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We give from first principles the nonrelativistic limit of scalar and Dirac fields in curved spacetime. We
aim to find general relativistic corrections to the quantum theory of particles affected by Newtonian
gravity, a regime nowadays experimentally accessible. We believe that the ever-improving measurement
accuracy and the theoretical interest in finding general relativistic effects in quantum systems require the
introduction of corrections to the Schrodinger-Newtonian theory. We rigorously determine these
corrections by the nonrelativistic limit of fully relativistic quantum theories in curved spacetime. For
curved static spacetimes, we show how a noninertial observer (equivalently, an observer in the presence of
a gravitational field) can distinguish a scalar field from a Dirac field by particle-gravity interaction. We
study the Rindler spacetime and discuss the difference between the resulting nonrelativistic Hamiltonians.
We find that for sufficiently large acceleration, the gravity-spin coupling dominates over the corrections
for scalar fields, promoting Dirac particles as the best candidates for observing non-Newtonian gravity in

quantum particle phenomenology.
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I. INTRODUCTION

The study of gravitational effects in quantum mechanics
is driven by the search for a bridge between general
relativity and the quantum theory. In the last twenty years,
a remarkable series of experiments reported evidence of
gravitational effects on the discrete spectrum of neutron
bouncing [1-7]. These experiments confirmed the predic-
tion of neutron wave functions having the form of Airy
functions in the presence of a homogeneous gravity field.

The reported observations can be explained by the
nonrelativistic quantum theory (NRQT) with an external
gravitational Newtonian potential. This theoretical approach
is the first step to analyze phenomena in the regime of
nonrelativistic quantum theory in curved spacetime
(NRQTCS), ignoring the backreaction of quantum particles
on the gravitational field and any eventual quantum nature
of gravity. In Fig. 1, we represent the approach by two
vertexes (NRQT and NRQTCS).

Despite being the most direct attack on the problem, the
former approach can be inconsistent or too simplified.
Indeed, the NRQT description of quantum particles
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approximates the fully-relativistic QFT into a noncovar-
iant theory. Therefore, in NRQT, we ignore the relativistic
nature of fields. As a result, we may miss some inter-
actions between matter and gravity arising from covari-
ance, e.g., spin-gravity couplings for Dirac fields. A
nonrelativistic theory cannot furnish general relativistic
(GR) corrections. On the other hand, the experimental
precision may eventually increase to the point that these
GR corrections become detectable.

By looking at Fig. 1, we identify these steps with the path
QFT — NRQT — NRQTCS. The fully-relativistic QFT is
approximated by NRQT in the nonrelativistic limit, and then,
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FIG. 1. The links between quantum field theory (QFT), NRQT,
quantum field theory in a curved spacetime (QFTCS), and its
NRQTCS. The path NRQT — NRQTCS is not rigorous as it
ignores the relativistic nature of the fields.
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by considering gravitational effects, one studies the
NRQTCS regime. The nonrelativistic limit (QFT —
NRQT) cancels out information “before” the gravitational
effects are introduced (NRQT — NRQTCS).

Another way to address the problem exists. Instead of
introducing the gravitational effects “after” the nonrelativ-
istic limit, we may consider them before such a limit. In this
way, we are able to take track of the GR corrections on the
gravity-matter interaction avoiding the inconsistencies. The
procedure relies on the QFTCS, which is the description of
fully-relativistic quantum fields affected by a gravitational
field. QFTCS also ignores the backreaction of the field on
the metric (i.e., the gravity is not quantum), but it is the
simplest attempt to a quantum theory that takes into account
a nonflat metric. We identify the new approach in Fig. 1
through the path QFT — QFTCS — NRQTCS and corre-
spond to the nonrelativistic limit of a fully-relativistic
quantum field theory in a curved spacetime.

The most known predictions of QFTCS are the
Hawking [8] and Unruh effect [9], which have never
been directly observed due to their inaccessible energy
scales. Conversely, the neutron-bouncing experiments [1-7]
prove that the NRQTCS regime is nowadays experimentally
accessible. This circumstance motivates the study of the
nonrelativistic limit of QFTCS. For instance, in a recent
work [10], the problem of quantum bouncing particles in a
gravitational field is discussed in the context of QFTCS. By
solving the Dirac equation in Rindler spacetime with
bouncing boundary conditions, the authors found GR
corrections to the energy spectrum of the neutrons in a
gravitational field. Others considered related scenarios:
authors in [11-13] found the perturbations of the energy
levels of an atom placed in curved spacetime; in [14], a
generalized Schwarzschild metric is used to investigate GR
corrections with gravitational spin-orbit coupling. These
results were derived from solving the Dirac equation in
Rindler spacetime in a nonrelativistic limit and, hence, by
following the path QFTCS — NRQTCS.

Here, we report on a general procedure to perform the
nonrelativistic limit for bosonic and fermionic fields in a
static spacetime. We consider complex scalar and Dirac
fields and provide the nonrelativistic description of quantum
particles in terms of wave functions, scalar product, and
Hamiltonian. As detailed in the next section, the non-
relativistic limit of QFT in Minkowski spacetime is well
established. Despite early investigation [11-14], the case of
curved spacetime has not been extensively considered.

