nodes are aligned with wind direction.

Distinct fuel patches were created by combining fuel model

assigned to each land cover class with the main aspect di-

rections and slope classes derived from its influence on fire

spread rate (Butler et al., 2007).

We analyzed the impact of weather conditions in land-

scape wildfire connectivity by calculating the DIWC with

FLI simulated for the historical and extreme weather condi-

tions. Then, we used DIWC to map the contribution of each

fuel patch to the landscape wildfire connectivity. The rela-

tionship between estimated FS and CFL and wildfire con-

nectivity was also explored. Furthermore, we analyzed how

the estimated fire hazard descriptors relate to the main land

cover types burned. We also assessed the changes of FPI with

distance to urban areas as an indicator of the exposure of pop-

ulation to fire hazard.

3 Results

3.1 Wildfire hazard

We used the calibrated fire spread modeling system (cali-

bration results are shown in Appendix E) to assess wildfire

hazard in the study area, under extreme weather conditions.

Figure 3 shows the estimated distributions of the wildfire de-

scriptors BP, FS, CFL and FPI, the values of which are com-

pared with those from historical simulations (Fig. 4).

The highest burn probabilities are in the southwest and

northwest of the study area, while the largest sizes are es-

timated in the east (Fig. 3a and b). Mean simulated BP, FS,

CFL and FPI are 0.006, 1095 ha, 2.5 m and 103, respectively.

Comparing the extreme and historical simulations (Fig. 4a

https://doi.org/10.5194/nhess-22-3917-2022 Nat. Hazards Earth Syst. Sci., 22, 3917–3938, 2022



3924 A. C. L. Sá et al.: Coupling wildfire spread simulations and connectivity analysis for hazard assessment

Figure 4. Distribution of extreme and historical estimated wildfire descriptors: (a) burn probability (BP), (b) fire size (FS), (c) conditional

flame length (CFL) and (d) fire potential index (FPI). Red points represent averaged values.

and b), on average, BP doubled, and mean FS increased from

461 to 1095 ha (138 %), with 51 % of the study area having

fires larger than 1000 ha.

Approximately 50 % of the study area has CFL values

longer than 2.5 m (Fig. 3c), which represent fire intensities

that do not permit suppression at the fire front. Extensive val-

ues of CFL longer than 3.5 m are estimated in ca. 15 % of the

study area, mainly in the east (pine forests) and in shrubland

areas located in the northwest and within the mountain limits

of the study area. The spatial pattern of the FPI (Fig. 3d) ex-

tends that of the BP, especially in a large part of the southern-

central section of the study area. This likelihood of large fires

is higher than the historical mean in approximately 80 % of

the study area (Figs. 3d and 4d).

Comparison between the estimated CFL and the FFL

dataset showed that the CFL is likely providing good results

in the estimated areas of high-intensity fires (CFL > 2.5 m),

thus where higher fire impacts are expected (Table 2). A large

percentage of the areas that had FFL before 2016 (above

70 %) are likely to have CFL values above 2.5 m, thus high-

intensity wildfires in 2021. In recent burned areas (later

than 2016), most of the areas that had FFL (62.4 %) are prone

to lower-intensity fires.

By combining the simulated FLI with BP (Fig. 5), the

map highlights areas more likely to have intensive fires. Ap-

proximately 50 % of the study area has estimated FLI above

Table 2. Percentage of the area assigned with FFL per three classes

of year in each class of CFL based on its relationship with fire in-

tensity.

FFL CFL (m)

< 2.5 ≥ 2.5

Before 2010 21.0 % 79.0 %

2010–2016 29.7 % 70.3 %

After 2016 62.4 % 37.6 %

4000 kW m−1, which represents areas where suppression is

ineffective at the head of the fire, fire spotting and crowing

are frequent, and ground-based suppression must be comple-

mented by aerial attack. The most likely locations (BP higher

than the median) that spread fires with those intensities cover

27 % of the study area. Also relevant are the areas where, de-

spite being unlikely, fires can spread with high intensity. This

represents 25.1 % of the area with a BP below the median.

