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Abstract. The entire history and, we dare say, future of similarity
search is governed by the underlying notion of partition. A partition
is an equivalence relation defined over the space, therefore each element
of the space is contained within precisely one of the equivalence classes
of the partition. All attempts to search a finite space efficiently, whether
exactly or approximately, rely on some set of principles which imply that
if the query is within one equivalence class, then one or more other classes
either cannot, or probably do not, contain any of its solutions.

In most early research, partitions relied only on the metric postulates,
and logarithmic search time could be obtained on low dimensional spaces.
In these cases, it was straightforward to identify multiple partitions,
each of which gave a relatively high probability of identifying subsets
of the space which could not contain solutions. Over time the datasets
being searched have become more complex, leading to higher dimensional
spaces. It is now understood that even an approximate search in a very
high-dimensional space is destined to require O(n) time and space.
Almost entirely missing from the research literature however is any anal-
ysis of exactly when this effect takes over. In this paper, we make a start
on tackling this important issue. Using a quantitative approach, we aim
to shed some light on the notion of the exclusion power of partitions, in
an attempt to better understand their nature with respect to increasing
dimensionality.

Keywords: Metric Search - Binary Partitioning - Exclusion power -
Curse of Dimensionality

1 Introduction

We are interested in similarity search spaces of the form (U, d) where U is some
universe of objects and d is a distance function d : U x U — R" satisfying the
metric postulates [16]. The function d is typically the only meaningful defined
operation over U. The task is normally to search a finite (but typically very
large) set S C U for a small set of objects which are similar to a query object
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q € U, i.e. to find some small subset Q(q,t) = {s € S|d(q,s) < t} for some
appropriate t. We refer to ¢ as the query threshold. In this paper this definition
suffices to encompass both range and nearest neighbour queries and we do not
distinguish between them?.

We use the term partition to refer to an equivalence relation defined over U,
such that each element is contained in precisely one of the equivalence classes
defined by the relation. In the domain of metric search, since d is the only
operation available over elements of U, such partitions must be defined in terms
of distances to objects identified within the set. For example, for a distinguished
value p € U, a simple ball partition may be defined as F = {Fy, F1 }

Fo={ueUld(p,u) >} (1)
Fr={ueUld(p,u) <7}

for some constant value 7.

The processing of similarity queries normally takes place in two distinct
phases. In a first pre-processing phase, a set of partitions is defined over U.
Each element of S is analysed with respect to a number of these, and informa-
tion about the inclusion of each element within the defined equivalence classes
is noted.

In the second query phase, the query is analysed with respect to the same set
of partitions, at which point deductions may be made about whether solutions
to the query are likely to be present in the defined equivalence classes. With
reference to the previous example, if ¢ € Fy, it may be possible to reason that
any solution to ¢ is more likely to be in Fy than Fy. The more similar ¢ is to
p, the higher the likelihood that this is true. If the space in question is a metric
space, and d(q,p) < 7 — t, then it is impossible for Fj to contain any values
within distance ¢ of the query.

In general, the set of partitions identified at pre-processing time contains
the only information which can be used in order to avoid a full scan of the
database. In all cases, the choice of partitions is thus critical to the efficacy of
the mechanism.

1.1 Binary Partitions

To simplify the domain, we restrict our analysis to binary partitions used in
a simplified ezact search mechanism. To avoid committing the discussion to a
particular search mechanism, we consider a notional metric search framework
with the following properties:
— A finite set of n binary partitions {F7}7_,, where F; = {F], F/} is made of
two classes, is established at pre-processing time, with respect to a fixed set
of m reference objects p1,...,pm € U

3 A nearest neighbour query can be formulated as a range query where the the query
threshold is not known in advance but it is set iteratively as the distance to the
current k-th nearest neighbour [16].
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— At query time, the distances from the query ¢ to all reference objects are
calculated

— A set of classes which cannot contain any solution to the query is thus
established

— All objects which cannot be thus excluded comprise a candidate result set
whose objects must be tested individually against the query.

