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Abstract: This paper describes in detail VISIONE, a video search system that allows users to1

search for videos using textual keywords, the occurrence of objects and their spatial relationships,2

the occurrence of colors and their spatial relationships, and image similarity. These modalities3

can be combined together to express complex queries and meet users’ needs. The peculiarity of4

our approach is that we encode all information extracted from the keyframes, such as visual deep5

features, tags, color and object locations, using a convenient textual encoding that is indexed in a6

single text retrieval engine. This offers great flexibility when results corresponding to various parts7

of the query (visual, text and locations) need to be merged. In addition, we report an extensive8

analysis of the retrieval performance of the system, using the query logs generated during the9

Video Browser Showdown (VBS) 2019 competition. This allowed us to fine-tune the system by10

choosing the optimal parameters and strategies from those we tested.11

Keywords: Content-based Video Retrieval; Surrogate Text Representation; Known Item Search;12

Ad-hoc Video Search; Multimedia and multimodal retrieval; Multimedia information systems;13

Information systems applications; Video search; Image search; Users and interactive retrieval;14

Retrieval models and ranking; Users and interactive retrieval.15

1. Introduction16

With the pervasive use of digital cameras and social media platforms, we witness a17

massive daily production of multimedia content, especially videos and photos. This phe-18

nomenon poses several challenges for the management and retrieval of visual archives.19

On one hand, the use of content-based retrieval systems and automatic data analysis is20

crucial to deal with visual data that typically are poorly-annotated (think for instance21

of user-generated content). On the other hand, there is an increasing need for scalable22

systems and algorithms to handle ever-larger collections of data.23

In this work, we present a video search system, named VISIONE, which provides24

users with various functionalities to easily search for targeted videos. It relies on artificial25

intelligence techniques to automatically analyze and annotate visual content and em-26

ploys an efficient and scalable search engine to index and search for videos. A demo of27

VISIONE running on the V3C1 dataset, described in the following, is publicly available28

at http://visione.isti.cnr.it/.29

VISIONE participated in the Video Browser Showdown (VBS) 2019 challenge [1].30

VBS is an international video search competition [1–3] that evaluates the performance31

of interactive video retrieval systems. Performed annually since 2012, it is becoming32

increasingly challenging as its video archive grows and new query tasks are introduced33

in the competition. The V3C1 dataset [4] used in the competition since 2019 consists34

of 7,475 videos gathered from the web, for a total of about 1,000 hours. The V3C135

dataset is segmented into 1,082,657 non-overlapping video segments, based on the visual36

content of the videos [4]. The shot segmentation for each video as well as the keyframes37
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Figure 1. Examples of KIS, textual KIS and AVS tasks.

and thumbnails per video segment are available within the dataset1. In our work, we38

used the video segmentation and the keyframes provided with the V3C1 dataset. The39

tasks evaluated during the competition are: Known-Item-Search (KIS), textual KIS and40

Ad-hoc Video Search (AVS). Figure 1 gives an example of each task. The KIS task models41

the situation in which a user wants to find a particular video clip that he or she has42

previously seen, assuming that it is contained in a specific data collection. The textual KIS43

is a variation of the KIS task, where the target video clip is no longer visually presented44

to the participants of the challenge, but it is rather described in detail by some text. This45

task simulates situations in which a user wants to find a particular video clip, without46

having seen it before, but knowing exactly its content. For the AVS task, instead, a47

general textual description is provided and participants have to find as many correct48

examples as possible, i.e. video shots that match the given description.49

VISIONE can be used to solve both It integrates several content-based data analysis50

and retrieval modules, including a keyword search, a spatial object-based search, a51

spatial color-based search, and a visual similarity search. The main novelty of our52

system is that it employs text encodings that we specifically designed for indexing and53

searching video content. This aspect of our system is crucial: we can exploit the latest54

text search engine technologies, which nowadays are characterized by high efficiency55

and scalability, without the need to define a dedicated data structure or even worry56

about implementation issues like software maintenance or updates to new hardware57

technologies, etc.58

In [5] we initially introduced VISIONE by only listing its functionalities and briefly59

outlining the techniques it employs. In this work, instead, we have two main goals: first,60

to provide a more detailed description of all the functionalities included in VISIONE61

and how each of them are implemented and combined together; second, to present an62

analysis of the system retrieval performance by examining the logs acquired during63

the VBS2019 challenge. Therefore, this manuscript primarily presents how all the64

aforementioned search functionalities are implemented and integrated into a unified65

framework that is based on a full-text search engine, such as Apache Lucene2; secondly,66

it presents an an experimental analysis for identifying the most suitable text scoring67

function (ranker) for the proposed textual encoding in the context of video search.68

The rest of the paper is organized as follows. The next section reviews related69

works. Section 3 gives an overview of our system and its functionalities. Key notions70

on our proposed textual encoding and other aspects regarding the indexing and search71

phases are presented in Section 4. Section 5 presents an experimental evaluation to72

determine which text scoring function is the best in the context of a . Section 6 draws the73

conclusions.74

1 https://www-nlpir.nist.gov/projects/tv2019/data.html
2 https://lucene.apache.org/

https://www-nlpir.nist.gov/projects/tv2019/data.html
https://lucene.apache.org/
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2. Related Work75

Video search is a challenging problem of great interest in the multimedia retrieval76

community. It employs various information retrieval and extraction techniques, such as77

content-based image and text retrieval, computer vision, speech and sound recognition,78

and so on.79

In this context, several approaches for cross-modal retrieval between visual data80

and text description have been proposed, , to name but a few. Many of them are image-81

text retrieval methods that make use of a projection of the image features and the text82

features into the same space (visual, textual or a joint space) so that the retrieval is then83

performed by searching in this latent space (e.g., [6–8]). Other approaches are referred84

as video-text retrieval methods as they learn embeddings of video and text in the same85

space by using different multi-modal features (like visual cues, video dynamics, audio86

inputs, and text) [9–14]. For example, [11] simultaneously utilizes multi-modal features87

to learn two joint video-text embedding networks: one learns a joint space between88

text features and visual appearance features, the other learns a joint space between text89

features and a combination of activity and audio features.90

Many video retrieval systems are designed in order to support complex human91

generated queries that may include but are not limited to keywords or natural language92

sentences. Most of them are interactive tools where the users can dynamically refine93

their queries in order to better specify their search intent during the search process. The94

contest provides a live and fair performance assessment of interactive video retrieval95

systems and therefore in recent years has become a reference point for comparing state-96

of-the-art video search tools. During the competition, the participants have to perform97

various KIS and AVS tasks in a limited amount of time (generally within 5-8 minutes for98

each task). To evaluate the interactive search performance of each video retrieval system,99

several search sessions are performed by involving both expert and novice users3.100

Several video retrieval systems participated at the VBS in the last years [1,3,15,101