It is known that, in the Minkowski spacetime, the time
evolution of free nonrelativistic single particles can be
approximately described by the free Hamiltonian, which
has the same form for both scalar and Dirac fields. Indeed,
the Klein-Gordon and the Dirac equation asymptotically
lead to the same nonrelativistic Schrodinger equation. For a
Dirac field, the spinorial components—obeying the same
Schrodinger equation—are decoupled and can be treated as

spectral degeneracy. Therefore, without a spin-dependent
interaction or enough experimental precision, a Minkowski
observer cannot distinguish the time evolution of a non-
relativistic scalar particle from a Dirac particle. This also
happens if one introduces a first-order correction due to a
weak gravitational field. In the case of a Rindler spacetime
with a nearly flat metric and for nonrelativistic particles, the
first correction introduced in the Schrodinger equation
corresponds to the Newtonian gravitational potential, with
no difference between scalar and Dirac fields.

By considering GR corrections, the difference between
scalar and Dirac fields appears. In this manuscript, we show
that metrics not approximated by the flat spacetime lead to
a nonvanishing difference between the Schrodinger equa-
tions arising from the Klein-Gordon and Dirac equation in
curved spacetime. A spin-metric coupling occurs, and the
observer can distinguish between a scalar and a Dirac
particle. We also show that for approximately flat metrics,
such coupling can be observed at different orders. For
sufficiently large curvature, the precision required to
distinguish between scalar and Dirac fields is lower than
the one needed in flat spacetime.

The paper is organized as follows. In Sec. II we give a
review for the nonrelativistic limit of scalar (Sec. I A) and
Dirac (Sec. II B) fields in the Minkowski spacetime. We also
show how nonrelativistic particles are approximately solu-
tions to the same Schrodinger equation. Section 11 is devoted
to the curved case. We derive the nonrelativistic limit of fields
in a static spacetime, and we show how the approximated
Schrodinger equations differ in the two cases. Finally, we
detail these results for the case of Rindler metric in Sec. I'V.
Conclusions are drawn in Sec. V. Detailed calculations and
proofs are provided in the Appendices A, B, and C.

II. MINKOWSKI SPACETIME

The nonrelativistic limit of QFT in flat spacetimes is well
understood and discussed in the literature. In different
textbooks one can find the usual procedure to recover the
NRQT as the limiting case of QFT [15-19].

In these works, one can see how the fully-relativistic
Klein-Gordon equation can be approximated by the familiar
Schrodinger equation with vanishing potential. However,
solutions of the Klein-Gordon equation cannot be identified
with time-evolved wave functions. This occurs because the
equation is second order in the time derivative and, hence,
does not provide conservation of probability [15]. Such an
issue is part of a more general problem: one cannot define
relativistic wave functions in the position representation
[19]. Specifically, no wave function is Lorentz invariant and
obeys quantum mechanics at the same time.

The issue is solved if one considers nonrelativistic
particle and antiparticle field operators instead of wave
functions as the nonrelativistic limit of QFT fields. In the
Heisenberg picture of NRQT, the creation operators
of particles with defined position are solutions of the
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single-particle Schrodinger equation. However, such oper-
ators cannot be directly seen as the nonrelativistic limit of
QFT fields: the sole particle field—without the antipar-
ticle component—Ieads to operators that do not commute
when spacelike separated. This brings causality issues that
can only be solved by introducing the notion of anti-
particles. By combining particle and antiparticle field
operators, one finally recovers the nonrelativistic limit
of QFT fields. [15,18,19]

The result is that only in the context of second quan-
tization one is able to connect QFT with NRQT. In such
context, single-particle wave functions are defined through
the use of field operators (} in the following way:

1 (1.3) < (0l (r. 3)[p). (1)

where |¢) is the quantum state and |0) the vacuum. Such
definition works for both NRQT and QFT. The probability
amplitudes in QFT, instead, are defined through the use of
the Klein-Gordon inner product. In the nonrelativistic limit,
¢ (1,X) is a solution of the Schrodinger equation, and the
Klein-Gordon inner product can be replaced by the usual
product between wave functions in NRQT. [17-19]

In this section, we provide a detailed review of such an
approach: we show how to recover the nonrelativistic
Schrédinger equation and wave functions from relativistic
quantum fields. In addition to spinless scalar fields ¢, we
also consider Dirac fields i, which are already discussed
in literature—see for instance [15]. We, furthermore,
consider the case of interacting relativistic fields leading
to Schrodinger equations with nonvanishing potential that
may not conserve the number of particles. To this end, we
use the definition of wave functions for states with
indefinite number of particles.

We also revise the nonrelativistic limit of flat QFT by
considering generic solutions of the Klein-Gordon
equation—i.e., modes with not defined momenta. In this
way, we address a problem that arises when one switches
from the flat to the curved case. In [19], the author points
out that the difficulty around the definition of a wave
function in first quantization comes from the problematic
definition of localized particle position states. Conversely,
states with defined momentum are well defined in both
NRQT and QFT and have been used to connect the two
theories. This fact does not occur in curved spacetimes,
where particles are defined as solutions of the curved
Klein-Gordon equation—see, for instance, [20]—and,
hence, they have not defined momentum. Therefore,
one may be interested in recovering the nonrelativistic
limit of QFT by avoiding modes with defined momentum.
In this section, we perform such a limit with generic
modes in flat spacetimes to connect with the curved case,
where such an approach is necessary. The nonflat scenario
will then be discussed in the next section.

In this section, we work in a Minkowski spacetime,
defined by coordinates (z,x) and flat metric

N = diag(—=c® 1.1, 1), (2)

where c is the speed of light. We consider a complex scalar
¢(1,%) and Dirac y(r,X) field. We review the known
description of fields in terms of particles [20], and we
detail the nonrelativistic limit identified by states with
kinetic and potential energy that is small with respect to
their mass energy.

