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Abstract: Oral cancer is among the deadliest types of malignancy due to the late stage at which it is

usually diagnosed, leaving the patient with an average five-year survival rate of less than 50%. The

booming field of biosensing and point of care diagnostics can, in this regard, play a major role in the

early detection of oral cancer. Saliva is gaining interest as an alternative biofluid for non-invasive

diagnostics, and many salivary biomarkers of oral cancer have been proposed. While these findings

are promising for the application of salivaomics tools in routine practice, studies on larger cohorts

are still needed for clinical validation. This review aims to summarize the most recent development

in the field of biosensing related to the detection of salivary biomarkers commonly associated with

oral cancer. An introduction to oral cancer diagnosis, prognosis and treatment is given to define the

clinical problem clearly, then saliva as an alternative biofluid is presented, along with its advantages,

disadvantages, and collection procedures. Finally, a brief paragraph on the most promising salivary

biomarkers introduces the sensing technologies commonly exploited to detect oral cancer markers in

saliva. Hence this review provides a comprehensive overview of both the clinical and technological

advantages and challenges associated with oral cancer detection through salivary biomarkers.

Keywords: oral cancer; saliva; biomarkers; biosensors; wearable devices; point of care diagnostics

1. Introduction

Oral cancer ranks as the 16th most common form of cancer, as 377,713 new cases were
estimated worldwide in 2020, counting 177,757 deaths [1]. One third of the total number of
oral cancer cases are registered in South-East Asia [2–4], mainly due to a rapidly increasing
alcohol and tobacco consumption among the population. In fact, several risk factors have
been identified for etiopathogenesis of oral cancer and, among these, tobacco and alcohol
consumption seem to have a synergistic effect [5,6]. Male sex, old age, high-risk human
papillomavirus (HPV), dietary habits, oral bacteria, ultraviolet radiation, as well as betel-
quid chewing (commonly used in South-East Asia), have also proved to play a major role
in the appearance of the disease [7–9] (Figure 1). Moreover, several premalignant lesions,
such as erythroplakia, leukoplakia, oral submucous fibrosis and oral lichen planus, have
been associated with the onset of the neoplasia [6]. Indeed, a chronic stimulus acting on
keratinocytes can lead to hyperplasia, different degrees of dysplasia and then to carcinoma
in situ and invasive carcinoma [5].
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Figure 1. Oral cancer risk factors.

Oral squamous cell carcinoma (OSCC) accounts for about 90% of these tumors [5,7].
OSCC is an invasive epithelial neoplasia, histologically made by squamous cells that could
have several degrees of differentiation [5–7]. Figure 2 showcases the sites where oral
cancer originates more frequently: these are the tongue, the oral floor, and the lower lip.
Other less common locations are the upper and lower gingiva, the palate, and the buccal
mucosa [10–13]. The tumor is able to invade surrounding tissues, such as muscles and
bone, and cause distant metastases. In this context, metastases in the cervical lymph nodes
are frequent and they can be attributed to the rich lymphatic vascularization of the oral
cavity [10].

Figure 2. The most common sites of oral cancer.

Oral cancer clinically manifests in several ways and can have variable sizes, up to a few
centimeters in advanced cases [11]. Early tumors often appear in the form of erytholeuko-
plastic lesions, but they can also primarily manifest as white patches (leukoplakia) or red
patches (erythroplakia) and they are usually asymptomatic, thus there is a high risk that
they go unnoticed [11,14,15]. OSCC, in its advanced stages, may appear like an ulcerated
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lesion fixed to underlying tissues, with raised borders and hard on palpation, but it can
also be exophytic with a papillary or fungating surface [11,14,15]. At these stages, patients
usually suffer from mild or severe pain, depending on the case, that can even spread to
the ear [11]. Other signs and symptoms are frequent bleeding, teeth mobility, dysphagia,
paresthesia, or even cachexia and severe anemia [11,14]. Advanced forms of OSCC are
therefore more easily recognizable with the naked eye, unlike the initial stages of the
disease, in which the diagnosis can be uncertain and confirmation by biopsy becomes
fundamental [11].

Early diagnosis and treatment of premalignant oral lesions are critically important
for reducing mortality [16]. Nowadays, a thorough clinical oral examination and surgical
biopsy are considered the gold standards for the diagnosis of pre-malignant lesions and
oral cancer [16,17]. More specifically, as suggested by the World Health Organization and
the National Institute of Dental and Craniofacial Research, mucosal lesions which persist
for two weeks or more after removing possible local irritants should be biopsied [16].

There are two types of biopsies: incisional and excisional and incisional biopsies are
the most diffused among the two [15]. Core-needle aspiration, fine-needle aspiration or
punch forceps can be used to access more visible lesions, while posteriorly located lesions
may require general anesthesia [6]. Although biopsy is the gold standard, it has several
disadvantages: the procedure can be extremely stressful, uncomfortable and invasive for
the patients; moreover, it involves high costs, a high degree of complexity which require
clinician training, and can cause infection or damage to nearby tissues [16–18]. On the con-
trary, cytological examination of a smear is less invasive but also less sensitive and specific
than biopsy. Modern cytological procedures, such as brush-biopsy and micro biopsy, could
be used to avoid repeated biopsies in the follow-up of precancerous lesions [16].

Non-invasive diagnostic imaging methods, such as CT and MRI, are important to
evaluate the extent of tumors and the involvement of lymph nodes, while PET scan
could be useful to plan radiation therapy [6,19]. Other diagnostic technologies have been
proposed to help distinguish between benign and potentially malignant tumors, detecting
cancer in earlier stages, and monitoring the progression of the disease, as well as the
response to treatment. Among these, there is an increasing interest in proteomic and
genomic techniques, toluidine blue dye, light-base detection techniques, optical imaging
systems and detection of biomarkers [16,18,20]. The latter can be carried out in different
biological fluids, such as serum, plasma, urine, and saliva, and may be fundamental to
screen healthy subjects, allowing an early diagnosis of the disease and monitoring of at-risk
patients [21–23].

The treatment of choice for OSCC is surgical resection of the tumor [6,7,24,25]. This
could be the only treatment modality for stages I and II, while it is usually associated
with adjuvant treatment in some conditions, such as larger primary tumors (stages III–IV),
involvement of lymph nodes, positive and close margins, as well as perineural and lympho-
vascular invasion or extracapsular spread [6,24]. Adjuvant treatment may include radiation
therapy and chemotherapy, which can be used both preoperatively and postoperatively
in order to help or complete surgical removal [6–8]. Other innovative treatments include
immunotherapy (anti-CTLA-4 and anti-PD-L1) and the use of an epidermal growth factor
receptor (EGFR) antibody, which aims to decrease the amount of EGFR expression, usually
associated with a worse prognosis of patients [7,8]. The choice of the best therapeutic
strategy depends on the location of the primary tumor, its dimensions, stage and surgical
resectability, as well as the patient’s expectations, compliance, lifestyle, and the presence of
comorbidities [6,8].

The prognosis of OSCC, depends on several factors, such as patient lifestyle (smoking,
alcohol consumption, etc.), presence of comorbidity and the tumor staging [5]. In this
context, the TNM system allows definition of the characteristics of the primary tumor,
the involvement of lymph nodes and the presence of distant metastases to better clarify
the prognosis [6]. Despite advances in treatment options, the five-year survival rate still
remains very low, being <50% [7,10]. This can be related to a frequently late diagnosis [5].
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The aim of this manuscript is to provide an overview of the state of the art regarding
salivary biomarkers for the diagnosis of oral cancer, which are presented along with their
common metrics of comparison. The role of saliva in clinical diagnosis is then thoroughly
explained, followed by a description of established laboratory techniques for salivary
analysis. Lastly, the focus shifts on innovative diagnostic tools, namely biosensors and
wearable sensing platforms, which are deemed to be a promising avenue for ultrasensitive
and non-invasive early-stage detection of salivary biomarkers related to oral cancer.