16]. Most of them, including our system, support multimodal search with interactive102

query formulation. The various systems differ mainly on (i) the search functionalities103

supported (e.g. query-by-keyword, query-by-example, query-by-sketch, etc.), (ii) the104

data indexing and search mechanisms used at the core of the system, (iii) the techniques105

employed during video preprocessing to automatically annotate selected keyframes106

and extract image features, (iv) the functionalities integrated into the user interface,107

including advanced visualization and relevance feedback. Among all the systems that108

participated in VBS, we recall VIRET [17], vitrivr [18], and SOM-Hunter [19], which won109

the competition in 2018, 2019, and 2020, respectively.110

VIRET [17,20] is an interactive frame-based video retrieval system that currently111

provides four main retrieval modules (query by keyword, query by free-form text,112

queries by color sketch, and query by example). The keyword search relies on automatic113

annotation of video keyframes. In the latest versions of the system, the annotation is114

performed using a retrained deep (NasNet [21]) with a custom set of 1243 class labels.115

A retrained NasNet is also used to extract deep features of the images, which are then116

employed for similarity search. The free-form text search is implemented by using a117

variant of the W2VV++ model [22]. An interesting functionality supported by VIRET is118

the temporal sequence search, which allows a user to describe more than one frame of a119

target video sequence by also specifying the expected temporal ordering of the searched120

frames.121

Vitrivr [23] is an open-source multimedia retrieval system that supports content-122

based retrieval of several media types (images, audio, 3D data, and video). For video123

retrieval, it offers different query modes, including query by sketch (both visual and se-124

mantic), query by keywords (concept labels), object instance search, speech transcription125

3 Expert users are the developers of the in race retrieval system or people that already know and use the system before the competition. Novices are
users who interact with the search system for the first time during the competition.



Version September 2, 2021 submitted to J. Imaging 4 of 23

search, and similarity search. For the query by sketch and query by example, vitrivr uses126

several low-level image features and a pixel-wise semantic annotator [24]. The textual127

search is based on scene-wise descriptions, structured metadata, OCR, and ASR data128

extracted from the videos. Faster-RCNN [25] (pre-trained on the Openimages V4 dataset)129

and a ResNet-50 [7] (pre-trained on ImageNet) are used to support object instance search.130

The latest version of vitrivr also supports temporal queries.131

SOM-Hunter [19] is an open-source video retrieval system that supports keyword132

search, free-text search, and temporal search functionalities, which are implemented133

as in the VIRET system. The main novelty of SOM-Hunter is that it relies on the134

user’s relevance feedback to dynamically update the search results displayed using135

self-organizing maps (SOMs).136

Our system, like almost all current video retrieval systems, relies on artificial intelli-137

gence techniques for automatic video content analysis (including automatic annotation138

and object recognition). Nowadays, content-based image retrieval systems (CBIR) are139

possible solution to the problem of retrieving and exploring a large volume of images140

resulting from the exponential growth of accessible image data. Many of these systems141

use both visual and textual features of the images, but often most of the images are142

not annotated or only partially annotated. Since manual annotation for a large volume143

of images is impractical, Automatic Image Annotation (AIA) techniques aim to bridge144

this gap. For the most part, AIA approaches are based solely on the visual features of145

the image using different techniques: one of the most common approaches consists in146

training a classifier for each concept and obtaining the annotation results by ranking147

the class probability [26,27]. There are other AIA approaches that aim to improve the148

quality of image annotation by using the knowledge implicit in a large collection of149

unstructured text describing images, and are able to label images without having to train150

a model (Unsupervised Image Annotation approach [28–30]). In particular, the image151

annotation technique we exploited is an Unsupervised Image Annotation technique152

originally introduced in [31].153

Recently, image features built upon Convolutional Neural Networks (CNN) have154

been used as an effective alternative to descriptors built using image local features, like155

SIFT, ORB and BRIEF, to name but a few. CNNs have been used to perform several tasks,156

including image classification, as well as image retrieval [32–34] and object detection157

[35]. Moreover, it has been proved that the representations learned by CNNs on specific158

tasks (typically supervised) can be transferred successfully across tasks [32,36]. The159

activation of neurons of specific layers, in particular the last ones, can be used as features160

to semantically describe the visual content of an image. Tolias et al. [37] proposed the161

Regional Maximum Activations of Convolutions (R-MAC) feature representation, which162

encodes and aggregates several regions of the image in a dense and compact global163

image representation. Gordo et al. [38] inserted the R-MAC feature extractor in an164

end-to-end differentiable pipeline in order to learn a representation optimized for visual165

instance retrieval through back-propagation. The whole pipeline is composed by a fully166

convolutional neural network, a region proposal network, the R-MAC extractor and167

PCA-like dimensionality reduction layers, and it is trained using a ranking loss based on168

image triplets. In our work, as a feature extractor for video frames, we used a version of169

R-MAC that uses the ResNet-101 trained model provided by [39] as the core. This model170

has proven to perform best on standard benchmarks.171

Object detection and recognition techniques also provide valuable information for172

semantic understanding of images and videos. In [40] the authors proposed a model173

for object detection and classification, which integrates Tensor features. The latter174

are invariant under spatial transformation and together with SIFT features (which are175

invariant to scaling and rotation) allow improving the classification accuracy of detected176

objects using a Deep Neural Network. In [41,42], the authors presented a cloud based177

system that analyses video streams for object detection and classification. The system178

is based on a scalable and robust cloud computing platform for performing automated179
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Figure 2.

analysis of thousands of recorded video streams. The framework requires a human180

operator to specify the analysis criteria and the duration of video streams to analyze.181

The streams are then fetched from a cloud storage, decoded and analyzed on the cloud.182

The framework executes intensive parts of the analysis on GPU-based servers in the183

cloud. Recently, in [43], the authors proposed an approach that combines Deep and184

SIFT. In particular, they extract features from the analyzed images with both approaches,185

they fuse the features by using a serial-based method that produces a matrix that is fed186

to ensemble classifier for recognition.187

In our system, we used YOLOv3 [44] as CNN architecture to recognize and locate188

objects in the video frames. The architecture of YOLOv3 jointly performs a regression of189

the bounding box coordinates and classification for every proposed region. Unlike other190

techniques, YOLOv3 performs these tasks in an optimized fully-convolutional pipeline191

that takes pixels as input and outputs both the bounding boxes and their respective192

proposed categories. This CNN has the great advantage of being particularly fast and at193

the same time exhibiting remarkable accuracy. To increase the number of categories of194

recognizable objects, we used three different variants of the same network trained on195

different data sets, namely, YOLOv3, YOLO9000 [45], and YOLOv3 OpenImages [46].196

One of the main peculiarities of our system, compared to others participating in VBS,197

is that we decided to employ a full-text search engine to index and search video content,198

both for the visual and textual parts. Since nowadays text search technologies have199

achieved impressive performance in terms of scalability and efficiency VISIONE turns200

out to be scalable. To take full advantage from these stable search engine technologies,201

we specifically designed various text encodings for all the features and descriptors202

extracted from the video keyframes and the user query, and we decided to use the203

Apache Lucene project. In previous papers, we already exploited the idea of using text204

encoding, named Surrogate Text Representation [47], to index and search image for deep205

features [47–50]. In VISIONE, we extend this idea to index also information regarding206

the position of objects and colors that appear in the images.207
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3. The VISIONE video search tool208