Note that many different indexing and filtering mechanisms fall within this
general description. In the most general sense, the success of search for solutions
to an individual query is related to the following properties of the set of partitions
used during the process:

1. the number of available partitions;

2. for each partition, the probability of the distances between the query and
the reference objects allowing exclusion of one of the classes of the partition;

3. for any such partition and query, the size of the class which can be thus
excluded, and

4. the independence of the set of classes which can be excluded for a given
query. For example if all the excluded classes have a common intersection,
the value of each one is diminished.

In this article, we address only properties (2) and (3). They are clearly in
tension with each other: for example, a partition class which defines only a very
small volume of the infinite space is likely to have a high probability of exclusion
for an arbitrary query, but is likely to contain only a small number of objects
from the finite set. Similarly, a class defining a relatively large volume of the
space, thus likely to contain many objects, is less likely to be excluded.

The main contribution of this article is a quantified study of this effect in
various metric spaces of different dimensionality.

2 Related Work

Chévez et al. [2] proposed a unifying model to analyse existing indexing algo-
rithms for proximity search by observing that all indexing algorithms for prox-
imity searching consist of building a set of equivalence classes. They remark that
every partition of a space induces an equivalence relation, and conversely, every
equivalence relation induces a data partitioning. At query time some classes are
discarded and the others form a candidate results set that should be exhaus-
tively searched for query solutions. Therefore, the most important tradeoff when
designing the data partitioning is to balance the cost of finding the candidate
results set (internal complezity) and the cost of refining it (external complexity).
The internal complexity is evaluated as the number of distance calculations d
needed to compute the candidate result set C' and the external complexity is |C|
distance computations. They defined the discriminative power of a search algo-
rithm as the ratio of internal complexity to external complexity, which serves
as an indicator of the performance fitness of the equivalence relation. Moreover,
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they observed that two classes of techniques exist based on equivalence relations,
namely, pivoting and compact partitions.

Pivoting based techniques rely on building a relation based on the distances
between an element and a number of preselected pivots (also called reference
points, vantage points, keys). The distances between elements and pivots and
between the query ¢ and the pivots are used together with the triangle inequality
to filter out elements of the database without actually measuring their distance
to q. For example, using ball pivoting the equivalence classes correspond to a
family of “rings” or “sphere shells” centered on a pivot. Points within the same
sphere shell (i.e., at the same distance from a pivot) are in the same equivalence
class. In [3] Chédvez points out that in this class of algorithms generally improve
as more pivots are added.

Compact partitions are based on the class of the points that have some
preselected object as their closest center. Thus the partitions induced using this
technique correspond to a Delaunay tessellation over the space. Thus using this
approach, the universe is divided into a set of spatial zones and complete zones
may be discarded by performing a few distance evaluations. Chédvez demonstrates
that compact partitioning algorithms deal better with high dimensional metric
spaces.

In [8, 9] Hetland describes the problem of metric indexing as storing the points
from a dataset in some data structure which is later traversed to efficiently ex-
tract those points relevant to some query. This data structure is described as a
bipartite digraph of points and regions which he defines as a sprawl. Each region
is defined with respect to a set of source points, called foci or pivots p1, .., pm.
Region membership is defined in terms of distances x = [d(u,p1), ..., d(u, pm)].
Hetland also defines an ambit to be a function f(x) (remoteness map) and a
threshold or radius r, that describe a partition region (i.e., a partition class).
Such ambits are equivalent to the partition functions described in this paper,
which also correspond to the certification functions introduced by Pestov and
Stojmirovi¢ [11]. In [8] Hetland describes a number of different bifocal linear
ambits which include ball and hyperboloid remoteness. Using Hetland’s classifi-
cation the 4-point hyperplane partitioning (defined below) is a nonlinear ambit
based on a non-metric-preserving power transform. In [8] he gives other exam-
ples of nonlinear ambits including those based on a Hamacher product and a
Cantor function.