2. Saliva as Diagnostic and Monitoring Tool

Saliva, which consists for more than 99% of water, contains a variety of electrolytes,
including potassium, magnesium, calcium, sodium, bicarbonate and phosphates, as well as
biological elements, such as immunoglobulins, mucins, enzymes, proteins and nitrogenous
products [26]. The main functions of this biofluid are lubrification, antibacterial activity,
buffering action, digestion and tooth protection and clearance [26]. Saliva is produced
by two types of salivary glands: the major, which include parotid, submandibular and
sublingual glands and are responsible for more than 90% of saliva secretion, and the minor,
which are located in the oral mucosa and in the palate [26,27]. The mechanisms concerning
salivary glands secretion, however, are still mostly unknown. The amount of saliva volume
in individuals not being of a standardized value, the concentration of analytes can change
greatly depending on when the sampling/collection procedure is carried out [28].

While blood still remains the gold standard for most examinations, the collection
of salivary samples has several advantages: it is non-invasive, simple, stress-free, easily
repeatable and it does not require special storage condition or skilled clinicians. Moreover,
saliva is stable over time, it does not clot, and it ensures availability of large sample
quantities [17,29–32]. Traditional methods of collecting saliva include burr collection or
stimulation methods (e.g., mechanical, gustatory, and olfactory stimuli), which are meant
to obtain a larger sample volume. Salivary flow rate is variable, but values greater than
0.1 mL/min are generally considered physiological for unstimulated saliva, while these
values increase to 0.2 mL/min for stimulated saliva [26].

Saliva has attracted an increasing interest from the scientific community in the last
two decades, thus leading to a large number of recent studies. Many fields, including
pharmacotherapy, medicine, and dentistry, have focused on the use of saliva as a di-
agnostic tool [33]. In this context, the term ‘salivaomics’ aims to include those studies
regarding the genome (genomics) [34], as well as RNA (transcriptomics) [34,35], metabolite
profiles (metabolomics) [36], proteins (proteomics) [37] and microbial population (micro-
biomics) [38]. Among these, the study of salivary genome and epigenome includes the
analysis of DNA methylation, which is a stable epigenetic modification that has been asso-
ciated with systemic conditions, such as chronic kidney disease progression and respiratory
allergies [39–41]. The detection of specific microRNAs segments is another valuable tool
that can be used to diagnose certain systemic conditions. A subset of miRNA sequences,
indeed, was repeatedly found to be altered in subjects diagnosed with schizophrenia [42,43].
Another study by Hicks et al. [44] highlighted a specific salivary miRNA profile that was
instead reported to be associated with autism spectrum disorder (ASD). More recently
Sembler-Moller et al. [45] underlined the overexpression of 14 miRNA segments in Sjo-
gren’s Syndrome patients as compared to healthy controls. miRNA sequences are involved
in processes such as cell proliferation, differentiation, apoptosis and gene expression and
they can be related to several diseases, including cancer and inflammatory and autoim-
mune disorders [46–49]. The analysis of salivary transcriptomic profile concluded that
about 117 salivary mRNA species and 3000 mRNA transcripts [50,51] seem to be protected
from degradation, unlike blood mRNA species [35]. Moreover, saliva contains specific
mRNA and microRNA transcripts which are normally undetectable in blood [52].

Proteomics is a branch of salivaomics that deals with the study of salivary proteins,
including those coming from microbial species. More specifically, α-amylases, statherin,
P-B peptide, histatins, salivary (“S-type”) cystatins and mucins are the most common
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markers that can be found in saliva, along with a few proteins, which are mainly secreted
by minor glands and gingival crevicular fluid, including α-defensins, b-thymosins and
lipocalin [53,54]. In 2003, the creation of a catalog of salivary protein sequences was made
possible through the Human Salivary Proteome Project funded by the National Institute of
Dental and Craniofacial Research (NIDCR) of the National Institutes of Health [55,56].

Metabolomics and micro-biomics can also benefit from the creation of databases. A
database for metabolomics is now freely available and provides information about sali-
vary metabolites and their relative concentrations and associated diseases [57]. Among
these, sialic acid, proline, taurine, choline and pipecolic acid are considered useful diag-
nostic biomarkers for the detection of several diseases [58]. The Human Oral Microbiome
Database (HOMD) is, instead, useful to investigate the relationship between microbiota-
dependent health and diseases [59]. The oral cavity, possessing the second largest micro-
biota after the gut, is indeed colonized by a large number of microorganisms [60]. The
commensal microorganisms and their host have mutual benefits: the former preventing
the adhesion of pathogenic species to the mucosa and modulating the systemic immune
defense [61].

This knowledge advancement in salivary biomarkers has since now largely relied
on complex laboratory procedures (Figure 3), such as mass spectrometry, qRT-PCR, mi-
croarray chips and deep-sequencing by Next Generation Sequencing (NGS), which are
time-consuming and expensive. In this regard, the introduction of point-of-care devices
that are able to make diagnosis and rapidly detect salivary biomarkers could be useful to
overcome these disadvantages and promote early-stage diagnosis of malignancies.

α

α

 

Figure 3. The subfields of salivaomics.

Obtaining saliva is rapid, simple, and painless, thus making it an extremely convenient
fluid to be used for disease screening. However, sample collection must be appropriately
optimized to reduce error. Various factors such as assay methods and the standards used
affect the results obtained by salivary fluid assessment. The rate of saliva secretion varies
among healthy individuals. Since the volume differs among individuals, salivary flow rate
and other salivary biomarkers differ from individual to individual.

However, by following proper saliva collection and handling procedures high-quality,
reproducible data can be obtained. Before collecting saliva, several factors such as vari-
ability of saliva composition, effects of mouth location, effect of flow rate, sample volume
and salivary stimulants, salivary analyte and DNA analysis, blood contamination in saliva,
saliva collection device and analyte integrity should be carefully considered.

Proper saliva collection procedures avoid the possibility of contaminating saliva with
interfering substances, such as foods with high sugar or acidity, alcohol, caffeine, nicotine,
and other factors that could be the source of errors, including prescription/over-the-counter
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medications taken within the prior 12 h, vigorous physical activity and the presence of oral
diseases or injuries.

Various methods for saliva collection are currently available. Depending on the type
of sample we want to obtain, we can distinguish between passive and stimulated drool
methods. The former is used to collect unstimulated saliva in order to maintain consistency
in the type and integrity of sample collected and it is approved for use with almost all
analytes. The latter may be used as an alternative collection method for those individuals
that have difficulty in carrying out the passive drool technique. As to collection devices,
common methods include the draining method, the spitting method, the suction method,
and the swab method. Before selecting an appropriate saliva collection method, it is
important to consider participant age, analytes of interest, number of samples, sample
volumes required, analyte or DNA analysis, self or assisted collection and sample storage.
The possibility of sampling error is highest during saliva collection and processing.

Sample contamination can be prevented by wearing gloves and using clean collection
materials. The duration and time of sample collection have shown to affect analyte concen-
tration. To overcome sample-to-sample variation, the salivary output of each individual
needs to be measured. Specifically, each individual should be classified as secreting a
high, medium, or low volume of saliva. The salivary flow rate varies among healthy
individuals. To avoid influence of circadian and circannual rhythm, the specimen collection
time should be carried out at the same time every day for all individuals, thus minimizing
sample variability. Another method for reducing sample variability is to collect samples on
multiple days.

Saliva is a highly dynamic biofluid whose composition can vary greatly depending
on several confounding factors. Confounding factors are defined as contributions to
the composition of saliva coming from the environment or from specific activities (i.e.,
eating and drinking, smoking, playing sports) carried out by an individual [28]. Other
confounding factors relate to low aqueous solubility substances that cannot permeate from
the circulatory system into saliva and local enzymatic activities within the oral cavity
that can originate secondary byproducts. Standardized analytical methods and collection
procedures are the main measures that can be undertaken to minimize confounding factors
in salivary analysis.