3.2 Land cover hazard

We assessed the relative contribution of different land cover

types to the spread of wildfires under extreme weather condi-

tions by calculating their averaged values in the space defined

by the BP, CFL, FS and FPI fire spread descriptors (Fig. 6).
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Figure 5. Spatial combination of the simulated BP and FLI using

burn probability quartiles and FLI classes defined according to fire

suppression difficulty as a proxy for wildfire hazard. In the map

lighter colors have lower BP, while reddish colors are assigned to

higher estimates of FLI.

Figure 6. Averaged values of simulated burn probability (BP), con-

ditional flame length (CFL), fire size (FS) and fire potential in-

dex (FPI) for the eight main land cover classes in the study area.

The percentage of each class burned is shown in parenthesis. Bub-

ble size is proportional to FS, and the color represents the FPI

values. Agric.: agriculture; Pin.: maritime pine; Euc.: eucalypt;

Sp. Veg.: sparse vegetation; O. Con.: other coniferous; Shr.: shrub-

lands; Grass.: grasslands; O. Hard.: other hardwood.

The main land cover types burned are, in descending order,

shrublands, sparse vegetation, other hardwood forests, agri-

culture, pine forest, grasslands, other coniferous and eucalypt

plantations.

Shrublands, eucalypt and other hardwood forests show

the largest average BP, representing approximately 50 % of

the simulated burned area. However, eucalypts cover a very

small fraction (1 %) of the burned area, despite their large

FPI values. Fires in shrublands and pine forests are expected

to be the most intense (CFL of 3.1 and 2.8 m, respectively)

and large (958 and 1229 ha, respectively). Fires in grass-

lands have the largest FS (1260 ha), moderate BP (0.006)

and relatively high FPI (41.4). However, only 3 % of the

simulated burned area was in grasslands. Other hardwoods

represent 18 % of the area burned, with relatively high av-

erage BP (0.006), moderate CFL (2.3 m), relatively large FS

(826 ha) and intermediate values of FPI (36.5).

We analyzed how FPI changes with distance to urban ar-

eas and assessed where the most hazardous land cover classes

are located (Fig. 7). Comparing with the FPI 75th percentile

(Fig. 7a), there is a clear increase in the probability of an igni-

tion becoming a large fire for distances up to 1 km from urban

areas. Up to 250 m from urban areas, agricultural areas and

eucalypt plantations are the most represented classes. Shrub-

lands (38 %), pine (20 %) and other hardwood forest (18 %)

contribute to the large values of FPI, mainly between 500 m

and 1 km from urban areas (Fig. 7b). For distances between

1 and 4 km, the FPI decreases with the increase in sparse

vegetation, while pine forests and shrublands decrease. The

lowest FPI values were estimated for distances larger than

4 km from urban areas, where ca. 75 % of the burned area is

in sparsely vegetated locations.

3.3 Wildfire connectivity

We analyzed variations in landscape connectivity for the

spread of fires as a function of the fire weather conditions

(Fig. 8). With increasing weather severity, the area of the

landscape that spread high-intensity fires increases. This is

clearly shown in the DWi weather type where the DIWC ap-

proximately doubles (ca. 0.3) the connectivity of the other

weather types and in the extreme weather where different

WDs result in different landscape DIWC values. The highest

value of wildfire connectivity was estimated for the north–

south wind directions.

Figure 9 shows the expansion of high-FLI classes (from

9 % under CWe to 50 % under P95) with the increase in

fire weather severity. This leads to the coalescence of fuel

patches, which the DIWC quantifies as an increase in wild-

fire connectivity, as shown by the expansion of mainly two

hotspots in the eastern and central regions of the study area.

Highly connected patches (with DIWC > 0.10, here selected

as having values larger than the 95th percentile) represent

13.3 % (13 125 ha) of the area under the extreme weather,

12 % and 8 % under the DWi and H weather types, respec-

tively. For the extreme weather, these patches are shrub-

lands (57 %), pine forests (22 %) and eucalypt plantations

(12 %), where pine forests (followed by the shrublands) have

the largest DIWC values of all the weather conditions (Ap-

pendix F).

Furthermore, Fig. 10 shows for the extreme weather con-

dition and high-FLI patches (Fig. 9d) the relationship be-

tween wildfire descriptors and wildfire connectivity values.