VISIONE is a visual content-based retrieval system designed to support large scale209

video search. It allows a user to search for a video describing the content of a scene by210

formulating textual or visual queries (see Figure 2).211

VISIONE, in fact, integrates several search functionalities and exploits deep learn-212

ing technologies to mitigate the semantic gap between text and image. Specifically it213

supports:214

• query by keywords: the user can specify keywords including scenes, places or concepts215

(e.g. outdoor, building, sport) to search for video scenes;216

• query by object location: the user can draw on a canvas some simple diagrams to217

specify the objects that appear in a target scene and their spatial locations;218

• query by color location: the user can specify some colors present in a target scene and219

their spatial locations (similarly to object location above);220

• query by visual example: an image can be used as a query to retrieve video scenes221

that are visually similar to it.222

Moreover, the search results can be filtered by indicating whether the keyframes are in223

color or in b/w, or by specifying its aspect ratio.224

3.1. The User Interface225

The VISIONE user interface is designed to be simple, intuitive and easy to use also226

for users who interact with it for the first time. As shown in Figure 2, it integrates the227

searching and the browsing functionalities in the same window.228

The searching part of the interface (Figure 3) provides:229

• a text box, named “Scene tags", where the user can type keywords describing the230

target scene (e.g. “park sunset tree walk");231

• a color palette and an object palette that can be used to easily drag & drop a desired232

color or object on the canvas (see below);233

• a canvas, where the user can sketch objects and colors that appear in the target scene234

simply by drawing bounding-boxes that approximately indicate the positions of235

the desired objects and colors (both selected from the palettes above) in the scene;236

• a text box, named “Max obj. number", where the user can specify the maximum237

number of instances of the objects appearing in the target scene (e.g.: two glasses);238

• two checkboxes where the user can filter the type of keyframes to be retrieved (B/W239

or color images, 4:3 or 16:9 aspect ratio).240

The canvas is split into a grid of 7×7 cells, where the user can draw the boxes and241

then move, enlarge, reduce or delete them to refine the search. The user can select the242
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desired color from the palette, drag & drop it on the canvas and then resize or move the243

corresponding box as desired. There are two options to insert objects in the canvas: (i)244

directly draw a box in the canvas using the mouse and then type the name of the object245

in a dialog box (auto-complete suggestions are shown to the user), (ii) drag & drop one of246

the object icon appearing in the object palette on the canvas. For the user’s convenience,247

a selection of 38 common (frequently used) objects are included in the object palette.248

Note that when objects are inserted in the canvas (e.g. a “person" and a “car"), then249

the system filters out all the images not containing the specified objects (e.g. all the250

scenes without a person or without a car). However, images with multiple instances of251

those objects can be returned in the search results (e.g. images with two or three people252

and one or more cars). The user can use the “Max obj. number" text box to specify the253

maximum number of instances of an object appearing in the target scene. For example254

by typing “1 person 3 car 0 dog" the system returns only images containing at most one255

person, three cars and no dog.256

The “Scene tags" text box provides auto-complete suggestions to the users and for257

each tag also indicates the number of keyframes in the databases that are annotated with258

it. For example, by typing “music" the system suggests “music (204775); musician (1374);259

music hall (290); ...", where the numbers indicates how many images in the database are260

annotated with the corresponding text (e.g. 204775 images for “music", 1374 images for261

“musician", etcetera). This information can be exploited by the user when formulating the262

queries. Moreover, the keyword-based search supports wildcard matching. For example,263

with “music∗" the system searches for any tag that starts with “music".264

Every time the user interacts with the search interface (e.g type some text or add/265

move/delete a bounding box) the system automatically updates the list of search results,266

which are displayed in the browsing interface, immediately below the search panel. In267

this way the user can interact with the system and gradually compose his query by also268

taking into account the search results obtained so far to refine the query itself.269

The browsing part of the user interface (Figure 4) allows accessing the information270

associated with the video, every displayed keyframe belongs to it, a keyframe-based271
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Figure 5. System Architecture: a general overview of the components of the two main phases of
the system, the indexing and the browsing.

video summary and playing the video starting from the selected keyframe. In this way,272

the user can easily check if the selected image belongs to the searched video. The search273

results can also be grouped together according to the fact that the keyframes belong to274

the same video. This visualization option can be enabled/disabled by clicking on the275

“Group by video" checkbox. Moreover, while browsing the results, the user can use one of276

the displayed images to perform an image Similarity Search and retrieve frames visually277

similar to the one selected. A Similarity Search is executed by double clicking on an278

image displayed in the search results.279

3.2. System Architecture Overview280

The general architecture of our system is illustrated in Figure 5. Each component of281

the system will be described in detail in the following sections; here we give an overview282

of how it works. To support the search functionalities introduced above, our system283

exploits deep learning technologies to understand and represent the visual content of284

the database videos. Specifically, it employs:285

• an image annotation engine, to extract scene tags (see Sec. 4.1);286

• state-of-the-art object detectors, like YOLO 4, to identify and localize objects in the287

video keyframes (see Sec 4.2);288

• spatial colors histograms, to identify dominant colors and their locations (see Sec289

4.2);290

• the R-MAC deep visual descriptors, to support the Similarity Search functionality291

(see Sec. 4.3)292

The peculiarity of the approach used in VISIONE is to represent all the differ-293

ent types of descriptors extracted from the keyframes (visual features, scene tags, col-294

ors/object locations) with a textual encoding that is indexed in a single text search engine.295

This choice allows us to exploit mature and scalable full-text search technologies and296

platforms for indexing and searching video repository. In particular, VISIONE relies297

on the Apache Lucene full-text search engine. The text encoding used to represent the298

various types of information, associated with every keyframe, is discussed in Section 4.299

Also the queries formulated by the user through the search interface (e.g. the300

keywords describing the target scene and/or the diagrams depicting objects and the301

colors locations) are transformed into textual encoding, in order to process them. We302

designed a specific textual encoding for each typology of data descriptor as well as for303

the user queries.304

In the full-text search engine, the information extracted from every keyframe is305

composed of four textual fields, as shown in Figure 5:306

• Scene Tags, containing automatically associated tags;307

• Object&Color BBoxes, containing text encoding of colors and objects locations;308

• Object&Color Classes, containing global information on objects and colors in the309

keyframe;310

4 https://pjreddie.com/darknet/yolo/
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• Visual Features, containing text encoding of extracted visual features.311

These four fields are used to serve the four main search operations of our system:312

• Annotation Search, search for keyframes associated with specified annotations;313

• BBox Search, search for keyframes having specific spatial relationships among ob-314

jects/colors;315

• OClass Search, search for keyframes containing specified objects/colors;316

• Similarity Search, search for keyframes visually similar to a query image317

The user query is broken down into In the next section, we will describe the four search318

operations and further details on the indexing and searching phases.319

4. Indexing and Searching Implementation320

In VISIONE, as already anticipated, content of keyframes is represented and in-321

dexed using automatically generated annotations, positions of occurring objects, po-322

sitions of colors, and deep visual features. In the following we describe how these323

descriptors are extracted, indexed, and searched.324

4.1. Image Annotation325

One of the most natural ways of searching in a large multimedia data set is using326

a keyword-based query. To support such kind of queries, we employed our automatic327

annotation system5 that is introduced in [31]. This system is based on an unsupervised328

image annotation approach that exploits the knowledge implicitly existing in a huge329

collection of unstructured texts describing images, allowing us to annotate the images330

without using a specified trained model. The advantage is that the target vocabulary331

we used for the annotation reflects well the way people actually describe their pictures.332