3. Salivary Biomarkers of Oral Cancer

The non-invasive and frequent collection of saliva has enabled the identification of
reliable salivary biomarkers for the screening of OSCC. The physio-pathological tissue
changes associated with the disease can have genomic, proteomic, and metabolomic
expressions. The increasing efforts of the scientific community in the field of salivaomics
have produced many studies and more than 100 potential saliva biomarkers for OSCC
have already been reported in the literature [18,62–65].

Cell free DNA (cfDNA), microRNA and circulating tumor cells are among the potential
biomarker candidates. They are released into the blood directly from the tumor and most
can be found in saliva and thus can be easily sampled. Other potential candidates do
not originate from the tumor cells themselves but are instead secreted into the blood as a
response of the surrounding tumor microenvironment. These types of biomarker broadly
fall into the categories of proteins (mainly secretary) and messenger RNA.

The classification of biomarkers can be built around several criteria [64]. Diagnostic
markers may be present at any stage of cancer development, and they can be specific
to tissue, stage, follow-up, relapse, and age. Despite the pressing need to rigorously
classify salivary markers for OSCC, as of now a consensus on the topic among the scientific
community has still not been reached. Going forward, a promising way to advance the field
of salivaomics for OSCC is to identify and validate potential biomarkers while improving
the overall ability to detect them by developing technologically advanced biosensors.
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3.1. Micro RNA (miRNA)

miRNA is small single-stranded non-coding RNA fragments (19–25 base pairs). There
are more than 2000 miRNAs encoded in the human genome; they are secreted by cells via
exosomes and are able to coordinate cellular and tissue programming by either repression
or activation of translation in local or distant cells or by affecting transcription in the cell
of origin [66]. miRNA is transferred between cells and thus miRNA fragments can be
considered promising potential biomarkers because they convey the initiation and pro-
gression of cancer. miRNA signatures have been identified and can be useful to determine
tissue-of-origin, stage, progression, prognosis and response to treatment associated with a
specific tumor [67].

In a recent systematic review of salivary miRNA and OSCC by Menini et al. [68], a
total of 12 studies evaluated salivary miRNA as a diagnostic biomarker, while two studies
assessed their relevance for both diagnosis and follow-up. In the two most recent studies
included in their review, Yap [69] and He [70] were able to isolate miRNA from saliva
and used RT-qPCR and microarray qRT-PCR for genetic analysis. Both papers identified
miRNA levels as being significantly increased in OSCC compared to healthy controls. The
dysregulation of miR-24-3p was consistently found in these two studies and might signal
its usefulness as a target in biosensing applications.

3.2. Cell Free DNA (cfDNA)

CfDNA is a type of DNA that is released into the blood originating from either a
healthy cell, tumor cells or cells from the tumor microenvironment. The release occurs due
to a number of cellular processes including oncosis, netosis, active secretion, apoptosis,
necrosis, and phagocytosis. CfDNA is characterized by base pair length; cfDNA derived
from apoptosis in healthy cells is very fragmented, compared to cfDNA derived from
necrosis in tumor cells, which tends to consist of longer DNA lengths, typically between
180–200 base pairs, with a half-life of anywhere from 15 min to 13 h.

Classical techniques for sequencing DNA such as Sanger sequencing, qPCR, digital
qPCR and massive parallel sequencing (NGS) are not ideal for detection of cfDNA fragment
length in saliva. These techniques are either not sensitive enough (Sanger, qPCR) or are too
time consuming (NGS).

There have been limited studies evaluating cfDNA as a potential biomarker relative
to its detection in saliva of OSCC patients. Shukla et al. [71] evaluated 390 patients using
spectrophotometry as the detection method. Within this group there were 90 potentially
malignant lesions, 150 OSCCs and 150 post treatment OSCCs, and no significant differences
were found between these groups. Wang et al. evaluated 93 head and neck SCC patients
using digital PCR finding 76% HPV 16 positivity in saliva. Finally, Schrock et al. [72]
evaluated 640 patients with head and neck squamous cell carcinoma (HNSCC) through
qPCR and found a 59% positivity rate for methylation markers SOX2 and SPET9. The
work done to date suggests that cfDNA is not ready to be used as a full spectrum tumor
biomarker for OSCC.

3.3. miRNA vs. cfDNA

In general, miRNA offers several advantages over cfDNA. Among these, as previously
mentioned, are that miRNA can identify tissue-of-origin, stage, progression and prognosis
and treatment response of a tumor whereas cfDNA essentially gives information on if
the tumor is present or not. Secondly, miRNA is far superior to cfDNA in detecting early
disease. To generate cfDNA from a tumor it has to reach a size where significant necrosis
will be occurring; this of course does not happen in a small lesion to the degree that
would produce detectable cfDNA. miRNA signatures can be detected in pre-malignant or
dysplastic tissues as well as early malignancies and up to later stages. This early detection
allows for early treatment and a higher chance for a positive outcome.
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3.4. Messenger RNA (mRNA)

Seven cancer-related mRNA biomarkers were consistently validated by qPCR on
saliva samples from OSCC patients and controls. These potential salivary RNA biomarkers
are transcripts of IL8, IL1B, DUSP1, HA3, OAZ1, S100P, and SAT. The combinations of
these biomarkers yielded sensitivity (91%) and specificity (91%) in distinguishing OSCC
from the controls.

In recent research by Tang et al. [73] it was shown that long non-coding RNAs (lncR-
NAs) are expressed across non-tumor, tumor and metastatic tissue samples. Some detected
lncRNAs were shown to be aberrantly expressed in cases of oral cancer and metastasis.
Moreover, whole saliva contained a detectable amount of some lncRNAs, which appeared
to be a potential marker for OSCC.

3.5. Protein Biomarkers

Belonging to the large group of protein biomarkers, the proinflammatory and proan-
giogenic family of cytokines, such as interleukine-6, 8, 1α, 1β have been found to be strong
salivary indicators for the diagnosis of OSCC as they usually indicate the carcinogenic
transformation from oral precancerous lesions to oral cancer. Katakura et al. [74] found
that the expression of these four cytokines was higher in patients with oral cancer than in
healthy controls. The difference was significant especially for IL-6, detected through the
conventional ELISA technique. Duffy et al. [75] confirmed this observation reporting that
serum IL-6 level was also a significant independent predictor of poor survival, as were
older age, smoking, cancer site (oral/sinus), higher cancer stage, and comorbidities.

Krishna et al. [76] reported an abnormal expression of another protein biomarker,
telomerase. Telomerase activity was detected positively in 75% of patients with oral
squamous cell carcinoma, a notably significant statistical difference when compared a
positive rate in 6.67% in healthy controls.

Cytokeratin 19 fragment Cyfra21-1, tissue polypeptide antigen, and cancer antigen
125, were also found to be significantly elevated in saliva samples of OSCC patients that
had been analysed with the Immunoblot technique [65]. Moreover, Al Kawas et al. [56]
claimed that elevated levels of salivary soluble CD44 were shown in the majority of oral
squamous cell carcinoma cases and could distinguish cancer from benign tumors with
high specificity.

Other successfully validated proteins include MRP14, CD59, profilin 1, and catalase.
An increased level of MRP14 has been previously reported in tissue cells of oral tongue
cancer. CD59 (protectin) is one of the complement restriction factors that are overexpressed
in tumor cells, Profilin 1 is a regulator of the microfilament system and is involved in
various signaling pathways, Catalase protects the cell against oxidative stress, and altered
levels of catalase are fundamentally involved in carcinogenesis and tumor progression.