The fuel patches with the highest values of DIWC also have

higher values of FS and CFL (Fig. 10a and b). Thus, the

location of fuel patches with extreme values of DIWC in

the landscape highlights areas likely to spread very intense

and large wildfires (median values of 3.7 m and 1010 ha, re-

spectively). Nonetheless, there is not a relationship between

DIWC and BP (Fig. 10c), and patches with higher DIWC
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Figure 7. (a) Fire potential index (FPI) as a function of distance from urban areas and (b) main land cover percentages by distance from

urban areas class. Only land cover classes that burned more than 5 % are shown.

Figure 8. Percentage of fire intensity (FLI) classes and normalized wildfire connectivity index (DIWC) for each weather condition. Simulated

FLI was classified in five classes (Appendix D). Yellow boxes represent the weather types from the historical weather condition, while the red

box represents the extreme weather condition. Acronyms refer to the weather types and the corresponding wind directions with a frequency

higher than 10 %.

have lower FPI (Fig. 10d) because they are in areas of low

probability of fire ignition.

4 Discussion

In Mediterranean countries there is an urgent need to adapt

fire preventive measures and bring together researchers,

politicians and managers to tackle the prospective increase of

wildfire impacts in a changing climate (European Commis-

sion, 2021). This requires a paradigm shift that assumes co-

existing with fire by creating fire-resilient landscapes. Hence,

wildfire management needs to evolve towards identifying the

best treatment opportunities that reduce fire intensity and

burned extent while simultaneously creating opportunities

for more effective suppression efforts (Curt and Frejaville,

2018; Wunder et al., 2021).

Consistent with previous findings, our study showed that

by combining wildfire hazard and wildfire connectivity as-

sessments supported by fire spread simulations, it is possi-

ble to enrich information used in landscape fuel manage-

ment planning. We located the most likely areas to burn and

those that spread large (above 1000 ha) and intense wildfires

(above 4000 kW m−1). We also showed how landscape wild-

fire connectivity increases with weather severity and identi-
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Figure 9. Normalized wildfire connectivity (DIWC) calculated for the historical – (a) CWe, (b) H and (c) DWi – and (d) extreme fire weather

conditions. Only fuel patches with estimated FLI > 4000 kW m−1 (high-FLI classes).

fied fuel patches that mostly contribute to the spread of high-

intensity fires.

Wildfire hazard assessment under extreme weather con-

ditions showed that Serra da Cabreira is exposed to large

and intense fires that mostly spread with eastern and south-

ern winds. Historical fire regime indicates that east of the

mountain, the probability of ignition is low. However, simu-

lations showed that the potential largest fires are located here,

in extensive patches of pine forest with high fuel loads. This

area has several highly connected fuel patches that support

the spread of intense fires into the mountain, likely to burn

extensive shrubland areas.

Another important hazardous area extends from the south

to the center of the study area, where intensive and large

fires are also expected to spread over shrublands. Southernly,

the landscape is more anthropic, where urban areas are in-

terspersed with agricultural lands, eucalypt plantations and

other hardwoods in the valleys. However, at high altitudes

this heterogeneous vegetation pattern is replaced by continu-

ous areas of shrublands where fire frequency is high and fire

return intervals can be lower than 5 years, which are both re-

lated to the frequent use of fire as a tool for pasture renewal

(Catry et al., 2009; Moreira et al., 2011). This cultural use

of fire is an important source of fire ignitions in the region,

which in hot and windy days may lead to fire hazard increase

in the mountain. Another relevant hotspot that has a high

probability of spreading intensive and large fires is located

northwest in another high-altitude shrubland area. Although

western winds are not coincident with extreme fire weather

conditions, they should not be ignored, given their moderate

frequency in climate type H and the possibility that they lead

to the spread of forest fires from this area to the mountain.

The maximum potential of likely ignitions spreading to

large fires lies between 500 and 1000 m from urban ar-

eas, where shrublands prevail. Here, fuel-load reductions

should be planned to decrease wildfire hazard, increase land-

scape fire resilience and improve wildfire response system.

