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ABSTRACT: Semiconductor quantum dots have been recently
employed as luminescent probes for the detection of hazardous
nitroaromatic compounds. Despite the high sensitivity, such
detection systems involve laboratory procedures and employ
complex instrumentation. Here, we demonstrate the use of
colloidal PbS quantum dots as the main component of a
chemiresistor for the detection of nitroaromatic compounds. The
proposed device is low-cost, reusable, and produces an electric
signal that can be acquired with off-the-shelf electronic
components. In this paper, we demonstrate the operation of the
proposed device and we discuss its sensing mechanism. We also
show the sensor’s response to nitrobenzene in the 65 ppb−16 ppm range, estimating a theoretical detection limit of 2 ppb.
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■ INTRODUCTION

Detection of nitroaromatic compounds (NACs) vapor is
essential for homeland security,1 unrecovered land mines
finding,2 human health,3 and environmental safety4 since they
are registered on the US Environmental Protection Agency’s
(EPA) list of priority pollutants for environmental remedia-
tion.5 Apart from trained animals,6 several detection methods
are available including gas chromatography,7 mass spectrosco-
py,8 infrared spectroscopy,9 surface-enhanced Raman scatter-
ing,10 and ion mobility spectroscopy, which is a commonly
used trace detection system in airports.11 Although these
methods allow for accurate measurements, they are time-
consuming and expensive, requiring trained technical staff and
dedicated equipment, and they are often confined to a
laboratory environment. The current need to ensure fast and
reliable detection of hazardous agents in numerous govern-
ment agencies, airports, and public facilities requires
miniaturized systems, characterized by high sensitivity, high
portability, low power consumption, and low cost.12 Gas
sensors are a suitable technology to meet these needs, where
the interaction of sensing materials with explosive molecules
leads to observable outputs like a change in conductivity, color,
or fluorescence.13−15 In the last few years, many different
approaches have been proposed for explosive sensing,
employing a variety of materials.16−19 Among all, sensors
based on colloidal quantum dots (QD) have been widely
investigated over the past few years as luminescent probes for
the detection of a variety of analytes, including NACs.
Colloidal QD offer several advantages for the realization of

chemiresistors: (i) the colloidal stability of QD dispersions
allows QD processing from the solution phase and deposition
on several substrates; (ii) the high surface-to-volume ratio
peculiar of the QD enlarges the possibilities of detecting
analytes via QD surface chemistry modification; and (iii) the
size-dependent electronic structure permits tuning of the QD
energy levels that confers versatility in the use of different
metal electrodes.
The majority of QD-based sensors are based either on

photoinduced electron transfer (PET) or fluorescence
resonance energy transfer (FRET) mechanisms. In the former
case, the interaction between electron-rich surface-function-
alized QD and electron-withdrawing NACs’ nitro groups leads
to the quenching of QD photoluminescence. In FRET-based
sensors, a mixture of QD and a specific fluorophore is exposed
to NAC vapors; the fluorophore can be chemically activated in
the presence of NACs, thus inducing a shift of the fluorescence
peak wavelength.20,21 Several review papers on recent
technologies for nitroaromatic explosive detection emphasized
optical sensing using QD.22−24 A multichannel QD array
consisting of modified core−shell CdSe/ZnS QD was
developed for the detection of five different explosives
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(DNT, TNT, tetryl, RDX, and PETN).25 Each of the
multicolor QD was functionalized with a different surface
receptor via a facile ligation process. Komikawa et al.
developed a chemical sensor for TNT using peptides
conjugated to CdTe/CdS QD.26 Moreover, a colorimetric
sensor for the visual detection of TNT in the solution phase
was also developed using a cysteamine-capped CdSe QD-
decorated graphene−chitosan xerogel.27

Despite the successful demonstration of sensitive detection
of NACs based on QD photoluminescence quenching, the
proposed approaches still consist of lab-based procedures and
do not produce actual sensors. A more promising approach
toward the realization of compact and easy-to-use devices
could be an NAC detector based on conductivity changes of
functionalized QD. To this extent, QD’s properties such as the
large surface-to-volume ratio, surface reactivity even at room
temperature, and the possibility to engineer their properties
through surface chemistry can be effectively exploited.28

Sensors based on the change of conductivity are potentially
advantageous with respect to those based on photolumines-
cence quenching since they can be easily implemented in low-
power and low-cost electronics. In addition, their fabrication is
suitable for integration with silicon technology.
Gas sensors based on PbS QD have already been

demonstrated, but there are no examples to date of QD-
based chemiresistors for NAC detection.29−34 In this article,
we report on a novel and high-performance chemiresistive
sensor based on PbS QD for the detection of traces of
nitroaromatic explosives at room temperature. The con-
ductivity of an ethylenediamine (EDA)-functionalized QD
film is analyzed, showing substantial modification upon NAC
exposure, with nitrobenzene (NB) as a representative
compound. We also discuss the detection mechanism of the
devices, showing their selectivity to NACs with respect to nitro
aliphatic compounds and aromatic compounds without
electron-withdrawing groups.