Almadori et al. [77] defined Glutathione as an epidemiological marker for chemopre-
vention and it also indicates a risk of development of OSCC. They showed that salivary
glutathione levels may be an index of oxidative stress at the level of the upper airways and
of oral cavity and pharynx. M2BP is also used for detection of OSCC, as this biomarker
gives a sensitivity of 90% and a specificity of 83% and could also serve as a clinical tool for
the non-invasive diagnosis of OSCC.

Further, salivary transferrin is a potential candidate as an early detection biomarker
and a prognostic marker for oral cancer, allowing for the development of diagnostic tests.
The specificity and sensitivity of salivary transferrin-based ELISA was 95% in overall
OSCC patients according to Jou’s research [78]. In addition, the combination of M2BP,
MRP14, CD59, profilin, and catalase as candidate biomarkers present sensitivity of 90%,
and specificity of 83% in detecting OSCC.

Reddy et al. [79] in a recent research identified the amino acid profile of saliva from
patients with oral squamous cell carcinoma using high performance liquid chromatography.
The assay levels of amino acids histidine, threonine, valine, isoleucine, methionine, pheny-
lalanine, leucine, lysine, tyrosine, arginine, alanine, glycine, serine, and aspartic acid were
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significantly higher in both well-differentiated OSCC cases and moderately differentiated
OSCC cases, than in healthy controls.

3.6. Metabolic Biomarkers

A panel of five salivary metabolites including γ-aminobutyric acid, phenylalanine,
valine, n-eicosanoic acid and lactic acid were selected using OPLS-DA model with S-
plot [80]. Valine, lactic acid, and phenylalanine in combination yielded satisfactory accuracy
(0.89, 0.97), sensitivity (86.5% and 94.6%), specificity (82.4% and 84.4%) and positive predic-
tive value (81.6% and 87.5%) in distinguishing OSCC. The utility of salivary metabolome
diagnostics for oral cancer is successfully demonstrated in the study of Wei et al. [80] and
these results suggest that the metabolomic approach complements the clinical detection
of OSCC.

Lastly, hypoxanthine, guanine, guanosine, trimethylamine N-oxide, spermidine,
pipecolate, and methionine have all been reported in elevated concentrations in saliva by
Ishikawa et al. [81] and have been used to screen controls from OSCC patients.

Saliva as a diagnostic biofluid has been thoroughly studied for the discovery of
biomarkers of OSCC in many patients, and several potential biomarkers in genomic,
proteomic, and metabolomics have been detected in the last decade. However, the detection
of most of these has been confined to laboratory settings and not expanded into clinics due
to issues related to sensitivity and specificity, as well as technical requirements and costs.

4. Biosensors and Bioelectronic Platforms for the Detection of Oral Cancer Biomarkers
in Saliva

The techniques and methods for cancer diagnosis employed in clinical practice have
not substantially changed in the last couple of decades, while many advanced technologies
are constantly being developed in laboratory settings. The traditional diagnostic procedure
involves two separate stages. At first, an invasives tissue biopsy of the affected region is
performed. This is usually followed by medical imaging, including computed tomography
(CT), magnetic resonance (MRI) or positron emission tomography (PET) [6,82]. These
methods have been validated extensively and are thus widely accepted, but they also
suffer from inherent disadvantages such as invasiveness, cumbersome procedures, and
high costs [83,84]. Blood tests [85] have opened new avenues for rapid screening of the
population and early diagnosis, but they still present a certain degree of invasiveness,
especially for fragile individuals.

Commercially available ELISA kits provide good sensitivity, but they suffer from an
inherently long assay time. Biosensors in this regard offer substantial advantages such as
rapid time to response, and easier protocols [86,87]. A biosensor, belonging to the wider
category of chemical sensors, is a device that translates a biological event into a measurable
signal. The main components of a biosensing system are presented in Figure 4.

A biomarker, or a set of biomarkers, is selected based on the criteria of sensitivity
and specificity and then researched in the body fluid of interest. The recognition element
serves as the binding site for the selected biomarker, and it can be of natural (bioreceptor)
or synthetic (receptor) nature, or a combination of both. The transducer then operates
the conversion of the biological signal generated by the binding event into a measurable
signal, through a specific detection mechanism (electrochemical, mass-based, optical, etc.)
that also depends on the biomarker. The signal obtained is then amplified and undergoes
several steps of signal conditioning and processing, either on the device itself (on-board) or
after the signal has been transmitted to a remote device.

The possibility to non-invasively analyze body fluids, including serum and saliva,
expanded the library of available biofluids for earlier diagnosis and timely treatment of
malignancies [88,89]. The field of biomarker discovery has largely relied on serum or
plasma as the biofluid of choice [85,90,91]. Saliva is a readily available biofluid that, as
a biomarker resource, has been relatively unexplored until about a decade ago. Then
D.T. Wong and his research group pioneered the use of saliva as biofluid for oral cancer
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biomarkers detection [92–96] and since that moment the field has seen a marked increase
in interest from the scientific community [92].

 
Figure 4. Components of a biosensor and its working principle.

The rapid advances in flexible electronics and miniaturized technologies now allow the
development of versatile and scalable bioelectronic platforms that could be employed for
early cancer screening, from readily available body fluids [97]. The identification of changes
in saliva indicating disease progression underlines the utility of saliva as a non-invasive
source of informative biomarkers reflecting disease burden and progression. Saliva also
possesses drawbacks, including rapid biofouling on the surface of biosensors [98], the effect
of interferents that are present in saliva in different concentrations [99], and the presence
of a highly dynamic environment orally. Nevertheless, the development of advanced
bioelectronic tools have enabled researchers to overcome most of the bottlenecks that are
present today in salivary diagnostics.

Table 1 summarizes the most recent efforts in the development of biosensors for early
diagnosis of oral cancer. The year of publication has been included to present the reader
with the evidence of an increasing interest among the scientific community toward oral
cancer detection through biosensors targeting saliva. Quantitative performance parameters
such as limit of detection (LOD) and response/incubation time have been reported as a
metric of comparison between the studies. In most cases, raw saliva is the only biofluid
that has been analyzed to clinically validate the developed biosensor. However, there are
studies where the authors decided to evaluate the device performance in both artificial
and real saliva, in order to estimate the matrix effect of a real biofluid as opposed to the
artificial one [100–107].
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Table 1. Summary of recent studies of biosensors and bioelectronic systems for early diagnosis of oral cancer (2010-present).

Analyte Detection LOD R/I 1 Time Sample Type Validation Ref.

ORAOV-1 SERS 2 3.1 fM 60 min Artificial and real saliva N/A [100]

IL-1α EIS 3 6 fg/mL 60 min Saliva and serum N/A [108]

CYFRA 21-1 DPV 3 7.2 pg/mL 15 min Saliva N/A [109]

CD63 Fluorescence 2 500 particles/µL 30 min Saliva NanoFCM [110]

IL-1β DPV 3 5.2 pg/mL 150 min Saliva ELISA [111]

CYFRA 21-1 SWV 3 2.5 ng/mL N/A Saliva ELISA [112]

miRNA-21 DPV 3 1 pM 60 min Saliva N/A [113]

ORAOV-1 PEC 4 33 fM 40 min Saliva N/A [114]

HIF-1α Amperometry 3 76 pg/mL 105 min Saliva ELISA [115]

IL-8 DPV 3 90 pg/mL 10 min Saliva N/A [116]

S100p mRNA SERS 2 1.1 nM 53 min Saliva N/A [117]

IL-8 DPV 3 51.53 pg/mL 10 min Saliva N/A [118]

IL-6 Voltammetry 3 12 pM 400 s Artificial and real saliva N/A [101]

IL-1β EIS 3 7.5 fg/mL 45 min Saliva and serum N/A [119]

ORAOV-1 ACV 3 12.8 fM 120 min Artificial saliva N/A [102]