3 Quantifying the Value of a Partition Set

3.1 Unifying Partition Functions

To unify the quantitative treatment of different kinds of binary partition with
their associated distance constraints, we recently introduced [6] the concept of a
binary partition F = {Fp, F1} characterised by a partition function f:U — R
and a balancing factor 7 € R with the following properties:

1. Fp={s€U|f(s)>7}and F1 ={s € U| f(s) <7}
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2. d(s1,82) > |f(s1) — f(s2)] for all s1,s9 € U (distance lower-bound property)

Note that if f(s) = 7, then s is on the partition boundary and by convention
we include the partition boundary in F;. Moreover f should be defined in a way
so that it both determines the classes Fy, F1 and provides a rule to estimate a
lower-bound of the actual distance between two data points. The lower-bound is
used to derive the exclusion rules used at query time. Specifically, given a query
q and a query threshold ¢, then we have that

— if f(q) <7 —t then Fy can be excluded
— if f(q) > 7+t then F} can be excluded

This characterisation provides us with a unified framework to describe the
most common metric binary partitioning principles, namely ball partitioning [13,
16], generalised hyperplane partitioning [13, 16], and 4-point hyperplane partition-
ing [7,4], together with their exclusion rules. Specifically, as proved in [6], we
have that

— a ball partitioning given a pivot p and a radius r is characterised by the
function

fBan(s) = d(s,p), VseU

and the balancing factor 7 = r;
— a generalised hyperplane partitioning of the form

FO = {5 S U‘d(&pl) - d(57p0) > Ot} (2)
Fy = {S € U‘d(svpl) - d(S,po) < a}

for two given pivots pg and p; and offset «, is characterised by the function

d(S,pl) _ d(87p0)

5 , VselU (3)

fayp(s) =

and balancing factor 7 = a/2;
— a 4-point hyperplane partitioning
Fo={seUld(s,p1)? — d(s,po)* > a} )
Fy ={seUld(s,p1)? —d(s,po)*> < a}

that can be characterised by the function

d(s,p1)% —d(s 2

Fronyp(s) = AEE ZASIE s ey 8
and balancing factor 7 = «/2d(po,p1). This kind of partition is valid only
on the large class of Supermetric Spaces meeting the 4-point property [7].
The partition boundary can be visualised as a hyperplane in a 2D Euclidean
space obtained using the nSimplex projection [5] to transform the data; with
the hyperplane being orthogonal to the line containing the two pivots in the
2D Euclidean space. Moreover, if 7 = « = 0 then the classes Fy and Fj
are exactly the same as the generalised hyperplane partitioning above, but
the 4-point property [4,7], rather than the triangle inequality, is used for
estimating the distance lower-bound.
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Fig. 1: 8-dimensional Fuclidean dataset: Example of typical query threshold dis-
tances (a), power graphs for a 8-dimensional Euclidean dataset (b), and expected
exclusion power (c). The left-hand figure shows the distribution of the fifth near-
est neighbour distances for a set of 5000 queries. The middle figure show the
exclusion power graphs over 7 for five representative ¢ values (0.05, 0.25, 0.5,
0.75, 0.95-th percentiles of the query threshold distribution) in the case of a
generalised hyperplane partitioning. The right-hand figure shows the Expected
exclusion power over T

We define the balance ratio of a binary partition {Fp, F} } of the finite search
set S as the ratio of the smaller of |Fy| or |Fi| to |S|, giving a value in the
range [0, 0.5] where a higher value means a more even balance ratio. Note that
when changing the balancing factor 7, the partition boundary moves and thus
its balance ratio changes as well.

This unification (f,7) allows the characterisation of the balance ratio and
power of a partition as the value of 7 is altered, as shown in the next Section.

3.2 Partition Exclusion Power

We introduce the notion of partition exclusion power to represent the amount
of exclusion possible for a partition characterised by some given value of 7 and a
function f. In essence, the power of a partition is an estimate of the probability of
being able to deduce that d(q, s) > t, for some distance ¢, for arbitrarily selected
geUandse€S.