We show that the representation of particles through
positive-frequency solutions of the Klein-Gordon (Dirac)
equation and the associated scalar product leads to the
familiar position representation of 0-(1/2-)spin states in
the nonrelativistic limit. We also show that the time
evolution of these states leads to the Schrodinger equation
in NRQT. In absence of spin-dependent interaction, scalar
and Dirac particles are approximately described by the same
Hamiltonian and, hence, identical in their time evolution.

A. Scalar field

In the case of a scalar field, we start reviewing free
particles—i.e., without interaction—and we use the decom-
position in positive and negative frequency modes with
fixed momenta. Positive frequency modes are a basis for
the Hilbert space of single particles, and the Klein-Gordon
product is adopted as the inner product. By considering the
nonrelativistic limit, we show that these modes lead to the
position representation of particles with fixed momenta,
and the Klein-Gordon scalar product can be approximated
by the usual L?(R3) inner product of NRQT. Moreover, we
show that the evolution of these states can be approximated
by the free Schrodinger equation. In this way, we recover
the nonrelativistic description of free particles in terms of
wave functions, scalar product, and free Hamiltonian.

Then, we derive the same description of nonrelativistic
particles starting from a general decomposition of the field
in terms of positive and negative frequency modes. These
new modes are not necessarily associated to particles with
fixed momenta, and they lead to the position representation
of states with fixed quantum numbers. Also, we estimate
the errors for the nonrelativistic approximations.

Finally, we describe the interacting case by a nonvanish-
ing external potential. We adopt the interaction picture and
define particle states as time-dependent combinations of free
particles. In the Schrodinger picture, we represent a generic
particle state as a time-dependent combination of free-
evolving modes. We show that in the nonrelativistic limit,
these wave functions are approximated solutions of a
Schrodinger equation with a potential. Also, we show that
the product of two single-particle states can be approxi-
mated by the L?(R?) product of their wave functions.

As anticipated, we start from considering a free complex
scalar field g?) solution of the Klein-Gordon equation,
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[czn,waﬂay - ("%2) T $=0, (3)

where 7 is the inverse of 7, and m the mass. Hereafter,
we adopt Einstein notation over repeated indexes. Greek
indexes p, v, p, o are for four-dimensional spacetime
coordinates (0, 1,2,3) = (z,X), while latin indexes i, j,
k for three-dimensional space coordinates (1,2,3) = X.

Equation (3) leads to the usual expression for the
scalar field,

W17 = [ @ulfEndal) +pEaDb @)L @

-

where a(k) is the annihilator operator for a free particle
mode,

- hc? ()il E
flk,t,%) = | | ———s-e iR)rtiks (5)
(27)*2w(k)

BT(I;) is the creation operator for an antiparticle with
momentum k, and (k) is the dispersion relation

w(k) = \/ (’"7‘2>2 + (ck)2. (6)

Note that a(E) and IQ(I:) generate the usual Minkowski-
Fock space through the canonical commutation relation,

)| = [a(k).b(K)] =0, (7a)

[a(k), a* (k)] = [b(k), b (k)] = &8 (k = k). (7b)

The f(k) modes are defined to be solutions of the Klein-
Gordon equation (3) and orthonormal with respect to the
Klein-Gordon scalar product,

(6. F)x6 = gz [ @210 (500 0.9
(1 5) (1.9, ®)

which is defined for any 7 and for any ¢, ¢’ solutions of
Eq. (3). Equation (8) is time independent for such solutions,
as it can be directly proven by using Eq. (3) and the
integration by parts:

i

d
ko =5 | PR ~ §5F)

fI.C‘2 R
- W - d3x(¢*5’]6,a]¢/ - ¢'5”0,01¢*)

-
— s [ =) @) + )0,
-0, o

where 6% = '/ is the Kronecker delta. The orthonormality
of (k) modes with respect to (¢, ¢')xg reads

(F(R). f(K))kg = & (k=K. (10a)
(f (k). f(K))gg = =8 (k= k), (10b)
(). f*(K))gg = 0. (10c)

which can be proven from Egs. (5) and (8).

In the interaction-free theory, the Hilbert space of single
particles is the vector space generated by the f(k) modes
and supplemented by the Klein-Gordon scalar product (8).

The f*(k) modes have to be excluded since they are
associated to negative probabilities [Eq. (10)]. The space
of single antiparticle states is analogously defined from the
field &)T. Once the single particle and antiparticle space is
defined, one can derive their Fock space, which is regarded
as the space of the field states. Hereafter, we only focus on
particles. _

Each f(k) mode is associated to a single-particle state

F(K) > |K) = &' (K)|Oy)—with |Oy;) as the vacuum state—
while the function f(k, ¢, X), with varying ¢ and X, provides

a representation for |I€(t)> evolved with respect to the
free theory

ihaol(1)) = w(O)[K(0). (11)

We will show that in the nonrelativistic limit such repre-
sentation can be approximated by the familiar position
representation in NRQT.

The |k) states are a basis for the single-particle space.
This means that a generic particles state |¢) can be
expanded in the following way:

=3 [ ekdkk). (2
n—0 < R

where
k, = (ky.....k,) (13)

is a 3n vector collecting n momenta, |k,) the n-particles

state with momenta k. ..., k,, ko) = |0y) the vacuum
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state, ¢,(k,) the n-particles wave function of |¢) in the
momentum representation, and ¢, the coefficient associ-
ated to the vacuum state. Note that g])n(k,,) is defined to
be symmetric with respect to the momenta variables.
The representative of the time-evolved state |¢(¢)) in the
Schrodinger picture reads

2 n/2 - n - N
natex) = (5)" [ ko) LG

: (14)

where
X, = (X1, ..., X,). (15)

When n = 0, we assume ¢y = ¢b. It is possible to notice
that in the single-particle case n = 1, Eq. (14) is equivalent
to Eq. (1). In this way we connect to the literature.