Specifically, our system uses the tags and the descriptions contained in the metadata333

of a large set of media selected from the Yahoo Flickr Creative Commons 100 Million334

(YFCC100M) dataset [51]. Those tags are validated using WordNet [52], cleaned and335

then used as the knowledge base for the automatic annotation.336

The subset of the YFCC100M dataset that we used for building the knowledge base337

was selected by identifying images with relevant textual descriptions and tags. To this338

scope, we used a metadata cleaning algorithm that leverages on the semantic similarities339

between images. Its core idea is that if a tag is contained in the metadata of a group340

of very similar images, then that tag is likely to be relevant for all these images. The341

similarity between images was measured by means of visual deep features; specifically,342

we used the output of the sixth layer of the neural network Hybrid-CNN 6 as visual343

descriptors. 7.344

As a result of our metadata cleaning algorithm we selected about 16 thousands345

terms associated with about one million images. The set of deep features extracted from346

those images were then indexed using the MI-file index [53] in order to allow us to access347

the data and perform similarity search in a very efficient way.348

The annotation engine is based on a k-NN classification algorithm. An image is349

annotated with the most frequent tags associated with the most similar images in the350

YFCC100M cleaned subset. The specific definition of the annotation algorithm is out of351

the scope of this paper and we refer to [31] for further details.352

In Figure 6, we show an example of annotation obtained with our system. Please353

note that our system also provides a relevance score to each tag associated with the354

image. The bigger the score the more relevant the tag. We used our annotation system to355

label the video keyframes of the V3C1 dataset. For each keyframe we produce a “tag356

textual encoding" by concatenating all the tags associated with the images. In order to357

represent the relevance of the associated tag, each tag is repeated a number of times358

5 Demo available at http://mifile.deepfeatures.org
6 Publicly available in the Caffe Model Zoo, http://github.com/BVLC/caffe/wiki/Model-Zoo
7

http://mifile.deepfeatures.org
http://github.com/BVLC/caffe/wiki/Model-Zoo
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Guessed tag: sunset Relevance: 35.25
Guessed tag: sunrise Relevance: 7.24
Guessed tag: sun Relevance: 4.81
Guessed tag: sky Relevance: 3.22
Guessed tag: sol Relevance: 3.19
Guessed tag: view Relevance: 2.43
Guessed tag: cloud Relevance: 2.42
Guessed tag: lake Relevance: 1.62
Guessed tag: mountain Relevance: 1.61
Guessed tag: dusk Relevance: 1.61
Guessed tag: landscape Relevance: 1.61
Guessed tag: mar Relevance: 1.60
Guessed tag: beach Relevance: 1.60

beach beach cloud cloud cloud dusk dusk lake lake
landscape landscape mar mar mountain mountain sky sky
sky sky sol sol sol sol sun sun sun sun sun sunrise sunrise
sunrise sunrise sunrise sunrise sunrise sunrise sunset 
sunset sunset sunset sunset sunset sunset sunset sunset
sunset sunset sunset sunset sunset sunset sunset sunset
sunset sunset sunset sunset sunset sunset sunset sunset
sunset sunset sunset sunset sunset sunset sunset sunset
sunset sunset sunset view view view

Textual Document

Figure 6. Example of our image annotation and its representation as single textual document. In
the textual document, each tag is repeated a number of times equal to the least integer greater
than or equal to the tag relevance

equal to the relevance score of the tag itself (the relevance of each tag is approximated to359

an integer using the ceiling function). The ordering of the tags in the concatenation is360

not important because what matters are the tag frequencies. In Figure 6 the box named361

Textual Document shows an example of concatenation associated with a keyframe.362

Annotation Search.363

The annotations, generated as described above, can be used to retrieve videos, by364

typing keywords in the “Scene tags" text box of the user interface (see Figure 3). As365

already anticipated in Section 3.2, we call Annotation Search this searching option. The366

Annotation Search is executed performing a full-text search. As described in Section 5,367

during the VBS competition the similarity was used as a text scoring function.368

4.2. Objects and Colors369

Information related to objects and colors in a keyframe are treated in a similar way370

in our system. Given a keyframe we store both local and global information about371

objects and colors contained in it. As we discussed in Section 3.2, the positions where372

objects and colors occur are stored in the Object&Color BBoxes field; all objects and colors373

occurring in a frame are stored in the Object&Color Classes field.374

4.2.1. Objects375

We used a combination of three different versions of YOLO to perform object376

detection: YOLOv3 [44], YOLO9000 [45], and YOLOv3 OpenImages [46], to extend the377

number of detected objects. The idea of using YOLO to detect objects within video has378

already been exploited in VBS, e.g. by Truong et al. [54]. The peculiarity of our approach379

is that we combine and encode the spatial position of the detected objects in a single380

textual description of the image. The textual encoding of this information is created as381

follows. For each image, we have a space-separated concatenation of ENCs, one for all382

the cells (codloc) in the grid that contains the object (codclass): for example, for the image383

in Figure 7 the rightmost car is indexed with the sequence {e3car f 3car ... g5car} where384

“car" is the codclass of the object car, located in cells e3, f 3, g3, e4, f 4, g4, e5, f 5, g5. This385

information is stored in the Object&Color BBoxes field of the record associated with the386
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a3car a3car a3vehicle a3vehicle a4car a4vehicle b1person b2person b3person b3car b3vehicle b4car b4vehicle c1person
c1person c2person c2person c2horse c2mammal c2animal c3person c3person c3horse c3mammal c3animal c4horse
c4mammal c4animal c5horse c5mammal c5animal d2horse d2mammal d2animal d3horse d3mammal d3animal d4horse
d4mammal d4animal d5horse d5mammal d5animal e2horse e2mammal e2animal e3horse e3mammal e3animal e3car
e3vehicle e4horse e4mammal e4animal e4car e4vehicle e5horse e5mammal e5animal e5car e5vehicle f3car f3vehicle
f4car f4vehicle f5car f5vehicle g3car g3vehicle g4car g4vehicle g5car g5vehicle

Textual Encoding of Object Bounding Boxes

person1 person2 vehicle1 vehicle2 vehicle3 car1 car2 car3 mammal1 horse1 animal1

Textual Encoding of Object Classes

Figure 7.

keyframe. In addition to the position of objects, we also maintain global information387

about the objects contained in a keyframe, in terms of number of occurrences of each388

object detected in the image (see Figure 7). Occurrences of objects in a keyframe are389

encoded by repeating the object (codclass) as many times as the number of the occurrences390

(codocc) of the object itself. This information is stored using an encoding that composes391

the classes with their occurrences in the image: (codclasscodocc). For example, in Figure392