With other objectives in mind, such as for example to de-

crease the impact of fires in the wildland–urban interface, the

FPI hazard descriptor should be replaced by other variables

(e.g., fireline intensity), and smaller buffer distances from ur-

ban areas have to be considered (Calkin et al., 2014).
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Figure 10. Relationship between simulated fire size (FS), conditional flame length (CFL), burn probability (BP) and fire potential index (FPI)

with the normalized wildfire connectivity index (DIWC), under the extreme weather condition. The 95th percentile of the DIWC is 0.10.

Extensive areas of fuels are one of the major determi-

nants of fire size in Portugal (Duguy et al., 2007; Fernan-

des et al., 2016); the measures which promote the disrup-

tion of fuel contiguity will inevitably create opportunities

for fire suppression and decrease burned areas and conse-

quently hazardous landscapes. To implement those measures,

landscape connectivity assessment is crucial not only to fuel

treatment planning but also in the perspective of fuel struc-

tural connectivity (Liberatore et al., 2021; Rachmawati et al.,

2016). Ignoring the complex dynamic fuel–weather interac-

tions, which result in different landscape fire spread patterns,

can lead to underestimation of connectivity and even differ-

ent solutions of where to prioritize fuel treatments (Duane et

al., 2021; Zeller et al., 2020).

To address the previous research gap, we applied a recently

developed connectivity metric (Aparício et al., 2022) to cal-

culate and map landscape wildfire connectivity response to

the increase in fire weather severity. With increasing fire

weather severity, the landscape extent that potentially spreads

high-intensity fires increases, and with the coalescence of

fuel patches, the landscape is more connected to the spread

of large and intense fires. In the extreme weather condi-

tion, 50 % of the landscape can support the spread of high-

intensity fires. In these areas, high wildfire impacts and sup-

pression difficulties are expected, which can be exacerbated

by the highly connected landscape fuel patches. These are

candidate locations for fuel management treatment aiming to

disrupt fire spread connectivity. Nonetheless, the effective-

ness of breaking fuel connectivity to mitigate fire impacts and

the spread of large fires in the landscape may be significantly

reduced by the occurrence of severe weather conditions (Du-

ane et al., 2021). However, there is evidence that there is a

fuel effect on fire behavior under less severe weather con-

ditions (e.g., Anderson et al., 2015). Besides this, as fuel

treatments significantly reduce fuel load, it is expected that

they significantly decrease fire intensity and the impacts in

the landscape while simultaneously improving effectiveness

of fire suppression operations. Furthermore, those extreme

weather conditions typically occur in a few days of the fire

season, so fuel treatments still have an important role in re-

ducing fire spread and intensity in more frequent less se-

vere weather conditions. We believe that wildfire managers

can still use our study results and framework to target fuel

patches for treatments aiming at decreasing landscape wild-

fire impacts.

Although the calibration of the fire spread modeling sys-

tem reproduced the historical fire size distribution and burned

area pattern in the study area reasonably well, there are some

limitations to the current study. Uncertainty in fuel model

assignment to existent land cover maps has important im-

pacts on simulation results (Benali et al., 2016a); thus lo-

cal information should be used to refine the fuel model input

map. Furthermore, crown fires were not simulated because

of the absence of data describing canopy fuels, which may

be overcome in the future by using estimates from lidar data

(ICNF, 2021a). Regarding the surface fuel models, the re-

cently available national land cover map (DGT, 2021) with

its increased spatial resolution potentially provides more ac-

curate land cover mapping, which may improve the quality

of fuel model assignment.
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5 Conclusions

This study provides research-based information to enrich

landscape wildfire management decisions by integrating

wildfire connectivity analysis and simulated wildfire hazard

descriptors. For the extreme weather conditions, we located

the most hazardous areas of large and intense fires, and we

showed that shrublands and pine forests are the land cover

types that mostly burned in those damaging fires. We also

showed that landscape wildfire connectivity increases with

fire weather severity because of the coalescence of severe

fires that extended for ca. 50 % of the study area. Landscape

wildfire connectivity was mapped for each fire weather con-

dition, highlighting fuel patches where the potential to spread

large and severe wildfires is high.