The Klein-Gordon scalar product (8) represents the
Hilbert product between two single-particle states in terms
of their wave functions,

W) =2 (1. (16)

This product is time independent if evaluated on
wave functions of the form of Eq. (12) and, hence,
leading to constant probabilities, as expected by the
quantum theory. Equation (16) can be proven by using
Egs. (10), (12), (14), and the orthonormality of momen-

tum states <I§|l?> =06(k—=K)._

The time evolution of the |k) states is described by the
e~ phase of the time evolved f(ié, t,X) modes [Eq. (11)].
In other words, the |I;> states are eigenstates of an

Hamiltonian fgg with w(ié) as eigenvalue. If we try to
represent such Hamiltonian in the representation space of

-

f(k) modes, we must rely on some kind of square root of
HKG = —(flc)zb"/@,aj + (mC2)2 (17)
since each f(k) mode is solution of

Hyef (k) = [ho(k)2f (k). (18)

What we mean by square root of Hyg is the fact that Hyg
and the representative of fzKG share the same eigenvectors
in the f (12) modes space, but with different eigenvalues: if
ha is the eigenvalue of |k) with respect to g, then (7iw)?
is the eigenvalue of f (l_c’) with respect to Hgg. We define, in

any case, the representative of fzKG as hgg, and we write the
following improper expression:

hxc = v/ Hxa- (19)

Note that hgg is not in a standard form, as it cannot be
written in terms of spatial derivatives and space-dependent
functions. However, in the nonrelativistic limit, we show that
hkg 1s approximated by the usual free-particle Hamiltonian
that includes a mass and kinetic energy term,

n o
HM = mC2 — E(S’J@,()J (20)

This can be done by showing that the free modes f (I_é) are
approximately solutions of the Schrodinger equation with
Hy; as Hamiltonian

ihdof (k) ~ Hy f (k). (21)

To do so, we remark that the nonrelativistic limit is
achieved by particle states with energies very close to the
mass energy

hw
——1
mc?

< L. (22)

We say that |¢) is nonrelativistic if ¢, (k,) is nonvanishing

only for momenta k such that Eq. (22) holds.
For nonrelativistic momenta k, the frequency dispersion
relation of Eq. (6) can be approximated by

- mcr  hk?

k) —+— 23
and, hence, f (75 t,X) reads
> h mct  hk*t -
FR 1,7 v ex (—i —i—+ik-)?>.
( ) (27)32m P h 2m
(24)

This means that f (l?) is approximately the solution to
Eq. (21). Moreover, it is possible to notice that in Eq. (24)

the mode (v2m/h)f(k,t,%) is put in the form of the

familiar wave function of a momentum state |ié> in the
position representation. R

The fact that nonrelativistic modes f (k) are solutions of
Eq. (21) means also that any time-dependent wave function
in the Schrodinger picture [Eq. (14)] is a solution of the
Schrodinger equation for Fock states,

n 2
ihdyp, ~ > <mc2 - ;—m V)%,) b (25)

=1

where
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s 0 0
v’? = oxi ox/ (26)
In this way, we describe the time evolution of any non-
relativistic state in the familiar Schrodinger picture
of NRQT.
It can be noticed that Hy; is Hermitian with respect to
both the Klein-Gordon scalar product (8) and the L?(R?)
inner product, defined as

@B = [ o eDHR. @D
Indeed, by integrating by parts, one can prove that

(Huo, ¢')xc = (¢ Hud')xe- (28a)

(Hwe, ¢/)L2(R3) = (¢’HM¢/)L2([R3)' (28b)

It is straightforward to prove from Eq. (24) that for
nonrelativistic modes, the Klein-Gordon scalar product (8)
can be approximated by the L?(R?) inner product, with the
exception of a 2m/h?* factor,

(f (k). f(K))ka ~ (f (&) f(R ) o). (29)
By using Eqgs. (14) and (16), we can derive the same
approximation for nonrelativistic single particle states,

(@lg) ~ (d1.9)) 23 (30)
This approximation can be also generalized for the case of
an indefinite number of particles,

[Se]

¢|¢/ ¢n7 ¢n L2 (R (31)
=0

n

where
Gntdize = [ @xdiltx)dien). (20

(0. #0) 2w (32b)

) = o0

While in the fully relativistic theory, single particles can
be described by the inner product (16) and the Hamiltonian
hxg nonrelativistic single particles can be approximately
described by the L?(R?) inner product and the Hamiltonian
H,,. This difference is shown schematically by Table I. The
Schrodinger equation (25) and the inner product (31) are
the familiar ingredients for the description of free Fock
states in the position representation. In this way, we have
been able to describe free scalar particles in NRQT, through
the usual prescription.

TABLE 1. Inner product (first line) and Hamiltonian (second
line) for free scalar single particles. The left column is for the
fully relativistic theory (QFT), while the right one is for the
nonrelativistic limit (NRQT).

QFT NRQT
(Ple) [1*/(2m))(¢1, 9 )k (@101 2w
Hamiltonian hxag Hy

It can be noticed that, in order to obtain Eqgs. (21)
and (29), we have used the explicit form of free modes f(k)
and performed the nonrelativistic limit for such functions.
Conversely, it is possible to show that the Klein-Gordon
equation leads to a free Schrodinger equation and the
Klein-Gordon product (8) to an L*(R?) product for modes
with positive frequencies without looking at the explicit
form of such modes. The result is the same shown by
Egs. (25) and (31). However, the method relies on a general
definition of real frequency modes.