For the remainder of this article, we use the assumption that the distribution
of query and data within the sampled spaces are equivalent. This is probably
a reasonable assumption in most metric query scenarios, although there are
likely to be specialist examples where it is not the case. The same analysis
may be performed whenever the distribution of both query and data can be
characterised, whether they are equivalent or not.

In [6], for a range query Q(q,t), we defined the exclusion power of the parti-
tion F = {Fp, F1} as the probability of excluding one element s on the basis of
the data partition to which it belongs:

P(s € Fy) - P(Q(q,t) C F1)+ P(s € F1) - P(Q(q,t) C Fp) (6)
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which can be rewritten in terms of f and 7 as

P(f(s) >7)- P(f(q) <7 —1) + P(f(s) <7)- P(f(q) >7+1) (7)

If CDF(z) is the cumulative distribution function of f(s) for s € S (assuming that
the distribution is the same for data and query points, as noted above) then the
exclusion power can be expressed as

g(7,t) = (1 — CDF(7)) - CDF(T — t) 4+ CDF(7) - (1 — CDF(7T + t)) (8)

This provides a mechanism for estimating exclusion power of a partition for
a fixed 7 and query threshold ¢. Therefore, to understand the effect of different
values of 7 an exclusion power graph may be constructed which is plotted across
the range of 7 for a fixed value of t. This allows the optimum value of 7 to
be deduced for a range query with threshold ¢. The exclusion power graph is
dependent on the query threshold. Thus queries with different thresholds will
result in different power graphs. Figure 1b shows the resultant power graphs
for various thresholds over eight dimensional euclidean data as described in the
caption.

To define a general exclusion power measure independent from the specific
query threshold, in this paper we propose to use the expected partition power:

ep(r) = / o(r, Dh(t)dt (9)

where h(t) is the probability density function associated with the query threshold
distribution (e.g., the red curve in Figure 1a). In Figure 1c, we show the expected
partition power graph for the same 8-dimensional Euclidean data used above.

The exclusion power defined here is closely related to the concept of dis-
criminative power (i.e., the ratio of internal complexity to external complexity)
defined by Chévez in [2]. Adjusting the 7 values thus changes the discriminative
power. In this paper we show how exclusion power may be used to optimise 7 so
that for the same internal complexity we minimise the external complexity i.e.
we find the 7 that optimises the discriminative power.

4 Power Analysis in High(er) Dimensional Data

It is clear that if a partition has a balance ratio of 0 (i.e., all the data objects are
in the same partition class) then it is of no value in terms of exclusion, whereas a
value of 0.5 is unlikely to be optimal in a high dimensional space. In fact, it has
long been known, if only as a rule of thumb, that balanced tree-structured indexes
lose their performance as dimensionality increases, and unbalanced structures
perform better. For example, the List of Clusters [1,12] is known to perform
better than a Balanced Vantage Point Tree [15] in higher dimensions, although
we lack a formal definition of the meaning of higher in this context. Here, we
investigate this phenomenon from a new point of view by using the expected
exclusion power estimation.
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For a partition {Fp, F}, defined by a pair (f,7), a set of witness data values
may be used to calculate approximations of the different values of balance ratio
and expected partition power (Eq. 9) varying 7. Note that if 7 is selected as the
median of {f(s),s € S} then the partition classes are balanced (i.e., the balance
ratio is 0.5). Therefore, if an exclusion occurs, half of the dataset will be excluded.
Moving 7 from the median value will produce partitions with a different balance
ratio. To understand the effect of different values of 7 the expected exclusion
power graph may be constructed and optimum value(s) of 7 can be deduced.