CYFRA 21-1 DPV 3 0.16 ng/mL 15 min Saliva ELISA [120]

CIP2A EIS 3 0.24 pg/mL 35 min Saliva ELISA [121]

IL-8 EIS 3 3.3 fg/mL 45 min Saliva and serum ELISA [122]

IL-1β EIS 3 3 fg/mL 45 min Saliva and serum N/A [123]

CYFRA 21-1 Fluorescence 2 0.5 ng/mL N/A Saliva ECL [124]

IL-8 SFI 3 6 fg/mL 45 min Saliva and serum ELISA [125]

TNF-α Chronoamperometry 3 0.001 ng/mL N/A Artificial and real saliva ELISA [103]

CEA Colorimetry 2 1 ng/mL 1 min Saliva N/A [126]

IL-8 Absorbance 2 90 pg/mL 30 min Saliva ELISA [127]

IL-1β Absorbance 2 80 pg/mL 30 min Saliva ELISA [127]

MMP-8 Absorbance 2 120 pg/mL 30 min Saliva ELISA [127]

IL-8 DPV 3 72.73 pg/mL 9 min Saliva N/A [128]

TNF-α EIS 3 3.7 fg/mL 45 min Saliva and serum ELISA [129]

CYFRA 21-1 DPV 3 0.001 ng/mL 5 min Artificial saliva ELISA [104]

IL-1β Amperometry 3 0.38 pg/mL 150 min Saliva and serum ELISA [130]

TNF-α Amperometry 3 0.85 pg/mL 150 min Saliva and serum ELISA [130]

α-amylase QCM 5 1 µg/mL N/A Saliva, serum and urine Phadebas test [131]

CD59 EIS 3 0.84 fg/mL 10 min Saliva N/A [132]

Tryptophan CC-PSA 3 4.9 pM 5 min Saliva N/A [133]

CYFRA 21-1 DPV 3 0.01 ng/mL 6 min Saliva ELISA [134]

IL-8 Amperometry 3 72.4 pg/mL 5 h Saliva ELISA [135]

IL-8 mRNA Amperometry 3 0.21 nM 5 h Saliva ELISA [135]

CYFRA 21-1 CV 3 0.21 ng/mL 15 min Saliva ELISA [136]

CYFRA 21-1 DPV 3 0.122 ng/mL 16 min Saliva ELISA [137]

CYFRA 21-1 CV 3 0.08 ng/mL 20 min Artificial and real saliva ELISA [105]

Uric Acid Chronoamperometry 3 600 Um 1 min Artificial and real saliva N/A [106]

ORAOV-1 DPV 3 0.35 pM 60 min Saliva N/A [94]

IL-8 + TNF-α FET 3 100 fg/mL N/A Artificial saliva ELISA [107]

IL-6 DPV 3 0.39 pg/mL 3 h Saliva and urine ELISA [138]

DNA sequence Fluorescence 2 56 pM 15 min Saliva and serum N/A [139]

hsa-miR-200a Amperometry 3 0.22 aM 100 s Artificial saliva N/A [140]

1 R/I = response/incubation. 2 Optical. 3 Electrochemical. 4 Photoelectrochemical. 5 Mass-based.
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Biosensing for salivary diagnostics still being a rather burgeoning research field, it is of
great importance also to validate the obtained results against an established gold standard,
such as ELISA. Based on the data that have been gathered and reported in Table 1, only half
of the studies have been validated against a gold standard. Moreover, most of the studies
including a gold standard validation come from the same research groups, highlighting
how clinical validation is still a practice that depends on individual laboratory protocols.

A variety of detection mechanisms have been employed in biosensing, including electro-
chemical [111–113,115,116,118,119,121,122,125,129,133,135,141], photoelectrochemical [114],
optical [100,110,117,124,126,127,140], and mass-based systems [131]. All of the above biosens-
ing methods enable detection with high sensitivity, and enhanced specificity [142]. Mass-
based systems, like the one reported in Figure 5, are inherently versatile in terms of the
biomarkers they can detect since they are only based on a mass variation upon binding of
the target molecule on the surface of a quartz-crystal microbalance (QCM). QCM biosensors
exist in different sizes, hence they can fit different applications including miniaturized
electronic devices. An inherent drawback of this type of system is the susceptibility to being
disturbed by external events, such as vibrations and mechanical stress. As a consequence,
QCM biosensors are rarely employed in wearable or portable systems.

Della Ventura et al. [131] realized a robust QCM-based mass sensor to detect the
concentration of human salivary α-amylase (HSA) in human saliva and total α-amylase
(the HSA and human pancreas amylase) in urine and serum. The group exploited the use of
an unconventional technique to functionalize the sensor’s surface, called the photochemical
immobilization technique (PIT). By means of PIT functionalization it was possible to have a
favorable orientation of the antibodies on the sensor’s surface, enhancing the performance
of the device. The detection of HAS in saliva was performed through a simple one-step
dilution process. By adding a second step consisting of a ballasting procedure, it was also
possible to adapt the system to detect the concentration of total α-amylase in urine and
serum, greatly enhancing the sensitivity and lowering the LOD.

4.1. Electrochemical Biosensors

Electrochemical biosensors have seen a larger adoption compared to other sensing
technologies since they are suitable for the detection of almost any kind of biomarkers, and
they can be easily integrated with traditional laboratory benchtop equipment. Moreover,
they are prone to be integrated into wearable and portable devices since they can be easily
miniaturized [143–146]. Integration of electrochemical sensors into small sized device
has to satisfy stringent requirements of convenience, comfort, simplicity of operation and
flexibility, hence the development of reliable wearable and portable point of care (POC)
ultrasensitive devices still remains challenging.

Figure 6 provides an overview of recently developed electrochemical standalone sen-
sors for the detection of oral cancer biomarkers. A plethora of different approaches have
been used to functionalize the surface of the sensing electrodes, including the use of an-
tibodies [103–105,107,109,111,112,116,118–122,124,125,128–132,134,136–138,141], magnetic
beads [115,135,138,140], and aptamers [101,126,133].

Guerrero et al. [111] recently developed an electrochemical sandwich-type immunosen-
sor (Figure 6a) through an electro-click methodology for the detection of interleukin 1β
(IL-1β) in saliva. The group utilized differential pulse voltammetry (DPV) as their pre-
ferred detection technique. Disposable screen-printed carbon electrodes (SPCEs) have been
modified with azide-modified-multi-wall carbon nanotubes (aMWCNTs). Through the
addition of a secondary label for signal amplification the sandwich immunosensor reached
a lower LOD of 5.2 pg/mL. substantially superior compared to a commercial ELISA kit.
Moreover, the total time-to-results of the developed immunosensor was more than one
hour shorter than that of ELISA.



Biosensors 2021, 11, 396 13 of 27

α

 

α

α α

Figure 5. QCM-based biosensor for human salivary α-amylase determination. The immobilization

of the various components and targets on the QCM surface is accompanied by characteristic shifts

in frequency that are quantified by the readout system. Reprinted with permission from ref. [131].

Copyright 2017 Elsevier.
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Figure 6. Summary of recently developed electrochemical biosensors for the detection of oral

cancer biomarkers in saliva (a) Sandwich-type immunosensor for the detection of interleukin 1β

(IL-1β) in saliva through DPV. Reprinted with permission from ref. [111]. Copyright 2020 Elsevier.