7, YOLO detected 2 persons, 3 cars, which are also classified as vehicle by the detector,393

and 1 horse, also classified as animal and mammal, and this results in the Object Classes394

encoding as “person1 person2 vehicle1 vehicle2 vehicle3 car1 car2 car3 mammal1 horse1395

animal1”. This information is stored in the Object&Color Classes field of the record396

associated with the keyframe.397

4.2.2. Colors398

To represent colors, we use a palette of 32 colors8 which represents a good trade-off399

between the huge miscellany of colors and simplicity of choice for the user at search time.400

For the creation of the color textual encoding we used the same approach employed to401

encode the object classes and locations, using the same grid of 7× 7 cells. To assign the402

colors to each cell of the grid we used the following approach. We first evaluate the color403

of each pixel by using the CIELAB color space. Then, we map the evaluated color of the404

pixel to our 32-colors palette. To do so, we perform a k-NN similarity search between the405

evaluated color and our 32 colors to find the colors in our palette that most match the406

color of the current pixel. The metric used for this search is the Earth Mover’s Distance407

[55]. We take into consideration the first two colors in k-NN results. The first color is408

assigned to that pixel. We then compute the ratio between the scores of the two colors409

and if it is greater than 0.5 then we also assign the second color to that pixel. This is done410

to allow matching of very similar colors during searching. We repeat this for each pixel411

of a cell in the grid and then we sum the occurrences of each color of our palette for all412

the pixels in the cell. Finally, we assign to that cell all the colors whose occurrence is413

greater than 7% of the number of pixels contained in the cell. So more than one color414

may be assigned to a single cell. This redundancy helps reduce misclassified colors from415

what they appear to the human eye.416

8 https://lospec.com/palette-list
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The colors assigned to all the 7× 7 cells are then encoded into two textual docu-417

ments, one for the color locations and one for the global color information, using the418

same approach employed to encode object classes and locations, and discussed in section419

4.2.1. Specifically, the textual document associated to the color location is obtained by420

concatenating textual encodings of the form codloccodclass, where codloc is an identifier of421

a cell and codclass is the identifier of a color assigned to the cell. This information is stored422

in the Object&Color BBoxes field. The textual document for the color classes is obtained423

by concatenating the text identifiers (codclass) of all the colors assigned to the image. This424

information is stored in the Object&Color Classes field of the record associated with the425

keyframe.426

Object and Color Location Search.427

At run-time phase, the search functionalities for both the query by object and color428

location are implemented using two search operations: the bounding box search (BBox429

Search) and the object/color-class search (OClass Search).430

The user can draw a bounding box in a specific position of the canvas and specify431

which object/color wants to found in that position, or he/she can drag & drop a par-432

ticular object/color from the palette in the user interface and resize the corresponding433

bounding box as desired (as shown in the “Query by object/colors” of Figure 3). All434

the bounding boxes present in the canvas, both related to objects and colors, are then435

converted into the two textual encoding described respectively436

For the actual search phase, first an instance of the OClass Search operator is437

executed. This operator tries to find a match between all the objects represented in the438

canvas and the frames stored in the index that contains these objects. This produces a439

result set containing a subset of the dataset with all the frames that match the objects440

in the canvas. After this, the BBox Search operator performs a rescoring of the result441

set by matching the textual encoding of the Object and Color Bounding Boxes encoding442

of the query with all the corresponding encodings in the index. The metric used in this443

case during the VBS competition was BM25. After the execution of these two search444

operators, the frames that satisfied these two searches ordered by descending score are445

shown in the browsing part of the user interface.446

4.3. Deep Visual Features447

VISIONE also supports content-based visual search functionality, i.e., it allows users448

to retrieve keyframes visually similar to a query image given by example. In order to449

represent and compare the visual content of the images, we use the Regional Maximum450

Activations of Convolutions (R-MAC) [37], which is a state-of-art descriptor for image451

retrieval. The R-MAC descriptor effectively aggregates several local convolutional452

features (extracted at multiple positions and scales) into a dense and compact global453

image representation. We use the ResNet-101 trained model provided by Gordo et al.454

[38] as an R-MAC feature extractor since it achieved the best performance on standard455

benchmarks. The used descriptors are 2048-dimensional real-valued vectors.456

To efficiently index the R-MAC descriptor, we transform the deep features into a457

textual encoding suitable for being indexed by a standard full-text search engine. We458

used the Scalar Quantization-based Surrogate Text representation to transform the deep459

features into a textual encoding, which was proposed in [49]. The idea behind this460

approach is to map the real-valued vector components of the R-MAC descriptor into a461

(sparse) integer vector that acts as the term frequencies vector of a synthetic codebook.462

Then the integer vector is transformed into a text document by simply concatenating463

some synthetic codewords so that the term frequency of the i-th codeword is exactly464

the i-th element of the integer vector. For example, the four-dimensional integer vector465

[2, 1, 0, 1] is encoded with the text “τ1 τ1 τ2 τ4", where {τ1, τ2, τ3, τ4} is a codebook of four466

synthetic alphanumeric terms.467
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The overall process used to transform an R-MAC descriptors into a textual encod-468

ing is summarized in Figure 8 (for simplicity, the R-MAC descriptor is depicted as a469

10-dimensional vector). The mapping of the deep features into the term frequencies470

vectors is designed (i) to preserve as much as possible the rankings, i.e. similar features471

should be mapped into similar term frequencies vectors (for effectiveness) and (ii) to472

produce sparse vectors, since each data object will be stored in as many posting lists473

as the non-zero elements in its term frequencies vector (for efficiency). To this end,474

the deep features are first centered using their mean and then rotated using a random475

orthogonal transformation. The random orthogonal transformation is particularly useful476

to distribute the variance over all the dimensions of the vector as it provides good bal-477

ancing for high dimensional vectors without the need to search for an optimal balancing478

transformation. In this way, we try to increase the cases where the dimensional compo-479

nents of the features vectors have the same mean and variance, with mean equal to zero.480

Moreover the used roto-traslation preserves the rankings according to the dot-product481

(see [49] for more details). Since search engines, like the one we used, use an inverted482

file to store the data, as a second step, we have to sparsify the features. Sparsification483

guarantees the efficiency of these indexes. To achieve this, Scalar Quantization approach484

maintains components above a certain threshold by zeroing all the others and quantizing485

the non-zero elements to integer values. To deal with negative values the Concatenated486

Rectified Linear Unit (CReLU) transformation [56] is applied before the thresholding.487

Note that the CReLU simply makes an identical copy of vector elements, negates it,488

concatenates both original vector and its negation, and then zeros out all the negative489

values.490

In VISIONE the Surrogate Text Representation of a dataset image is stored in the491

“Visual Features” field of our index (Figure 5).492

Similarity Search.493

VISIONE relies on the Surrogate text encodings of images to perform the Similarity494

Search. When the user starts a Similarity Search by selecting a keyframe in the browsing495

interface, the system retrieves all the indexed keyframes whose Surrogate Text Represen-496

tation are similar to the Surrogate Text Representation of the selected keyframe. We used497

the dot product over the frequency terms vectors (TF ranker) as text similarity function498

since it achieved very good performance for large-scale image retrieval task [49].499