To see this, we expand the scalar field qfﬁ in terms of
generic modes ¢(0) and k(@) with, respectively, positive
and negative frequencies,

P(t.3) = [g(0.1.%)a(0) + h(0..3)b"(9)].  (33)

0

where 6 is a collection of quantum numbers which can be
discrete, continuum, or both. Ze is, hence, a generalized
sum including, eventually, integrals for continuum varia-

bles. a(0) and b'(6) are, respectively, annihilation operators
for particle mode g(8) and creation operator for antiparticle
mode i*(0). The function g(6, ¢, X) with varying ¢ and X is,
hence, the representative of the single-particle state |@) with
quantum numbers 6.

The fact that g(@) and h(0) have positive and negative
frequencies can be expressed by the following time
dependencies:

9(0,1,%) = 5(8,X)e" O, (34a)

h(0,t,X) = h(6,%)e™ ), (34b)

where the function @(@) is many-to-one because of the
energy degeneracy. The orthonormality with respect to the
Klein-Gordon scalar product (8), instead, reads

(9(6). 9(0'))xG = Seer- (35a)
(1(0), h(0'))x = —Bp'» (35b)
(9(6), h(6"))kG = 0 (35¢)
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where, in this case, the deltas are generalized, as they act as
Kronecker deltas for discrete indexes and as Dirac deltas
for continuum variables.

The decomposition of the field in real frequencies
[Eq. (34)] is guaranteed by the Klein-Gordon equation (3).
Indeed, by imposing the ansatz (34a), Eq. (3) for ¢(@)
becomes a Schrodinger equation with eigenvalues propor-
tional to w?,

Hyg(0) = [hw(0)]%9(0). (36)

Hyg is positive with respect to the Klein-Gordon scalar
product (8) for any positive-frequency solution of the
Klein-Gordon equation. Indeed, by defining

hy = mc?, h; = hco;, (37)
one can prove, through integration by parts, that

(#. Hyad' ke = 8" (higp. i )k + (hotp. hod)ka-  (38)

In this way one can see that if ¢ is a combination of g(6)
modes, then

(¢, Hxc®)ks > O, (39)

and hence, Hxg has positive eigenvalues in the space of
g(@) modes. This is compatible with the fact that the w
appearing in Eq. (36) is real. The same proof holds for
h*(0) modes, by considering the field ¢

As in Egs. (12) and (14), we may define wave functions
for any state |¢p) by decomposing it in terms of |@) states,

[Se]

|¢> - Z Z %n (On)|0n>’ (40)
0,

n=0
where we have defined the vector
0,=(0,,....0,). (41)

Note that ¢,(6,) is symmetric with respect to 6, ...,0,.
The state |¢) in the Schrodinger picture is represented by

hax) = (25) " SSmo0 [Tatone5). @)

0,

We prove that in the nonrelativistic limit (22), ¢, is
approximately the solution of the free Schrodinger equa-
tion (25) by showing that (@) is approximately the solution
of the free single-particle Schrodinger equation (21),

ihdyg(0) ~ Hyg(6). (43)

Thanks to Egs. (42) and (43), one can check that Eq. (25)
holds also for wave functions defined by Eq. (42).

The proof of Eq. (43) follows from the fact that (@) is
the solution of Eq. (3) and in the nonrelativistic limit (22),
the second-order time derivative of Eq. (3) acting on g(0) is
approximately replaced by a first-order time derivative.
Indeed, by using Eq. (34a), we obtain the following chain
of identities:

—039(0) = @*(0)9(0)
(e[ e

5Vl oo

mer [ me?  mc? 5
with
n
e=—0 1. (45)
mc

Hereafter, we do not specify the argument of e since for
different nonrelativistic frequencies w, @', we have that
e(w) ~ e(@"). Finally, by using Eq. (44) in the Klein-Gordon
equation (3), we obtain

ihdeg(0) = [Hy + mc*O(e?)]g(0), (46)

which leads to the Schrodinger equation (43).

From Eq. (46) one can also derive the error associated to
the approximation (43). The difference between the non-
relativistic Hamiltonian Hy; and the exact fully-relativistic
Hamiltonian /gg acting on nonrelativistic states is of order

Hy — hgg ~ €mc?. (47)

The equivalent of Eq. (29) for g(6) modes reads

(9(0), 9(0"))ke ~ Zh—n; (9(0),9(0)) g, (48)

which can be obtained by using Eq. (34a) and the
approximation (22). The error associated to the approxi-
mation of the scalar products (48) comes directly from
having replaced the time derivative of the modes with
mc? /h times such modes. The relative error is, hence, of
the order of ¢,

(9(0). 9(9'))xc
2(90).9(0) 2w

—l~e (49)

Equations (43) and (48) result again in the familiar
description of free single-particle states in the position
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representation as before. In this case, however, ¢(0)
represents a generic basis |@) for the single-particles space.
The description of nonrelativistic Fock states is given again
by Egs. (25) and (31), with the definition of wave functions
in a generic basis provided by Eq. (42).