(b) Immunosensor for Cyfra21.1 detection based on a cysteamine and glutaraldehyde modified

gold electrode. Reprinted with permission from ref. [112]. Copyright 2020 Elsevier. (c) Label-free

immunosensor based on a modified ITO electrode for EIS detection of oral cancer biomarker in both

saliva and serum. Reprinted with permission from ref. [119]. Copyright 2018 Elsevier (d) Magnetic

beads-based sandwich immunoassay for the ampero-metric detection of HIF-1α. Reprinted with

permission from ref. [115]. Copyright 2020 Elsevier. (e) Ratio-metric electrochemical DNA biosensor

for the detection of ORAOV1 in saliva. Reprinted with permission from ref. [102]. Copyright 2018

Elsevier. (f) Multiplexed immunosensor based on dual SPCEs for the simultaneous detection of IL-1β

and TNF-α. Reprinted with permission from ref. [130]. Copyright 2017 Elsevier. (g) SiNW sensor

array for the multiplexed detection of TNF-α and IL-8. Reprinted with permission from ref. [107].

Copyright 2015 The Japan Society for Analytical Chemistry.

Today more than a hundred potential biomarkers have been linked to oral cancer
by different researchers [147]. Among these is a member of the cytokeratin family, a
fragment of cytokeratin-19 called Cyfra21.1, that has been extensively researched in saliva
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by means of biosensors [104,105,109,112,120,124,134,136,137]. Jafari et al. recently [112]
built an immunosensor (Figure 6b) by immobilizing anti-Cyfra21.1 on a cysteamine (CysA)
and glutaraldehyde (GA) modified gold electrode. The performance of the biosensor was
investigated through square wave voltammetry (SWV) and validated with a commercial
ELISA test. The group reported a LOD of 2.5 ng/mL and a linear range between 2.5 and
50 ng/mL. The platform provides a low-cost, reliable, and robust method to perform
non-invasive detection of salivary Cyfra21.1.

Aydin et al. [119] realized a label-free immunosensor (Figure 6c) based on a modified
indium tin oxide (ITO) electrode to detect IL-1β in both saliva and serum. This study
pioneered the use of 6-phosphonohexanoic acid (PHA) as a biomolecule immobilization
matrix to attach anti-IL-1β for selective binding of the analyte. A variety of electrochemical
techniques has been employed to verify the conditions at each fabrication step and PHA
proved to be a suitable material for a reliable and stable operation of the biosensor. The elec-
trochemical immunosensor was studied through electrochemical impedance spectroscopy
(EIS) and the metrics of stability, repeatability, reproducibility, and specificity have been
assessed and compared with the state of the art. The impedimetric immunosensor reached
a LOD of 7.5 fg/mL in a 0.025–3 pg/mL concentration range.

Munoz-San Martìn et al. [115] reported for the first time the use of magnetic beads
(MBs) in an electrochemical assay (Figure 6d) for the ampero-metric detection of hypoxia-
inducible factor-1 alpha (HIF-1α). HIF-1α is involved in tumoral hypoxia and has been
identified as a potential biomarker for the prognosis of oral squamous cell carcinoma
(HSCC) [148]. The biosensor has been designed with a sandwich configuration to require
few incubation steps, thus reducing the overall assay time compared to established lab-
oratory techniques. The group tested the device in buffer solutions against commonly
encountered interferents (human IgG, BSA, TNF-α, etc.) and in real human saliva samples.
The biosensors exhibited a low LOD of 76 pg/mL in a short assay time of only 105 min. The
compact size and ease of operation of the developed immunosensor makes it promising
for POCT applications.

Another approach for the detection of salivary biomarkers involves the use of DNA
biosensors. Ma et al. [102] realized a ratio-metric electrochemical sensor (Figure 6e) for
the detection of Oral Cancer Overexpressed 1 (ORAOV1), by coupling homogeneous Exo
III-aided target recycling amplification and one-step triggered dual-signal output. This
strategy aims to overcome the usual limitation of conventional electrochemical biosensors
based on signal-on/signal-off outputs. The research group was able to develop the device
and test it in spiked saliva samples, showing promising results for its clinical validation.
They obtained a LOD of 12.8 fM within a linear range of 0.02–0.2 pM and verified the
selectivity of the device against similar DNA sequences.

While in most cases the detection of a single biomarker is sufficient to discern be-
tween a healthy patient and a sick one, the capability to detect two different biomark-
ers simultaneously, known as multiplexing, allows for even more precise outcomes.
Sanchez-Tirado et al. [130] realized an immunosensor (Figure 6f) based on dual SPCEs
for the detection of IL-1β and TNF-α, two oral cancer biomarkers. The complex immuno-
platform utilizes carboxy-phenyl-functionalized double-walled carbon nanotubes (HOOC-
Phe-DWCNTs) as a substrate to separately immobilize the antibodies for each biomarker.
The use of a commercial polymer coating allowed for a better antibody immobilization. The
addition of poly-HRP-streptavidin conjugates, used for signal amplification, completed
the development of the sandwich-type immunosensor. The group was able to realize a
sensitive ampero-metric biosensor with a relatively low-cost and simple process, achiev-
ing a LOD of 0.38 for IL-1β and 0.85 for TNF-α, within a linear range of 0.5–100 and
1–200 pg/mL, respectively. The assay time reported is also shorter than commercial ELISA,
also considering the detection of two biomarkers at the same time.

Field effect transistors (FET), while less common than two and three-electrode setups
in electrochemical sensing, are gaining attention due to their high sensitivity. Among these,
silicon nanowire (SiNW) FETs have demonstrated bio affinity toward biomarkers and
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the possibility of performing a multiplexed detection by selective functionalization of the
nanowire with bioreceptors. Zhang et al. [107] realized a SiNW sensor array (Figure 6g) to
detect TNF-α and IL-8 simultaneously, taking advantage of their intrinsic opposite charge,
allowing for a simple discrimination. Their biosensor has been validated in artificial saliva,
reaching a LOD of 100 fg/mL in a short time, providing a promising tool for early detection
of OSCC through salivary diagnostics.

4.2. Optical Biosensors

Optical systems provide another opportunity to perform salivary analysis with high
sensitivity, selectivity, and label-free operation. Many non-invasive optical technologies
have been developed in the past, and they can be divided into fluorescence-based biosen-
sors, surface-enhanced Raman spectroscopy (SERS) biosensors, photonic crystal biosensors
and surface plasmon resonance (SPR) biosensors [149]. Biosensors based on colorimetry
can also be classified as optical sensors and they offer a qualitative and rapid way to
perform non-invasive diagnostics on biofluids. Optical devices often include microfluidic
channels that ensure the biofluid is delivered in the area where the detector/reader is
positioned, for a precise and repeatable analysis [150]. The most representative research
articles featuring optical biosensors for salivary diagnostics of oral cancer biomarkers have
been reported in Figure 7.

 

β

Figure 7. Summary of recently developed optical biosensors for the detection of oral cancer biomark-

ers in saliva (a) SERS-based optical DNA biosensor. Reprinted with permission from ref. [100].

Copyright 2021 Elsevier. (b) Fluorescence immunosensor based on 3DN-CNTs for the detection of

Cyfra21.1. Reprinted with permission from ref. [124]. Copyright 2018 Elsevier. (c) Absorbance-based

biosensor with integrated microfluidic channels and antibody-functionalized detection chambers.

Reprinted with permission from ref. [127]. Copyright 2017 Elsevier. (d) Detection of salivary exo-

somes through magnetic and fluorescent bio-probes for the non-invasive diagnosis of oral cancer.

Reprinted with permission from ref. [110]. Copyright 2021 Elsevier.

Among the optical methods of detection listed above, SERS is one of the most fre-
quently employed analytical techniques. This is mainly due to its high sensitivity, versatility,
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ease of operation and multiplexed capability [151]. In this regard, the use of nanostructured
materials is often sought to increase the sensitivity of the device. Liu et al. [100] developed
a biosensing platform (Figure 7a) based on plasmonic Ag nano-cubes (AgNCs) as a strategy
to enhance the SERS signal. The platform combines nicking endonuclease assisted signal
amplification (NESA) with heated electrodes for the detection of a DNA sequence related
to oral cancer. The Nt.BstNBI/AgNCs/HAuE DNA biosensor showed high sensitivity
within a linear range of 10 fM–1 nM and a cleavage time of only 1 h.