We believe that these results can help fire managers to

identify hotspot areas where site-specific fuel treatment oper-

ations should be planned. Ultimately, they contribute to mit-

igating future wildfire impacts and increasing landscape fire

resilience of Mediterranean fire-prone regions. Future work

should include the wildfire connectivity metric in the de-

sign of alternative fuel treatment scenarios to inform more

sustainable and effective wildfire management in fire-prone

Mediterranean landscapes.

Appendix A: Summary of fire weather data

There are 4 d of fire spread with T < 10 ◦C, corresponding

to fires that occurred outside the main fire season (Fig. A1a).

Most of the wildfires spread with T between 30 and 35 ◦C.

Most of the days have RH of 40 %, and a quarter had below

30 %. In general, lower T values are related to higher RH,

which often corresponds to the last hours of fire spread,

sometimes coincident with a decrease in severity of the fire

weather conditions (Fig. A1b). The most frequent WS values

lie between 10 and 15 km h−1, while the maximum value is

25 km h−1. The most frequent WDs are from the east (41 %)

and west (19 %), while each of the remaining directions has

a frequency below 10 % (Fig. A1c and d).
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Figure A1. Fire weather variables compiled for the days of fire spread of the 200 wildfires from the fire database. (a) Average daily values

of the variables were calculated for temperature and relative humidity, with quartile lines shown; (b) frequency distribution of T and RH;

(c) frequency distribution of WS; and (d) wind rose. A total number of 326 d was compiled.

Appendix B: Model-based cluster analysis

A finite mixture model was fitted to the wildfire weather

database using the Bayesian information criterion model se-

lection to derive the optimal number of clusters. This model

considers the data as coming from a distribution that is mix-

ture of two or more clusters. In the classification, the optimal

number of clusters is calculated automatically; it integrates

uncertainty in class assignment and produces the probability

of each daily observation belonging to each cluster. It also

produces the geometric features (orientation, size and shape)

of the clusters (Banfield and Raftery, 1993).

Results showed that the optimal solution is a three-cluster

model (Fig. B1a), which has ellipsoidal shapes with varying

volume, shape and orientation (VVV). Uncertainty of cluster

allocation is shown in Fig. B1b, where larger symbols indi-

cate more uncertainty. Observations in the left cluster (clus-

ter 2) are more certain of being in the correct cluster, while

observations classified in the right clusters are more uncer-

tain as they are more similar.
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Figure B1. (a) Optimal solution (three clusters) according to the ellipsoidal volume, shape and orientation properties and (b) uncertainty

cluster assignment of each weather day. There are 14 available models for more than 2 groups represented by triplets EII, VII, EEI, VEI,

EVI, VVI, EEE, EVE, VEE, EEV, VEV, EVV and VVV. The first letter in a triplet refers to the cluster size (volume), the second to the shape

and the third to the orientation of the multivariate distribution, with E standing for “equal”, V for “variable” and I for “coordinate axes”.

DIM1 and DIM2 are the first two principal components used to reduce data dimensionality. For details, please see Scrucca et al. (2016).

Appendix C: Calibration of the fire spread modeling
system

Calibration was carried out by combining historical fire and

weather data regimes in different simulation scenarios with

probabilities corresponding to selected variable frequencies.

The resultant calibration matrix (Table C1) was then used

to obtain the number of fire ignitions in each simulation

scenario. We ran 120 fire spread simulations and a total of

100 000 fire ignitions. Variables used in the calibration were

(1) two fuel model maps (1995 and 2010), (2) three weather

types, (3) wind direction frequencies in each weather type

and (4) three classes of fire spread duration (table shows fi-

nal durations used in the calibrated model).
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Table C1. Calibration matrix defining the fire spread simulation runs and corresponding probabilities.
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Appendix D: Correspondence between fire intensity and
fire suppression difficulty

Table D1. Classes of fireline intensity (FLI) and flame length (FL) translated to fire suppression difficulty. Adapted from Alexander and

Cruz (2019).

Class FL (m) FLI (kW m−1) Fire suppression difficulty

1 < 1.5 < 500 Fire can generally be attacked at the fire head or flanks using

(very low) hand tools.

2 1.5–2.5 500–2000 Fires are too intense for direct attack on the fire head using

(low) hand tools. Equipment such as plows, dozers, pumpers

and retardant aircraft can be effective in suppression.