4.4. Overview of the Search Process500

As we described so far, our system relies on four search operations: an Annotation501

Search, a BBox Search, an OClass Search, and a Similarity Search. Every time a user502

interacts with the VISIONE interface (add/remove/update a bounding box, add/remove503

a keyword, click on an image, etc...), a new query Q is executed, where Q is the sequence504

of the instances of search operations currently active in the interface. The query is then505
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Figure 9.

split into subqueries, where a subquery contains instances of a single search operation.506

In a nutshell, the system runs all the subqueries using the appropriate search operation507

and then combines the search results using a sequence of reordering. In particular,508

we designed the system so the OClass Search operation has the priority: the result set509

contains all the images which match the given query with taking into account the classes510

drawn in the canvas (both object and colors), and not their spatial location. If the query511

includes also some scene tags (text box of the user interface), then the Annotation Search512

is performed but only on the result set generated by the first OClass Search. So in this513

case the Annotation Search actually produces only a rescoring of the results obtained at514

the previous step. Finally, another rescore is performed using the BBox Search. If the515

user does not issue any annotation keyword in the interface, only the OClass Search and516

BBox Search are used. If, on the other hand, only one or more keywords are put in the517

interface, only the Annotation Search is used to find the results.518

However, we that in future versions of VISIONE it may be interesting to also519

include the possibility of using Similarity Search to reorder the results obtained from520

other search operations.521

5. Evaluation522

As already discussed in Sections 3 and 4, a user query is executed as a combination523

of search operations (Annotation Search, BBox Search, OClass Search, and Similarity524

Search). The final result set returned to the user highly depends on the results returned525

by each executed search operation. Each search operation is implemented in Apache526

Lucene using a specific ranker that determines how the textual encoding of the database527
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items are compared with the textual encoding of the query in order to provide the ranked528

list of results.529

In our first implementation of the system, used at the VBS competition in 2019, we530

tested for each search operation various rankers, and we estimated the performance531

of the system using our personal experience and feeling. Specifically, we tested a set532

of queries with different rankers and we select the ranker that provided us with good533

results in the top positions of the returned items. However, given the lack of a ground534

truth, this qualitative analysis was based on a subjective feedback provided by a member535

of our team who explicitly looked at the top-returned images obtained with the various536

tested scenarios, and judged how good the results were.537

After the competition, we decided to have a more accurate approach to estimate the538

performance of the system, and the results of this analysis are discussed in this section.539

As the choice of the rankers strongly influences the performance of the system, we540

decided to have a more in-depth and objective analysis based on this part of the system.541

The final scope of this analysis is finding for our system the best rankers combination.542

Intuitively, the best combination of rankers is the one that, on average, puts more often543

good results (that is target results for the search challenge) at the top of the result list.544

Specifically, we used the query logs acquired during the participation at the challenge.545

The logs store all the sequences of search operations that were executed as consequence of546

users interacting with the system. By using these query logs, we were able to re-execute547

the same user sessions using different rankers. In this way we objectively measured the548

performance of the system, obtained when the same sequence of operation was executed549

with different rankers.550

We focus mainly on the rankers for the BBox Search, OClass Search, and Annotation551

Search. We do not consider the Similarity Search as it is an independent search operation552

in our system, and previous work [49] already proved that the dot product (TF ranker)553

works well with the surrogate text encodings of the R-MAC descriptors, which are the554

features adopted in our system for the Similarity Search.555

5.1. Experiment Design and Evaluation Methodology556

As anticipated before, our analysis makes use of the log of queries executed during557

the 2019 VBS competition. The competition was divided in three content search tasks:558

visual KIS, textual KIS and AVS, already described in Section 1. For each task, a series of559

runs is executed. In each run, the users are requested to find one or more target videos.560

When the user believes that he/she has found the target video, he/she submits the result561

to the organization team that evaluates the submission.562

After the competition, the organizers of VBS provided us with the VBS2019 server563

dataset that contains all the tasks issued at the competition (target video/textual de-564

scription, start/end time of target video for KIS tasks, and ground-truth segments for565

KIS tasks), the client logs for all the systems participating to the competition, and the566

submissions made by the various teams. We used the ground-truth segments and the567

log of the queries submitted to our system to evaluate the performance of our system568

under different settings. We restricted the analysis only to the logs related to textual and569

visual KIS tasks since ground-truths for AVS tasks were not available9.570

During the VBS competition a total of four users (two experts and two novices)571

interacted with our system to solve 23 tasks (15 visual KIS and 8 textual KIS). The total572

number of queries executed on our system for those tasks was 160010.573

In our analysis, we considered four different rankers to sort the results obtained574

by each search operation of our system. Specifically we tested the rankers based on the575

following text scoring function:576

9 Please note that for the AVS tasks the evaluation of the correctness of the results submitted by each team during the competition was made on site
by members of a jury who evaluated the submitted images one by one. For these tasks, in fact, a predefined ground-truth is not available.

10 We recall that, in our system, a new query is executed at each interaction of a user with the search interface.
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Figure 10. Example of the ground-truth keyframes for a 20 second video clip used as a KIS task
at VBS2019. During the competition, our team correctly found the target video by formulating
a query describing one of the keyframes depicting a lemon. However, note that most of the
keyframes in the ground-truth were not relevant for the specific query submitted to our system .

• BM25: Lucene’s implementation of the well-known similarity function BM25 intro-577

duced in [57];578

• TFIDF: Lucene’s implementation of the weighing scheme known as introduced579

in [58];580

• TF: implementation of dot product similarity over the frequency terms vector;581

• NormTF: implementation of cosine similarity (the normalized dot product of the582

two weight vectors) over the frequency terms vectors.583

Since we three search operations and four rankers, we have a total of 64 possible584

combinations. We denote each combination with a triplet RBB-RAN-ROC where RBB is585

the ranker used for the BBox Search, RAN is the ranker used for the Annotation Search,586

and ROC is the ranker used for the OClass Search. In the implementation of VISIONE587

used at the 2019 VBS competition, we employed the combination BM25-BM25-TF. With588

the analysis reported in this section, we compare all the different combinations in order589

to find the one that is most suited for the video search task.590

For the analysis reported in this section we went through the logs and automatically591

re-executed all the queries using the 64 different combinations of rankers in order to find592

the one that, with the highest probability, finds a relevant result (i.e. a keyframe in the593

ground-truth) in the top returned results. Each combination was obtained by selecting a594

specific ranker (among BM25, NormTF, TF, and TFIDF) for each search operation (BBox595

Search, Annotation Search, and OClass Search).596

5.1.1. Evaluation Metrics597

During the competition the user has to retrieve a video segment from the database598

using the functionalities of the system. A video segment is composed of various599

keyframes, which can be significantly different from one another, see Figure 10 as600

an example.601

In our analysis, we assume that the user stops examining the ranked result list602

as soon as he/she finds one relevant result, that is one of the keyframes belonging to603

the target video. Therefore, given that relevant keyframes can be significantly different604

one from the other, we do not take into account the rank position of all the keyframes605

composing the ground-truth of a query, as required for performance measures like Mean606