Figure 2 shows the change in the power graphs as dimensionality increases for
a ball partitioning, a generalised hyperplane partitioning and a 4p hyperplane
partitioning. The plots are for Euclidean data of dimensions 5, 10, 15, 20%. In the
low dimensional settings we can observe that the maximum power is achieved
when the partition is balanced, i.e. 7 is equal to the median of the f(s) values. By
contrast, as the dimension of data increases, choosing the median value will work
very badly. As can be seen in Figure 21 such a value is unlikely to result in any
successful exclusions. Therefore, for high(er) dimensions a better strategy is to
pick two values for 7 corresponding to the two peaks in the power distributions. It
also interesting to note that as dimension increases, we expect that no exclusion
is possible using ball and generalised hyperplane partitioning whatever 7 value
is chosen, confirming the well know curse of dimensionality phenomenon [10, 14].
This effect is also visible in the case of 4p hyperplane partitioning with Euclidean
dimensions bigger than 20.

These diagrams explain behaviour observed by many researchers into met-
ric search, that choosing unbalanced indexing structures often works better for
higher dimensional data. Moreover, it also confirms the observations made in [4,
7] regarding the better distance bounds that can be obtained using the 4-point
property instead of the triangle inequality.

5 Experimental Validation

In this section we confirm the observations deduced from the analysis of the
expected power graph experimentally. To illustrate we report the results for 15
dimensional Euclidean data using 10K data points and 100 random pivots. For
each pivot pair (p;,p;) we build a 4point hyperplane partition F;; characterised

by the function f;; = %
]

candidate result set is build by considering the intersection of all the partition
classes that cannot be excluded from the search on the basis of the distance
lower-bound property only (see Section 3.1). Lastly the candidate set is refined
using the actual distance function d to establish the final (exact) result set.
Therefore the size of the candidate result set is equivalent to the percentage of
the data that must be accessed to answer a query.

and balancing factor 7;;. At query time, a

4 All results in this article are derived using randomly generated uniformly distributed
Euclidean data in different dimensions as stated. All code is available on request from
the authors.
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Fig. 2: Expected powers for Euclidean data at dimensions 5, 10, 15, 20, for ball
partitioning (left), generalised hyperplane partitioning (middle), 4p hyperplane
partitioning (right). The expected power was evaluated using 100 queries over
10K witness data points. Two pivots p;, ps were randomly selected for each
dataset; p; is used to build the ball partition, both p; and ps are used for the

hyperplane partitions.
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Fig. 3: Size of candidate set as proportion of whole for 7;; set to the median of

fi;j(s) values and the 7;; values that maximises the expected partition powers
(15D Euclidean data).

Figure 3a plots the size of the candidate set as a proportion of the entire
dataset using different approaches to select the 7;; values. The top (blue) curve
shows the performance when all the partitions are balanced, i.e., for each parti-
tion defined by the pair (f;;,7;;) the 7;; is set to be the median of f;;(s) values.
The bottom (orange) curve shows 7;; set to maximise the expected power (see
Equation 9) estimated on a small set of 2,000 witness points using 100 random
queries (different from those used at test time). The x-axis shows all the (120)
partitions F;; even although a small subset of these take part in the exclusions.
In both cases 500 test queries were considered and the average percentage of
data accessed to answer a single query was computed and plotted in the y-axis.
From this plot a clear difference can be seen in the exclusion power with 7;; set
to have balanced partitions and that with the 7;; values set to maximise the par-
tition powers. The balanced version manages to exclude very little data whereas
the powered version excludes more than the 85% of the data. For completeness,
in Figure 3b we shows the results also for generalised hyperplane partitioning,
i.e. using f;; = (d(s,p;) — d(s,p;))/2. Note that it does not result in any exclu-
sions - i.e. the candidate set size is about 100% of the dataset being queried, as
predicted by the expected power graph in Figure 2h.