Song et al. [124] developed a fluorescence immunosensor (Figure 7b) to detect Cyfra21.1,
an oral cancer biomarker. This novel biosensor is based on a Si pillar substrate. A 3D
network of antibody-functionalized carbon nanotubes (3DN-CNTs) is then created among
these Si pillars and, through the use of a specific tag, fluorescence images are obtained.
The research group validated the developed biosensor in real human saliva samples with
an established technique, such as electrochemiluminescence (ECL), to prove its clinical
applicability, obtaining a good correlation between results.

The combination of microfluidic systems and optical sensing platforms has proved to
be a strategic choice to obtain simple and rapid detection of analytes in several biofluids.
Dong and Pires [127] developed a microfluidic biosensor (Figure 7c) based on absorbance
for the multiplexed detection of three salivary biomarkers commonly associated with oral
cancer, IL-8, IL-1β and MMP-8. The biosensor has been designed based on criteria of
compactness and miniaturization, in order to present the reader with an attractive tool
for POC diagnosis. Organic photodetectors (OPDs), representing the photoactive area,
are realized on a glass substrate, and vertically aligned with the microfluidic polymeric
channel, featuring chambers with antibody-functionalized gold-silver immunoassays.
The group obtained LOD in the pg/mL range within a wide linear range. They also
validated the obtained results with commercially available ELISA tests to prove its utility
in clinical practice.

Wu et al. [110] focused on the detection of salivary exosomes as a promising source of
biomarkers related, among other malignancies, to oral cancer. Specifically, they developed
a fluorescent biosensor (Figure 7d) based on magnetic and fluorescent bio-probes (MFBPs)
loaded with quantum dots (QDs) for an efficient signal amplification. Specific aptamers
were immobilized on the surface of magnetic microspheres (MMs) to selectively bind CD63
proteins on exosomes. The shape changes of aptamers following the binding event released
QDs-conjugated tethered DNA concatemers for signal amplification. They reached a lower
LOD of 500 particles per microliter of solution and tested the device both in buffer and
real human saliva samples, to precisely evaluate the matrix effect. In order to validate
their experimental findings, the research group also performed the tests on a NanoFCM
analyzer, obtaining a good correlation between the two methods.

4.3. Integrated Systems

With the advent of nanotechnology and simultaneous rapid advancements in the
field of microelectronics, researchers have been enabled to build complicated advanced
devices that would fit in a pocket, or that could even be worn on the body or positioned
inside the oral cavity. Electrochemical biosensors possess intrinsic characteristics that
make them suitable for scale-down and miniaturization, therefore the vast majority, if not
the entirety, of these systems relies on electrochemical transduction. When comparing
integrated systems with standalone sensors, such as the one presented in the sections above,
it is evident how the former has much more stringent design requirements, as they must fit
additional components, such as batteries, microprocessors, and signal conditioning circuits,
inside a device with a small form factor. These requirements, often hard to satisfy, have
limited the development of these systems, especially wearable devices. Other problems
include the degradation of sensitive components, such as bioreceptors (enzymes, antibodies,
etc.), that needs to be replaced and frequent calibration of the device, that often cannot be
carried out by the final user, thus limiting its applicability in clinical settings. The devices
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reported in Figure 8 summarize the efforts in the development of wearable and portable
devices for the detection of salivary biomarkers associated with oral cancer.

 

− −

Figure 8. Integrated salivary biosensing systems as POC diagnostic tools for oral cancer biomarkers

detection (a) Portable biosensing system for the rapid and accurate detection of miRNA in human

saliva. Reprinted with permission from ref. [113]. Copyright 2020 Elsevier. (b) Handheld fully

integrated nano biosensing device for ultrafast cytokine detection in human saliva samples. Reprinted

with permission from ref. [101]. Copyright 2019 Elsevier. (c) Mouthguard-based biosensing systems

with integrated electronics for selective intraoral detection of uric acid. Reprinted with permission

from ref. [106]. Copyright 2015 Elsevier.

Low et al. [113] recently developed a portable biosensing device (Figure 8a) providing
a cost-effective solution for point of care testing of oral cancer onset. The platform has been
developed towards the detection of circulating microRNAs, a category of highly stable
biomarkers that have been frequently associated with the early onset of malignancies,
including oral cancer [152]. Specifically, Low et al. focused on the detection of a salivary
microRNA-21 (miR-21), as a first attempt to validate their proof-of-concept. The biosensing
systems comprise several elements: the electrochemical sensing strip based on a three-
electrodes configuration have been functionalized with reduced graphene oxide (rGO)
followed by the immobilization of single strand DNA (ssDNA) as the bioreceptor. The
detection of miR-21 hybridization on the electrode surface is performed through DPV
thanks to a miniaturized potentiostat that have been included in the customized circuit
board, comprising also a microcontroller (MCU), analog-to-digital converter (ADC) and
digital-to-analog converter (DAC). An external device, such as a smartphone, supplies the
power necessary to operate the biosensing system, and process the data that are transmitted
wirelessly through a low-power Bluetooth connection. The compact, handheld device is
able to perform rapid detection of miR-21 in human saliva samples, within a linear range
of 10−4–10−12 M.
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Another portable biosensing system (Figure 8b) has recently been proposed by Han et al. [101]
for the detection of cytokines in human saliva. The group realized a biosensor with
integrated readout circuitry and wireless data communication for real-time detection of
IL-6. The transduction mechanism relies on a graphene field-effect transistor (GFET) whose
working principle and output can be analyzed through I-V curves. The small amount of
IL-6, normally present in human saliva only at low concentrations, can be detected as the
device operates in the picomolar range. The biosensor has also been tested for selectivity
against common interferents, such as human growth hormone (GH) and epidermal growth
factor (EGF). Overall, the device showed an acceptable reproducibility and stability, and an
exceptionally rapid time to response of only 400 s. The compact form factor and wireless
operation makes it a promising device for POC applications in oral cancer diagnostics.

Steering away from portable devices toward wearable biosensing systems, Kim et al. [106]
were the first to introduce a fully integrated mouthguard-based biosensing device for
the real-time monitoring of uric acid (Figure 8c). The biosensor features a traditional
three-electrodes configuration screen-printed onto a plastic (PET) substrate. The flexible
sensing pads are interfaced with the integrated circuitry that performs data processing
and transmission directly on-board. The tailored enzymatic functionalization allowed for
selective sensing of uric acid in presence of common interferents. The group obtained a
LOD of 0.35 pM and an exceptionally fast response time of 1 min. The device has been
tested both on artificial and real human saliva samples.