Average Precision or Discounted Cumulative Gain. We want to measure how the system is607

good at proposing in the top position at least one of the target keyframes.608

In this respect, we use the Mean Reciprocal Rank-MRR (Equation (5.1.1)) as a quality609

measure, since it allows us to evaluate how good is the system in returning at least one610

relevant result (one of the keyframes of the target video) in top position of the result set.611
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Formally, given a set Q of queries, for each q ∈ Q let {I(q)1 , . . . , I(q)nq } the ground-612

truth, i.e., the set of nq keyframes of the target video-clip searched using the query q; we613

define:614

• rank(I(q)j ) as the rank of the image I(q)j in the ranked results returned by our system615

after executing the query q616

• rq = minj=1,...nq rank(I(q)j ) as the rank of the first correct result in the ranked result617

list for the query q.618

The Mean Reciprocal Rank for the query set Q is given by

MRR =
1
|Q| ∑

q∈Q
RR(q), (1)

where the Reciprocal Rank (RR) for a single query q is defined as

RR(q) =

{
0 no relevant results
1/rq otherwise

(2)

We evaluated the MRR for each different combination of rankers. Moreover, as we
expect that a user inspects just a small portion of the results returned in the browsing
interface, we also evaluate the performance of each combination in finding at least one
correct result in the top k positions of the result list (k can be interpreted as the maximum
number of images inspected by a user). To this scope we computed the MRR at position
k (MRR@k):

MRR@k =
1
|Q| ∑

q∈Q
RR@k(q) (3)

where

RR@k(q) =

{
0 rq > k OR no relevant results
1/rq otherwise

(4)

In the experiments we consider values of k smaller than 1000, with a focus on values619

between 1 and 100 as we expect cases where a user inspects more than 100 results to be620

less realistic.621

5.2. Results622

In our analysis, we used |Q| = 521 queries (out of 1600 above mentioned) to623

calculate both MRR and MRR@k. In fact the rest of the queries executed on our system624

during the VBS2019 competition are not eligible for our analysis since they are not625

informative to choose the best ranker configuration:626

• about 200 queries involved the execution of a Similarity Search, a video summary627

or a filtering, whose results are independent of the rankers used in the three search628

operations considered in our analysis;629

• the search result sets of about 800 queries do not contain any correct result due630

to the lack of alignment between the text associated with the query and the text631

associated with images relevant to the target video. For those cases, the system is632

not able to display the relevant images in the result set regardless of the ranker used.633

In fact, the effect of using a specific ranker only affects the ordering of the results634

and not the actual selection of them.635

Note that the combination that we used at VBS2019 (indicated with diagonal lines in the636

graph), and that was chosen according to subjective feelings, has a good performance, but637

it is not the best. In fact, we noticed that there exist some patterns in the combinations of638

the rankers used for the OClass Search and the Annotation Search which are particularly639

effective and some which, instead, provide us with very poor results. For example, the640

combinations that use TF for the OClass Search and BM25 for the Annotation Search gave641



Version September 2, 2021 submitted to J. Imaging 18 of 23

* *

*
* * *

*
*

* * * * * * * *

* * * * * * * * * * * * * * * * * * * * * *

0.000

0.005

0.010

0.015

0.020

0.025

N
o

rm
TF

_B
M

2
5

_T
F

TF
ID

F_
B

M
2

5
_T

F
TF

_B
M

2
5

_T
F

TF
_

B
M

2
5

_B
M

2
5

TF
_B

M
2

5
_N

o
rm

TF
TF

_B
M

2
5

_T
FI

D
F

TF
ID

F_
N

o
rm

TF
_

N
o

rm
TF

N
o

rm
TF

_
B

M
2

5
_B

M
2

5
N

o
rm

TF
_T

FI
D

F_
TF

TF
ID

F_
B

M
2

5
_B

M
2

5
TF

_N
o

rm
TF

_N
o

rm
TF

B
M

2
5

_B
M

2
5

_
N

o
rm

TF
TF

_
N

o
rm

TF
_

TF
ID

F
B

M
2

5
_B

M
25

_T
F

N
o

rm
TF

_N
o

rm
TF

_N
o

rm
TF

TF
ID

F_
B

M
2

5
_N

o
rm

TF
B

M
2

5
_B

M
2

5
_T

FI
D

F
TF

ID
F_

TF
ID

F_
TF

B
M

2
5

_B
M

2
5

_
B

M
2

5
N

o
rm

TF
_B

M
2

5
_T

FI
D

F
N

o
rm

TF
_N

o
rm

TF
_T

FI
D

F
TF

ID
F_

B
M

2
5

_T
FI

D
F

B
M

2
5

_N
o

rm
TF

_N
o

rm
TF

N
o

rm
TF

_B
M

2
5

_N
o

rm
TF

B
M

2
5

_N
o

rm
TF

_T
FI

D
F

TF
ID

F_
N

o
rm

TF
_T

FI
D

F
N

o
rm

TF
_N

o
rm

TF
_T

F
TF

ID
F_

N
o

rm
TF

_
TF

TF
_

TF
ID

F_
TF

N
o

rm
TF

_T
F_

TF
TF

_
TF

ID
F_

N
o

rm
TF

TF
ID

F_
TF

_
TF

TF
_T

FI
D

F_
TF

ID
F

TF
ID

F_
TF

ID
F_

N
o

rm
TF

B
M

2
5

_T
FI

D
F_

N
o

rm
TF

N
o

rm
TF

_T
FI

D
F_

TF
ID

F
N

o
rm

TF
_T

FI
D

F_
N

o
rm

TF
B

M
2

5
_T

FI
D

F_
TF

B
M

2
5

_T
FI

D
F_

TF
ID

F
TF

ID
F_

TF
ID

F_
TF

ID
F

TF
_T

F_
TF

TF
_

TF
ID

F_
B

M
2

5
TF

_N
o

rm
TF

_T
F

N
o

rm
TF

_T
FI

D
F_

B
M

2
5

TF
ID

F_
TF

ID
F_

B
M

2
5

TF
_T

F_
B

M
2

5
TF

_T
F_

N
o

rm
TF

TF
_T

F_
TF

ID
F

N
o

rm
TF

_T
F_

B
M

2
5

TF
ID

F_
TF

_
B

M
2

5
B

M
2

5
_T

FI
D

F_
B

M
2

5
B

M
2

5
_T

F_
N

o
rm

TF
B

M
2

5
_T

F_
TF

TF
ID

F_
TF

_
N

o
rm

TF
B

M
2

5
_T

F_
TF

ID
F

N
o

rm
TF

_T
F_

TF
ID

F
B

M
2

5
_T

F_
B

M
2

5
TF

_N
o

rm
TF

_B
M

2
5

B
M

2
5

_N
o

rm
TF

_T
F

TF
ID

F_
TF

_T
FI

D
F

N
o

rm
TF

_N
o

rm
TF

_B
M

2
5

N
o

rm
TF

_T
F_

N
o

rm
TF

TF
ID

F_
N

o
rm

TF
_B

M
2

5
B

M
2

5
_N

o
rm

TF
_B

M
2

5

M
e

an
 R

e
ci

p
ro

ca
l R

an
k

Figure 11.