Figure 3a only shows the exclusion for a single maximum power for each
pivot pair. However, as shown in Figure 2h, the expected power graph for 15
dimensional data results in two power peaks (and consequently two different
optimal 7;; can be selected). In practice this results in two partitions being
created for each pivot pair in the case of hyperplane partitioning. The plot shows
the exclusions possible when a single optimal value and both optimal values are
used. With 100 pivots and using one or two optimal 7;; values for each pivot pair
results in 4,950 and 9,900 partitions respectively. Figure 4 shows the size of the
candidate set as proportion of whole when partitions derived from a single and
both the optimal 7;; values are used. In this plot the exclusions derived from the
common partitions are in plotted corresponding to the leftmost part of the x-axis
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Fig. 4: Size of candidate set as proportion of whole when one optimal 7 or two
optimal 7 values for each pivot pair are selected to maximise the expected par-
tition powers (15D Euclidean data).

Dims Balanced Partitions Maxpower Partitions
Part. Activated Candidates Part. Activated Candidates

5 44.62% 1.43% 44.63% 1.25%
10 3.11% 6.53% 13.76% 2.37%
15 0.05% 65.80% 6.57% 14.15%
20 0.0002% 99.60% 3.00% 49.63%

Table 1: Average percentage of partitions activated and candidate set size for
5, 10, 15 and 20 dimensional Euclidean data, 100 pivots and 500 queries over
10,000 data points

resulting in a common exclusion curve. As can be seen, the 4,950 extra partitions
available when two peaks are used result in (some) more exclusion. The size of
the candidate set as a fraction of the total data when the partitions derived
from both power peaks are used is 10.37%, in other words 89.63% exclusion is
achieved.

5.1 The Relationship Between Activated Partitions and Exclusions

We say that a partition is “activated” for a query if using the distance lower-
bound property is possible to exclude one of the classes of the partition.

Table 1 shows the percentage of partitions that are activated for queries over
5, 10, 15 and 20 dimensional data. In each experiment 500 queries are executed
with 100 pivots (4,950 partitions) over 10,000 data points. As before, the two
columns correspond to the cases when all 7;; have been set to have balanced
partitions (left) and that with the 7;; values set to maximimse the expected
power (right). The data shown is the average over the queries. Two numbers are
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presented for each experiment: the percentage of partitions that are activated
and the size of the candidate set as a proportion of the dataset being queried.

As can be seen in the table, the number of partitions that are activated at
query time are considerably different both in terms of the dimension of the data
and the techniques used to select all the 7 values.

In general, balanced partitions perform noticeably worse than the powered
partitions and the number of partitions that are activated drops dramatically
as the Euclidean dimension increases. Whilst the number of partitions activated
also drops when the power is maximised, enough partitions are activated to
permit approximately 50% of the data to be excluded in the case of 20 dimension
and the partitions set to maximise the expected power even when a single power
peak is employed.

We also observed, as shown in Figure 5, that choosing the best 7 values results
in increasingly un-balanced partitions. Moreover, adding more partitions often
does not serve to substantially increase the number of exclusions. We believe
that this effect is caused by a lack of independence of the objects in the activated
partition classes.

6 Conclusions

In this paper we have presented a generalised treatment of exclusion power for
binary partitions. The model abstracts over the partition type and we have
shown its application to ball partitions, generalised hyperplane partitions and
4-point partitions.
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Exclusion power explains the well known differences in the number of exclu-
sions that are possible with respect to both the dimensionality of the data and
partition balance ratio.

In addition understanding how to maximise the possibility of exclusion, power
diagrams also serve to indicate the probability of exclusions occurring. The un-
derstanding the probability of exclusion power determines if a dataset can be
usefully queried at all using an exact metric search, i.e. if the size of candidate set
is a small fraction of the size of the total dataset. This is useful in its own right
since it may be applied independently of any particular algorithm to establish
the amount of exclusion that is potentially possible.

In the cases where a reasonable exclusion rate can be achieved it can be used
to give an indication of the number of exclusions zones that are necessary to
achieve exclusion.

Additionally we have shown that by adjusting the f function and the 7
values, the exclusion power may be dramatically increased in some cases. When
combined with 4-point exclusion we have observed that sometimes exclusion
rates rise from zero to a respectable percentage of the overall dataset.