The other wearable platforms that constitute the state of the art of intraoral biosensing
devices are reported in Figure 9. Kim et al. [153] developed a first printed version of a
mouthguard-based biosensor (Figure 9a) before introducing the highly integrated wear-
able device reported in Figure 8c. Their first attempt featured the same three-electrodes
screen-printed biosensing strip, attached onto a mouthguard and tested remotely via wired
connection. The development of this early version paved the way for the subsequent
implementation of the dedicated circuitry that rapidly followed. A different approach was
taken by Tseng et al. [154], who investigated the possibility to attach a sensor directly onto
a human tooth. They realized a hydrogel-based resonator (Figure 9b) that could be wire-
lessly interrogated via RF communication, thus enabling non-invasive food consumption
monitoring. Limitations of the systems included the interference of other components,
contributing to the swelling of the hydrogel layer, thus reducing the selectivity of the
device, and the fragility of the sensor, that is placed in a highly dynamic environment.
Figure 9c reports a mouthguard-based biosensor developed by Ciui et al. [155], based on a
similar SPCE configuration as the one seen in Figure 9a,c. In this case the screen-printed
electrochemical sensor is dedicated to determining the concentration of N-Carboxymethyl-
lysine (CML) in saliva, a typically advanced glycation end product, related to oxidative
stress and long-term protein damage. This disposable sensor, that can be easily attached
onto a mouthguard, demonstrated high flexibility while retaining its integrity. Moreover, it
offered an inexpensive, sensitive, and selective tool for the detection of salivary analytes.
The group tested the device in vitro and expects to perform real-time in vivo tests in the
near future. Arakawa’s work [156,157] on intraoral wearable devices produced two se-
quential mouthguard-based biosensors, reported in Figure 9d,e. The aim of the devices is
to perform continuous and non-invasive intraoral glucose sensing, which the group was
able to demonstrate only in their most recent study. The telemetry system features onboard
BLE communication for rapid data exchange and time stamping of hyper/hypoglycemia
events. The intersection between soft materials and rigid discrete components gave birth to
the field of flexible hybrid electronics, that is receiving increasing interest from the scientific
community [158,159]. The device reported in Figure 9f, by Lee et al. [160] is an example of
flexible hybrid electronics applied to intraoral biosensing. The group developed a retainer
with embedded electronics for non-invasive detection of sodium concentration directly
in saliva. The ultrathin membrane sensor based on ion-selective electrodes is capable of
real-time data transmission to a mobile device thanks to its Bluetooth capability. The group
demonstrated both in vitro and in vivo applicability, paving the way for the development
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of similar devices for the detection of different biomarkers. Wherever time stamping and
real-time data recording is not needed, wearable devices can be greatly simplified in terms
of their architecture, while contemporarily reducing their form factor. Thin film biosensors,
such as the one developed by Mannoor et al. [161] and reported in Figure 9g, exemplifies
this concept. A chemi-resistor based on an antibody-immobilized graphene sensing layer
works as the transducer, while an RFID inductive coil connected in series to the transducer
allows for the wireless interrogation. This smart electronic tattoo can be easily laminated
onto complex 3D object or even directly attached onto a tooth, as the authors demonstrate.
The low-cost, easy fabrication procedure and high versatility of such systems make them
extremely promising for advanced molecular diagnostics at the point of care.

 

Figure 9. Wearable biosensing platforms for non-invasive salivary analysis (a) Lactate biosensor

on a mouthguard. Reprinted with permission from ref. [153]. Copyright 2014 Elsevier. (b) Tooth

mounted RF hydrogel biosensor. Reprinted with permission from ref. [154]. Copyright 2018 Wiley

International Limited. (c) Mouthguard with screen printed electrodes for N-Carboxymethyl-lysine

detection. Reprinted with permission from ref. [155]. Copyright 2019 Elsevier. (d,e) Glucose

biosensing telemetry system. Reprinted with permission from ref. [156]. Copyright 2020 ACS.

Reprinted with permission from ref. [157]. Copyright 2016 Elsevier. (f) Hybrid flexible bioelectronic

platform for sodium monitoring. Reprinted with permission from ref. [160]. Copyright 2018 National
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permission from ref. [161]. Copyright 2012 Springer Nature Limited.



Biosensors 2021, 11, 396 20 of 27

5. Conclusions and Future Perspectives

This review provides a comprehensive overview of the most advanced biosensing
strategies that have been developed to perform early-stage diagnosis of oral cancer. Risk
factors, most common origin sites and diagnostic procedures related to oral cancer have
been presented in order to contextualize the urgent need for more sophisticated diagnostic
tools. The importance of saliva as a readily available and continuously renovated biofluid
has been stressed in order to stimulate further research on salivary biomarkers, whose
timely detection could improve patients’ quality of life and their survival rate [16,17,21].
In the present narrative review, we aimed to include all possible molecules and nano
biochemical substances, or materials present in saliva and potentially suitable as biomarkers
of local/systemic diseases or conditions. However, the origin of these molecules has to be
verified before they could be classified as candidate biomarkers. As an example, a recent
study has excluded isoprene as a potential metabolic cancer biomarker, thus preventing its
applicability to clinical practice [162]. Moreover, many of the studies listed here have been
based on a technological developmental approach, involving few subjects and thousands of
different variables. In order to translate this basic information into biomarkers for disease
prevention and clinical use, new transitional and translational studies are needed as the
first step of marker development research. Only through specific studies on technical and
biological variability of salivary biomarkers will we be able to control potential systemic
and random errors to implement their assessment in clinical research. Well-designed
clinical trials on diagnostic, predictive and prognostic performance of saliva biomarkers
will complete the path to their application in clinical practice. At time of writing, however,
there is no salivary biomarker that can be applied in routine clinical practice. The absence
of disease-specific markers that can guarantee values of absolute sensitivity and specificity
currently confines the applicability of advanced biosensors targeting biofluids to research
settings. The biomarkers that have been reported in the review are thus to be considered
being proposed biomarkers that should be targeted in future studies rather than biomarkers
having reached maturity for their applicability in clinical practice. The abundance of
salivary biomarkers that have been proposed for cancer screening or early diagnosis
in the last decade demonstrates a strong interest from the medical community. It is
fundamental, however, to validate the findings obtained in pilot studies among larger
population groups in order to draw significant correlations between the results. Without
substantial validation, it is highly unlikely that clinicians would be willing to introduce
advanced biosensing tools based on salivary biomarkers in clinical practice, given the
possibility of numerous false positive and false-negative occurrences. Moreover, saliva
being a biofluid of highly dynamic composition, confounding factors should be taken
into close consideration when carrying out salivary analysis and collection/sampling
procedures should be standardized and automated as much as possible to reduce the
presence of confounders. In this regard, the use of wearable chemical biosensors could
help in tracing the concentration of specific biomarkers throughout prolonged periods
of time, while advanced statistical tools can be used within the post-processing steps to
minimize the issue. Wearable intraoral bioelectronic platforms and portable POC devices
are expected to see an increasing clinical applicability in the near future, as they offer
substantial advantages compared to traditional laboratory equipment and procedures.
Laboratory techniques require specialized equipment and trained personnel capable of
operating these complex systems. This rapidly translates to higher costs associated with
each analysis and a longer time-to-response that makes these procedures intricate and
not always efficient. Rapid advancements in the field of electronics and nanotechnologies
now enable the manufacturing of advanced biosensing systems at a fraction of the cost of
complicated laboratory equipment. Given that the concentration of salivary biomarkers
is typically lower than that in other biofluids, usually in the ppb-ppt range, extremely
sensitivity biosensors are needed to reliably detect the analyte of interest. Limit of detection
and sensitivity matches mostly overcome the limits that can be reached with traditional
techniques while providing a simpler operation that can be carried out by the user with
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minimal effort. Moreover, new materials are being researched that can guarantee “green”
alternatives to conventional materials within the fabrication process in order to realize
more sustainable diagnostic tools. Low-cost, scalable, large-scale manufacturing processes
are highly sought to translate research efforts into meaningful practical contributions.
The integration of miniaturized wireless communication units within these integrated
bioelectronic devices is also a key enabler for the future of smart interconnected systems.
In the era of personalized medicine and centralization of sensible data into clouds, it is
of utmost importance for the patient to retain property of its own data with enhanced
data acquisition and protection systems. Overall, the opportunity to share clinical data
with clinicians could enable better predictions based on innovative algorithms based on
big data. This would in turn enable a better diagnosis, prognosis, and treatment. We
expect intraoral biosensors to play a pivotal role in continuous real-time data acquisition
for the detection of potentially malignant biomarkers related to oral cancer. Among the
various types of malignancies, oral cancer is best suited to be tackled with wearable
sensors placed in the oral cavity due to the direct contact of saliva with premalignant or
malignant lesions. Therefore, the aim of this review is that of stimulating research in this
direction, while considering the requirements of a translational research that should not
only offer interesting new research avenues to pursue inside a laboratory, but also find a
sustainable and effective way of developing devices that can have a wide applicability in
clinical settings.
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