3 2.5–3.5 2000–4000 Fires may present serious control problems – torching out,

(moderate) crowning and spotting. Control efforts at the fire head

will probably be ineffective.

4 3.5–5.5 4000–10 000 Crowning, spotting and major fire runs are frequent.

(high) Control efforts at the fire head are ineffective. Aircraft are

required for fire suppression.

5 > 5.5 > 10000 Any combat attempt (even with aircraft) is ineffective.

(very high)

Appendix E: Calibration of the fire spread modeling
system

The uncertainty in fuel data and meteorology (Benali et al.,

2017), duration of fire spread, and the lack of knowledge of

the conditions that drove the spread of each individual fire

led to the development of a calibration framework based in

an array of weights, used to generate fire ignitions and to

weight the output simulated wildfire descriptors (Table C1).

We covered the historical period of analysis as the com-

bination of frequencies covering two vegetation fuel maps,

three fire weather types, wind distribution frequency in each

of these weather types and three fire spread durations. The

calibrated model was obtained by tuning fire durations until

the distribution of the simulated fires described the historical

fire patterns reasonably well. We ended the calibrated model

with the next fire durations and corresponding frequencies:

300 min (60 %), 540 min (25 %) and 720 min (15 %).

Figure E1a shows that using this combination of dura-

tions, we reproduced the historical fire size distribution pat-

tern reasonably well. The simulated and reference burned

area perimeters peak at ca. 200 ha but with a clear under-

estimation of the number of simulated fires in this class. The

opposite occurs for burned areas between 500 and 1500 ha,

where there is an overestimation of the frequency of sim-

ulated fires. One of the reasons for this might be that fire

suppression is not considered in the simulations. The esti-

mated BP map (Fig. E2) reproduces the spatial pattern of the

frequency of burn in the study area between 2001 and 2019

(Fig. E1b) very well. Additionally, the regions with the

highest burn probability are coincident with those that his-

torically had higher ignition probability (Fig. 2a) and that

burned more frequently (Fig. 2b).

Moreover, with the calibrated fire modeling system we

simulated the spread of the nine largest wildfires (>1000 ha,

responsible for approximately 25 % of the total burned

area between 2001 and 2019 in the study area) using the

corresponding fire weather data and the duration of 13 h.

Sørensen’s similarity index was 0.60, in the interval limit be-

tween moderate and substantial agreement classes (Filippi et

al., 2013). This value is in agreement with values obtained

in other fire spread simulations (Alcasena et al., 2016; Salis

et al., 2016b). Overall, these results show that the calibrated

wildfire modeling system accurately reproduces the histori-

cal size and spatial distribution of fires in the period of anal-

ysis.

https://doi.org/10.5194/nhess-22-3917-2022 Nat. Hazards Earth Syst. Sci., 22, 3917–3938, 2022



3934 A. C. L. Sá et al.: Coupling wildfire spread simulations and connectivity analysis for hazard assessment

Figure E1. Comparison (a) between the simulated and observed burned area and (b) between the estimated burn probability and the historical

frequency of burning.

Figure E2. Simulated burn probability (BP) derived from running fire spread simulations using 100 000 random ignitions with fire spread

durations of 5 h (60 %), 9 h (25 %) and 13 h (15 %). Relative frequencies are shown in parentheses.
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Appendix F: Influence of weather conditions on wildfire
connectivity by major land cover types

The land cover classes that have FLI estimates larger than

4000 kW m−1 are shrubs (57 %), pine forests (22 %) and eu-

calypt plantations (12 %). The remaining classes cover less

than 10 % with those FLI values. Wildfire connectivity for

each simulated fire weather condition is shown in Fig. F1.

Pine forests have the largest wildfire connectivity from all

the weather conditions, showing similar values for P95 and

DWi. Eucalypt plantations have the lowest values of DIWC

in all weather conditions.

Figure F1. Natural logarithm of the normalized wildfire connec-

tivity (DIWC) of patches with FLI above 4000 kW m−1, estimated

from fire spread simulations with historical (CWe, H, DWi) and ex-

treme (P95) weather conditions. Pin.: pine forest; Euc.: eucalypt

plantations; Shr.: shrublands.
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