■ EXPERIMENTAL DETAILS
The synthesis of colloidal PbS QD was performed in a three-neck
flask connected to a standard Schlenk line under oxygen and water-
free conditions;35 detailed synthetic and purification procedures are
given in the Supporting Information (SI). The synthetic procedure
yielded colloidal PbS QD with a diameter of about 4.7 nm, and 0.5
mM toluene dispersions were used for device fabrication; trans-
mission electron microscopy and optical absorption measurements
were used to estimate QD size and concentration.36 Prepatterned gold
interdigitated electrodes (IDE) on a silicon chip were used as
deposition substrates (see Figure 1a,b). Each substrate contained five
couples of IDE. Devices were fabricated through layer-by-layer spin
coating of PbS QD dispersions followed by in situ ligand exchange

with ethylenediamine (EDA).37 For each layer, the following steps
were performed: (1) an 8 μL drop of the QD dispersion was
deposited onto the substrate and spun at 3000 rpm for 30 s; (2) two 8
μL drops of 10% v/v ethylenediamine in acetonitrile were deposited
on the QD, allowed to exchange pristine ligands for 60 s, and then
spun at 3000 rpm for 30 s; and (3) the obtained film was rinsed with
ethanol while spinning at 3000 rpm for 30 s to wash off unbound
ligands and loosely deposited QDs. The above fabrication process was
repeated up to 10 times to grow a QD film with a thickness of about
200 nm, as measured by surface profilometry (see the SI).

Figure 2 shows a typical Fourier transform infrared (FTIR)
spectrum recorded from a finished sensor, compared with a reference

device, in which the QD were not ligand-exchanged. The bands
centered at 3310 and 1650 cm−1 were assigned to the N−H stretching
vibration, confirming that EDA effectively attached to the surface of
PbS QD.

Control devices were also realized by substituting EDA with
tetrabutylammonium iodide (TBAI). In that case, ligand exchange
was carried out by rinsing the device in a 10 mg/mL TBAI/MeOH
solution for 60 s after every QD deposition step, followed by washing
with isopropanol. A detailed fabrication process is reported else-
where.38

The sensor response was assessed by employing NB as a
representative NAC. To evaluate its performance, the sensor was
placed in a custom-made chamber equipped with humidity and
temperature sensors. A direct current (DC) voltage of 1 V was applied
to the sensor, and the current was measured during target gas
exposure and release. The sensor was operated at room temperature
and 30% controlled humidity and it was tested for different NB
concentrations ranging from 65 ppb to 16 ppm. In a typical
experiment, the measurement chamber was flushed with ambient air
until the sensor current became stable. Therefore, the NB gas was
diluted with air through two mass flowmeters to reach the desired

Figure 1. (a) Device schematic. (b) Optical microscopy images of the sensor before and after the deposition process. Metal fingers with a width of
5 μm and spacing are provided with 1 mm2 bonding pads, with a sensing active area of 1 mm2.

Figure 2. FTIR spectrum of the fabricated device.
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concentration and was allowed to flow through the chamber. The gas
flow was kept constant (800 mL/min) and the device’s current was
monitored continuously. When the device’s current became constant
again (typically after a few minutes), the chamber was purged with
clean air to recover the sensor. A detailed description of the
experimental setup and procedures as well as the calculation of NB
concentration is available in the SI. Sensor performance was evaluated
through the sensor response (S), expressed in percentage, and
calculated according to eq 1, where Ia and Ig are the initial current and
its value after exposure to a given vapor concentration of the target
gas, respectively.

=
−

×S
I I

I
100

a g

a (1)

The response time is defined as the time required to achieve 90% of
the total current change upon exposure to the target gas. The recovery
time is the time required to reach 10% of the total current change
after purging the measurement chamber with clean air.

■ RESULTS AND DISCUSSION
Figure 3 shows a typical time response of the sensor current to
1.87 ppm NB vapor at room temperature.