Finally, we want to provide an analysis for an interacting
scalar field. We work in the interaction picture. Therefore,
the field (1, %) is free—i.e., the solution of the Klein-
Gordon equation (3)—while any quantum state |¢(t)) is
time evolved through an interacting potential V (),

ihdo| (1)) = V(1)|(1)). (50)

In the interaction picture, the field g?ﬁ can still be expanded
in terms of g(@) and h(0) modes as in Eq. (33), and the
Hilbert state can still be defined as the Fock space generated
by the orthonormal free single-particle states |6).

We show that, in the nonrelativistic limit, states, scalar
product, and Hamiltonian can be represented identically to
the free case, with the only modifications coming from an
extra term in the Hamiltonian. To see this, we use the
modes g(0) as representatives of |0), evolved with respect
to the free theory.

A generic particles state |¢(7)) is expanded with respect
to the |@,) basis,

:iz&ﬁ"(gn’maﬁ- (51)

n=0

n

In this case, the n-particle wave function ¢, is time
dependent since the time evolution of |¢(¢)) in the
interaction picture is given by Eq. (50). This leads to a
differential equation for ¢, that reads

[so]

ZZ@W (1)10,) (O 1), (52)

/
0”’1

ihdyd, (0

The representative of the state |¢(¢)) in the Schrodinger
picture reads

haex) = (32) S @0 [a0005). (53

2
h 0, =1

where, differently from Eq. (42), ¢, is time dependent
according to Eq. (52).

For interacting particles we still define nonrelativistic
states as the ones such that ¢,(#,.7) is nonvanishing
only for nonrelativistic frequencies w(6). However, we
also require potential energies that are very small with
respect to the mass term. We, therefore, consider the
following condition,

(0.V(1)161,) ~ eme?, (54)

so that Eq. (52) is of order emc2¢,,.
Thanks to Eq. (52) it is straightforward to prove that
Eq. (25) still holds but with an additional potential term,

ihdy, (t,X,) ~ i (mc2 - ;—ZVi)qﬁ(t, X,)

=1

LY () e,

9, m=0 @,

X B0 ) ][ 960, 1.5). (55)
=1

n

Equation (55) can be identified as the NRQT Schrodinger
equation for particles with potential. It can be noticed that
the error associated to Eq. (55) is still of the order e?mc?
[Eq. (47)] since the interacting part of Eq. (55) has been
exactly derived, and the error associated to the time
evolution only comes from the free part.

It is also possible to prove that Eq. (30) holds for
nonrelativistic interacting single particles. Here, Eq. (54)
plays an important role. Indeed, it suppresses the terms
coming from the time derivative of ¢, [Eq. (52)] that appear
as extra terms in Eq. (30). Moreover, the fact that 1d,¢, is
of order emc?¢, means that the relative error associated to
the approximation (30) is still of order ¢, as for the free
case [Eq. (49)].

The need for Eq. (54) implies that in order to have the
same description of nonrelativistic particles for free and
interacting systems, we have to assume that the energy
potential is small if compared to the mass term. The fact
that the energy of the particles is close to their mass energy
[Eq. (22)] and that the potential energy is very small with
respect to the mass [Eq. (54)] means that also the kinetic
energy of the particles is small. In this way we recover
the definition of nonrelativistic particles in terms of their
velocity.

B. Dirac field

In the previous section, we have been able to derive the
familiar position representation of states, scalar product,
and Hamiltonian in the nonrelativistic limit, starting from
the fully relativistic description of scalar particles in QFT.
A very similar result holds for Dirac fields .

Here, we show that nonrelativistic Dirac particles can
be described by wave functions, scalar product, and
Hamiltonian as prescribed by the NRQT. Specifically, the
representation space of single particles is C> ® L*(R?), and
the time evolution is given by a Schrodinger equation
similar to Eq. (55). The difference with the scalar theory
relies on the two spin degrees of freedom and the possibility
to have interaction-spin coupling in the energy potential.
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This section is organized as Sec. Il A. We start from the
free theory and derive the NRQT description of non-
relativistic particles with fixed momenta. We also show
that the time evolution of these particles can be approx-
imately described by the same Schrédinger equation (25) of
the scalar case. Then, we use a general decomposition of
the field in positive and negative frequencies to derive the
same C?> ® L?(R?) representation space but with a general
basis. Finally, we detail the interacting case and show that
Eq. (55) still holds but with a potential operator that can
generally break the spin degeneracy.

Here, we use the Dirac representation for the field i and
its modes. Therefore, we identify i as a four-dimensional
vector and any operator acting on the left as a 4 x 4 matrix.

Free Dirac fields in Minkowski spacetime are solutions
of the Dirac equation, which reads

2
(icy”aﬂ - %)ﬁ/ =0, (56)

where

Q

1/ 0 A 0 o
o_1 , i—( 57
4 c<o _]1> 4 (—o" 0) 57)

are gamma matrices, with I as 2 x 2 identity matrix and

R ERAR™

as Pauli matrices. The anticommutation relation of gamma
matrices is the following:

{r'.v} =29 (59)
Moreover, y° is defined to be Hermitian, while y’ anti-
Hermitian,
)= )= (60)
The usual decomposition of ¥ in terms of modes with
defined momenta and spin reads

2

0109 =3 [ @kl (For. D2, + 0, (R, D D).

s=1

(61)

where as(/Z) and El;((lz) are, respectively, annihilation
operators for particles and creation operators for antipar-
ticles with momentum k and spin number s, and have the
following anticommutation relations:

{Es(l_é)’ es’(k )} = {as(l_é)’ ds’(l_é/)} = {es(l_é)’ as’(]?)} =0,
(62a)