7 Future Directions

In this paper we have attempted to shed some light on the notion of partitions
in general in order to better understand their nature with respect to increasing
dimensionality and their ability to exclude. Although this paper has established
some general mechanisms to permit reasoning about the nature of partitions and
how their construction contributes to exclusion in metric search there is clearly
much more work to be done. In particular, we have only touched on the nature of
the independence of partitions. Clearly the amount of exclusion that is possible,
the independence of the partitions and their power are linked. We are currently
investigating this issue but the work is at an early stage.

Acknowledgements This work was partially funded by Al4Media - A Eu-
ropean Excellence Centre for Media, Society, and Democracy (EC, H2020 n.
951911) and by Economic & Social Research Council, ADR UK Programme
ES/W010321/1.

References

1. Chévez, E., Navarro, G.: A compact space decomposition for effective
metric indexing. Pattern Recognition Letters 26(9), 1363-1376 (2005).
https://doi.org/10.1016/j.patrec.2004.11.014

2. Chéavez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.L.: Searching
in metric spaces 33(3), 273-321. https://doi.org/10.1145/502807.502808,
https://dl.acm.org/doi/10.1145/502807.502808

3. Chévez, E., Navarro, G.: A compact space decomposition for effective
metric indexing 26(9), 1363-1376. https://doi.org/10.1016/j.patrec.2004.11.014,
http://linkinghub.elsevier.com/retrieve/pii/S0167865504003733



14

10.

11.

12.

13.

14.

15.

16.

Lucia Vadicamo, Alan Dearle, and Richard Connor

Connor, R., Cardillo, F.A., Vadicamo, L., Rabitti, F.: Hilbert Exclusion:
Improved metric search through finite isometric embeddings. ACM Trans-
actions on Information Systems (TOIS) 35(3), 17:1-17:27 (Dec 2016).
https://doi.org/10.1145/3001583

Connor, R., Vadicamo, L., Rabitti, F.: High-dimensional simplexes for supermetric
search. In: Proceedings of SISAP 2017. pp. 96-109. Springer (2017)

Connor, R., Dearle, A., Vadicamo, L.: Investigating binary partition power in met-
ric query. In: SEBD 2022: The 30th Italian Symposium on Advanced Database
Systems, Tirrenia (PI) (2022)

Connor, R., Vadicamo, L., Cardillo, F.A., Rabitti, F.: Su-
permetric  search. Information  Systems 80, 108 — 123  (2019).
https://doi.org/https://doi.org/10.1016/j.is.2018.01.002

Hetland, M.L.: Comparison-based  indexing from  first  principles,
http://arxiv.org/abs/1908.06318

Hetland, M.L.: Metrics and ambits and sprawls, oh my. vol. 12440, pp. 126-139.
https://doi.org/10.1007/978-3-030-60936-8_10, http://arxiv.org/abs/2008.09654
Naidan, B., Boytsov, L., Nyberg, E.: Permutation search methods are efficient, yet
faster search is possible. Proceedings International Conference on Very Large Data
Bases 8(12), 1618-1629 (2015)

Pestov, V., Stojmirovié¢, A.: Indexing schemes for similarity search: an illustrated
paradigm. Fundamenta Informaticae 70(4), 367-385 (2006)

Sadit Tellez, E., Chavez, E.: The list of clusters revisited. In: Carrasco-Ochoa, J.A.,
Martinez-Trinidad, J.F., Olvera Lépez, J.A., Boyer, K.L. (eds.) Pattern Recogni-
tion. pp. 187-196. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)
Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees.
Information processing letters 40(4), 175-179 (1991)

Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In: Proceedings Interna-
tional Conference on Very Large Data Bases. vol. 98, pp. 194-205 (1998)
Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in gen-
eral metric spaces. In: Proceedings of the Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms. p. 311-321. SODA ’93, Society for Industrial and Applied
Mathematics, USA (1993)

Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity search: the metric space
approach, vol. 32. Springer Science & Business Media (2006)