The sensor current reached a steady state of about 38 μA in
ambient air and when the NB gas entered the measurement
chamber, the current rapidly decreased, reaching a minimum
value of 29.5 μA. A full baseline recovery was obtained after gas
release, thus implying a reversible adsorption/desorption
characteristic for the NB vapor of the QD-based sensing
film. The analyte exposure time was 15 min with a sensor
response of 22.2%, whereas the response and recovery times
were 9.6 and 8.7 min, respectively. The inset shows a typical
current−voltage characteristic of the device upon NB exposure.
The linear behavior confirmed the expected ohmic character-
istic of the QD/metal contact in both ambient air and in the
presence of NB. The typical measured current Ia at 1 V in air
was about 38 μA with a corresponding resistance Rd of 26.3
kΩ. The sensor response of the PbS QD device with NB
concentration varying from 65 to 655 ppb was also measured
and is reported in Figure 4a. Specifically, six cycles of gas
exposure and purge were successively recorded, corresponding
to NB gas concentrations of 65, 98, 164, 327, 491, and 655
ppb. After every measurement, the devices showed excellent
reversibility and negligible baseline drift. Table S1 reports the S
value for all of the measured NB concentrations.
As expected, the sensor response increased with the NB

concentration, exhibiting linear behavior at low concentrations
and clear saturation above few ppm. The inset of Figure 4b
shows a linear fit of the sensor ΔI = (Ia − Ig) versus NB
concentration in the low-concentration range (from 65 to 655
ppb). Here, the theoretical detection limit of the device has
been estimated. The slope of the linearized characteristic was
0.82 μA/ppm with a correlation coefficient of 0.97. A detection
limit (DL) of 2 ppb was estimated for NB at room
temperature, with a signal-to-noise ratio (SNR) of 3, according
to the following equation39

=
Θ
i

DL 3 n
(2)

where in is the root-mean-squared (RMS) current noise and Θ
is the slope of the current/NB concentration characteristic.
The noise current was evaluated using the standard deviation
over 500 data points acquired in a 3 min time span in the
baseline of the response curve (see the SI for more details).
According to eq 2, the maximum sensitivity is calculated as the

Figure 3. Real-time current change obtained with 1.87 ppm NB. The
inset shows the I−V curve upon nitrobenzene exposure.

Figure 4. (a) Normalized current curves toward different concentrations of NB as a function of time. (b) Sensor ΔI = (Ia − Ig) to different NB
concentrations. The inset shows the linear fitting in the 65−655 ppb range.
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concentration that produces a current signal 3 times larger
(about 10 dB) than the noise current. This figure helps to
estimate the potential sensitivity of the device at concen-
trations below the limit of the experimental setup. The sensor
exhibited very large sensitivity in terms of both the lowest
measured (65 ppb) and lowest estimated (2 ppb) NB
concentrations. Such performance can be ascribed to a
combination of both low noise and large sensor responses.
While current noise is kept low thanks to the large device
resistivity and a low noise electronic front end, the sensor
response is related to the large PbS QD surface-to-volume ratio
and to the employment of EDA as a surface ligand. In fact, the
device’s sensing mechanism is strictly related to EDA, which
plays a fundamental role in NAC detection. The interactions at
the QD surface between the electron-rich amine ligands and
the electron-deficient aromatic ring may occur, eventually
leading to the formation of adducts referable to Meisenheimer-
like complexes. The resulting EDA-to-NB charge transfer could
be responsible for the significant decrease of the QD film
current signal. The same reaction mechanism has already been
exploited in explosive detectors based on the quenching of QD
photoluminescence.22

To support this hypothesis, the sensing performance of the
EDA-capped PbS QD sensor was compared with the
performance of the PbS QD sensor where a different ligand
(TBAI) was employed. Figure 5a shows the results from both
sensors exposed to 1.87 ppm NB at room temperature.
The TBAI-treated sensor showed a sensor response as low as

8.3% to 1.87 ppm NB, significantly lower than that observed
for EDA-capped devices exposed to the same amount of NB.
In addition, nitromethane and toluene were selected to
investigate the effects of aromaticity and polarity of the
chemical vapor on the conductivity of the sensor. Indeed,
nitromethane has an electron-withdrawing group but is not
aromatic, whereas toluene is aromatic but with an electron-
donating group. Figure 5b shows the normalized sensor
response toward these chemical vapors (5 ppm). As expected,
the results highlighted a remarkably selective change in
conductivity for NB over NM, while no response was observed
upon exposure to toluene gas. This observation confirms the
preferential electronic interaction between EDA and the
electron-poor benzenic ring of NB.

■ CONCLUSIONS
In summary, this work demonstrates that the change in
conductivity of an EDA-capped PbS QD sensor can be
effectively used for the room temperature vapor detection of
nitrobenzene. The sensor was fabricated through a simple,
rapid, and low-cost method. The sensor showed high
sensitivity to NB, as representative of the electron-deficient
nitroaromatics, in addition to rapid response and full recovery
after gas release. A sensor response of 0.34% has been
measured to a NB concentration of as low as 65 ppb, and a
detection limit of 2 ppb was estimated from the slope of the
sensor response and noise measurements. The proposed sensor
has the potential to be further optimized with the aim to be
integrated into a portable, miniaturized, and inexpensive device
for the detection of explosives in strategic and sensitive
environments.
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