{e,(R), &L (K)} = {d, (), d},(K)} = 6,48 (k= K'). (62b)
The free Dirac modes us(lz, t,X) and vs(lz, t,X) read

cPw(k) = cy'k; + mc*/h

us(lz, t,X) = L e—ia)(l;)tﬂl;)'c'ux’
Jerr 20w + ne/n
(63a)
00(k i 2 L
7)‘9(]_(’, ', )_C,) _ —cy a)(k) "i_ cy ]il + mc /h eiw(k)t_ik'}bs,
Ve 200 (F) + me/n)
(63b)
with
1 0 0 0
0 1 b 0 . 0
u = . uy= , — , —
1 O 2 0 1 1 bl 0
0 0 0 1
(64)

Note that u‘(lz) and vx(lz) modes are orthonormal with
respect to the C* ® L?(R?) scalar product,

W) o) = [ P IV, (69

which is defined for any ¢ and any w, y’ solutions of
Eq. (56). Indeed, it is possible to prove that

(s (k). g (K ) sy = 8,08 (k= K'),  (66a)
(03(K). 09 (K)) crgrzme) = Boy 8> (k= K').  (66b)
(”s(k)v Us’(k/)>C4®L2(R3) =0. <66C)

Moreover, one can prove that Eq. (65) is time independent
for any y, y' solutions of Eq. (56) thanks to Egs. (59), (60),
and an integration by parts,
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d d
E(U/, W)U@E(R‘) = dt/ & xyty’

,d
=2 dS wa ]/0 701///

dt

/

|
YPRIE

/.

|

It can be noticed that the Dirac equation (56) is already
put in a Schrodinger equation form. Indeed, by acting on
Eq. (56) with a 7icy® matrix and using Eq. (59), one obtains

ihdgp = i, (68)
with Hamiltonian
hy = —ihc?y%yi0; + mc3y°. (69)
|
(v v') cserm) = A (-
= / 43 x[—
R}
[

/
|

z

Z

= (. hmy')crgre ()

The quantum states |s, 1?) = 6;(£)|OM> generate the
Hilbert space of single particles, and they are orthonormal.
This means that any state |w) can be decomposed in the
Fock basis [s,, k,,),

d3nknl//n sﬂ9k}l)| n’k}’l>’ (72)

with

1 d3x{(%w)*7°r°w’ +y 0

70 —i—

dxy 't (—ihc?

Yoaoll/}

Bx[(Y°00w) 7w + 'y opy]

mc i . . _mc
Y >t//] Yoy +y 0 (—7’6,- - 17) l//}

Ex[(0y ")y w — 'y 0]

Ex[(0y ")y + vy o]

(67)

It can also be noticed that &y, is Hermitian with respect to
the C* ® L?(R?) scalar product,

(hmw, W/)C4®L2(R3) = (w. hMl///)C4®L2(R3)' (70)

This can be proven by using Egs. (59), (60), and an
integration by parts,

/

ihc*y%y'0; + me?yO)y |y

ihe (0" )y'y" + mcy Ty ly!

x[inc (0 ")y + m3w Ty ly!

1’7 0; + mc YOy’
(71)

- -

(snvkn) = ((Shkl)""’(snvkn))’ (73)

and with ¥, (s,, k,) antisymmetric with respect to spin-
momenta variables. Equation (72) is the equivalent of
Eq. (12) for Dirac particles and provides the definition
of ,(s,.k,) as the wave function for |w) in the spin-
momentum representation.

Equivalently to Eq. (14), the representative of the time-
evolved state |y(7)) in the Schrodinger picture reads
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i) =3 [ @i, [ [l B, (04)
S, - =1

where we have introduced the four-dimensional spinorial
degrees of freedom through the « indexes,

a, =a...q,. (75)

Single-particle wave functions, instead, can be written in
the spinorial notation without indexes,

2
(=3 A i (s By (E 3. (76)
s=1 :

y; is the solution of Eq. (68) and, hence, its time
evolution is provided by &y Moreover, the Hilbert product
of any couple of single-particle states |y), [y’) can be
written in terms of the C* ® L?(R?) product of their wave
functions,

(wly') = (w1, WII)C4®L2(R3)' (77)

This means that the single-particle content of the Dirac field
can be fully described by spin-momentum wave functions
(76), C* ® L*(R?) product, and Hamiltonian /. This is
summarized by Table II in its left column.

We may think that C* ® L?(R?) is the representation
space of the single-particle states. However, the ortho-

-

normal functions u,(k) do not provide a complete basis
for C* @ L?(R?), as it is possible to see from Eq. (66).
The real representation space is actually a subspace of
C* ® L*(R?), namely the positive-frequency subspace
of C* ® L*(R?).

A generalization for an indefinite number of particles can
be given by the wave functions (74) and by the following
Hilbert product:

(o]

(ly') = Z(Wn’l//,rl)c4”®L2(R3"), (78)
n=0
where
TABLE II. Inner product (first line) and Hamiltonian (second

line) for free Dirac single particles. The left column is for the fully
relativistic theory (QFT), while the right one is for the non-
relativistic limit (NRQT).