Table 1: MRR@k for eight combinations of the rankers (the four best, the four worst and
thesetting used at VBS2019) varying k.Statistically significant results with two-sided p
value lower than 0.05 over the baseline BM25-BM25-TF are marked with ∗.

k = 1 k = 5 k = 10 k = 50 k = 100 k = 500 k = 1000
NormTF-BM25-TF 0.015 0.017 0.019 ∗ 0.022 ∗ 0.022 ∗ 0.023 ∗ 0.023 ∗
TFIDF-BM25-TF 0.013 0.016 0.018 ∗ 0.021 ∗ 0.022 ∗ 0.022 ∗ 0.022 ∗
TF-BM25-TF 0.013 0.016 0.017 0.018 ∗ 0.019 ∗ 0.019 ∗ 0.019 ∗
TF-BM25-BM25 0.013 0.015 0.016 0.017 0.017 ∗ 0.018 ∗ 0.018 ∗
TF-BM25-NormTF 0.013 0.015 0.016 0.017 ∗ 0.017 ∗ 0.018 ∗ 0.018 ∗
BM25-BM25-TF (VBS 2019) 0.013 0.014 0.015 0.016 0.016 0.016 0.017
NormTF-TF-NormTF 0.000 ∗ 0.001 ∗ 0.003 ∗ 0.004 ∗ 0.004 ∗ 0.005 ∗ 0.005 ∗
NormTF-NormTF-BM25 0.000 ∗ 0.001 ∗ 0.002 ∗ 0.004 ∗ 0.004 ∗ 0.005 ∗ 0.005 ∗
BM25-NormTF-BM25 0.002 ∗ 0.002 ∗ 0.002 ∗ 0.003 ∗ 0.003 ∗ 0.004 ∗ 0.004 ∗
TFIDF-NormTF-BM25 0.000 ∗ 0.001 ∗ 0.001 ∗ 0.003 ∗ 0.004 ∗ 0.004 ∗ 0.004 ∗

us the overall best results. While the combinations that use BM25 for the OClass Search642

and the NormTF for the Annotation Search have the worse performance. Specifically,643

we have a MRR of 0.023 for the best (NormTF-BM25-TF) and 0.004 for the worst (BM25-644

NormTF-BM25) a further analysis of the MRR results, it turned out quite clearly that for645

the Annotation Search the ranker BM25 is particularly effective, while the use of the TF646

ranker highly degrades the performance.647

Furthermore, to complete the analysis on the performance of the rankers, we analyze648

the MMR@k, where k is the parameter that controls how many results are shown to the649

user in the results set.650

In conclusion, we identified the combination NormTF-BM25-TF as the best one, a651

relative improvement of 38% in MRR and 40% in MRR@100 with respect to the setting652

previously used at the VBS competition.653

5.3. Efficiency and Scalability Issues654

As we stated in the introduction, the fact that the retrieval system proposed in655

this article is built on top of a text search engine guarantees in principle efficiency and656

scalability of queries. This has been practically verified by obtaining average response657

times of less than a second for all types of queries (even more complex ones). On the658

scalability of the system, we can make some optimistic assumptions because we have659

not conducted experiments on it. This optimistic assumption is based on the observation660

that if the “synthetic” documents generated for visual search by similarity, and for the661

localization of objects and colors behave as textual documents then the scalability of our662

system is comparable to that of commercial Web search engines. To this end, with regard663
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to the scalability of visual similarity as we rely on the technique used to index R-MAC664

descriptors based on scalar quantization, the reader is referred to the work [49], in which665

the scalability of this approach is proven. On the other hand, as far as objects and colors666

are concerned, we have analyzed the sparsity of the inverted index corresponding to667

synthetic documents and we have seen that it is around 99.78%. Moreover, since the668

queries are similar in length to those of natural language search scenarios (i.e. they have669

few terms), the scalability of the system is guaranteed at least as much as that of full-text670

search engine scenarios.671

6. Conclusions672

In this paper, we described a frame-based interactive video retrieval system, named673

VISIONE, that participated to the Video Browser Showdown contest in 2019. VISIONE674

includes several retrieval modules and supports complex multi-modal queries, including675

query by keywords (tags), query by object/color location, and query by visual example.676

A demo of VISIONE running on the VBS V3C1 dataset is publicly available at http:677

//visione.isti.cnr.it/.678

VISIONE exploits a combination of artificial intelligence techniques to automatically679

analyze the visual content of the video keyframes and extract annotations (tags), informa-680

tion on objects and colors appearing in the keyframes (including the spatial relationship681

among them), and deep visual descriptors. A distinct aspect of our system is that all682

these extracted features are converted into specifically designed text encodings that are683

then indexed using a full-text search engine. The main advantage of this approach is684

that VISIONE can exploit the latest search engine technologies, which today guarantee685

high efficiency and scalability.686

The evaluation reported in this work shows that the effectiveness of the retrieval687

is highly influenced by the text scoring function (ranker) used to compare the textual688

encodings of the video features. In fact, by performing an extensive evaluation of the689

system under several combinations, we observed that an optimal choice of the ranker690

used to sort the search results can improve the performance in terms of Mean Reciprocal691

Rank up to an order of magnitude. Specifically, for our system we found out that TF,692

NormTF, and BM25, are particularly effective for comparing textual representations of693

object/color classes, object/color bounding boxes, and tags, respectively.694
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17. Lokoč, J.; Kovalčík, G.; Souček, T. Revisiting SIRET Video Retrieval Tool. Multimedia Modeling. MMM 2018. Springer, 2018,
Lecture Notes in Computer Science, pp. 419–424. doi:10.1007/978-3-319-73600-6\_44.

18. Rossetto, L.; Amiri Parian, M.; Gasser, R.; Giangreco, I.; Heller, S.; Schuldt, H. Deep Learning-Based Concept Detection in vitrivr.
MultiMedia Modeling; Springer International Publishing: Cham, 2019; pp. 616–621. doi:10.1007/978-3-030-05716-9\_55.

https://videobrowsershowdown.org/call-for-papers/existing-data-and-tools/
https://videobrowsershowdown.org/call-for-papers/existing-data-and-tools/
https://videobrowsershowdown.org/call-for-papers/existing-data-and-tools/
https://doi.org/10.1109/TMM.2020.2980944
https://doi.org/10.1007/s11042-016-3661-2
https://doi.org/10.1109/TMM.2018.2830110
https://doi.org/10.1145/3323873.3325051
https://doi.org/10.1007/978-3-030-05716-9_51
https://doi.org/10.1109/CBMI.2019.8877397
https://doi.org/10.1145/3295663
https://doi.org/10.1007/978-3-319-73600-6_44
https://doi.org/10.1007/978-3-030-05716-9_55


Version September 2, 2021 submitted to J. Imaging 22 of 23
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