QFT NRQT
(wly') (WI»WII)C4®L2(R3) (Wl,Wﬁ)q:Z@LZ(Rﬂ
Hamiltonian Iy Hy

W Vi) cngrzmm = D A d"x, [y (2. %)
ail >

X [y (1, %), (79)

(o, W6)CO®L2(R°) = Yo- (79b)

Once that fully-relativistic theory of Dirac particles has
been provided, we move on the nonrelativistic limit of the
states. By taking the limit (23), we obtain

1 exp( mc3t ,hk2t+ 7 ﬁ)u
—i —i—+ik-X)u,.
(27‘[)3 h 2m

(80)

us(l_é, 1,X) ~

-

From Egq. (80) it is immediate to see that the u (k) modes
cover the subspace of C* ® L?(R3) with vanishing third
and fourth spinorial components. More specifically, one
can prove that

vl ug (k) ~ €20l ug (k). (81)

This leads to a new representation for nonrelativistic
particle states, where the wave functions (74) and the
Hilbert product (65) can be considered with spinorial «
indexes running through only the first two components.
The representation space for nonrelativistic particles can,
hence, be identified with C? ® L*(R?)

-

Moreover, the time evolution of u,(k) reads
ihogu, (k) ~ Hyus(K), (82)

which means that the spinorial components of us(lz) are
approximately decoupled and are solutions of Eq. (21). It is
also possible to notice that Hy; is Hermitian with respect to
the scalar product (v, y')cegr2 (%)

(Huy, W/)C4®L2(R3) = (v, HM‘///)C4®L2(R3)v (83)
as it can be directly seen from the fact that

h2 2
w7 (84)

H =
M 2mc? 2

and, hence,
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(Hmy ') ctor2 v

1 , mc? ,
~ 2me? (hstlay - ¥)cigrz ) + N v )ergrewe)
1 me?

~2me? (s ) cror2 ) + = W ¥ )crorz )

c2

1 m
T a2 (v, thMl///)C4®L2(R3) + N (v, W/)C4®L2(R3)

= (v, HMV//)C4®L2(R3)' (85)

Equation (84), on the other hand, can be derived
from Eq. (59) and the symmetry of second derivatives
(alaj - 0]0,),

hy  mc? () o o mc*
A b J0.0: + —— 40,0
2mc? 2 2m 7YYr00; 2 vy
hc3 . . mc?
—i—= (" +rrr°)0; + —-
2 2
hc)? o
= (2—)y0y0y’y/0i0j + mc?
m

2
= —%n”d,()j + mC2

= Hy,. (86)

The result is that, in the nonrelativistic limit, single
particles are described as elements of C> ® L*(R?), where

u?(k, t,X) is the wave function of a particle with momen-

tum k and spin number s and with spinorial index «
running through the first two values. The states are also
approximately evolved with respect to the Hamiltonian
Hy;. This description is listed in Table II in the right
column and can be compared with the relativistic case,
which is in the left column.

We have been able to derive the familiar description of
Dirac particles in NRQT. General Fock states can be
obtained from the singe-particle representation space C?> ®
L?*(R?) and from the following Schrédinger equation:

We want to provide the same description of nonrelativ-
istic particles but starting from generic real-frequency Dirac
modes. For this reason, we use the general expression for yr
similar to Eq. (33),

P(1.%) = [u(0.1.3)e(0) + v(0.1.%)d" (0)].  (88)
0

with the difference that, here, the spin degrees of freedom
introduces a further energy degeneracy and that the modes

u(@) and v(6) have spinorial components. The time
dependency of u(0) and »(0) reads identically to Eq. (34),

u(6,t,%) = (8, x)e" 0, (89a)

(0,1, %) = 9(6, %) e, (89b)
Equation (89) is guaranteed by the already-proven
Hermiticity of Ay;. Note that u(0) and v(0) are also defined
to be orthonormal with respect to the C*® L*(R?)
product,

(u(0), u(0))croL2r?) = S0 (90a)
(v(0), v(0')) cr@r2(m3) = 0 (90b)
(u(0). v(0)) g2 ) = O. (90¢)

Any Fock state |y) is expanded with respect to the
single-particle basis |0) = ¢7(6)|0y) as in Eq. (40),

W) =33 7,6,)06,). o1)

The representative of state [y(¢)) in the Schrédinger picture
reads similarly to Eq. (74),

n

v (tx,) = > i (0,) [Jus0n.0.5).  (92)
0”

=1

It is straightforward to prove Eq. (77) for single particles
with the new definition of y(z,X) given by Eq. (92).

The result is the description of single particles through
the C* ® L?(R?) Hilbert space. The new basis is identified
by particles with quantum numbers 8. Thanks to Eq. (90)
we notice again that the representation space is actually a
subspace of C* ® L?(R?).

For nonrelativistic particles, we can identify such sub-
space as the one in which the third and fourth spinorial
components are always vanishing. Indeed, it is possible to
prove the equivalent of Eq. (81) for the u(6) modes,

iu(0) ~ e'?ulu(9). (93)

The proof of Eq. (93) follows from the fact that u(0) is the
solution of the Dirac equation (56),

2

c’w(0) + icy'o; — % u(@) =0, (94)

and the combination of modes with nonrelativistic
momenta,
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hou(0) ~ €' >mcu(9). (95)
By acting with uI on the left of Eq. (94), one obtains

mc2 t

2
Teusu(e) +ic SZ:I uly'ogv),0u(f) =0, (96)
which together with Eq. (95) leads to Eq. (93).

One can prove Eq. (82) for the mode u(6) in the
following way. It is known that the components of any
solution of the Dirac equation are also solutions of the
Klein-Gordon equation (3) with the same mass. This fact
can be proven by multiplying Eq. (56) with icy*d, +
mc?/h on the left and exploiting the anticommutation
relation (59). This means that the u(@) modes are also
solutions of the Klein-Gordon equation,

[cwvaﬂap - <mhc2> 2] u(0) = 0. (97)

We can, at this point, use the same arguments of Sec. IT A
that have led to Eq. (43) in order to prove that

ihdyu(0) ~ Hyu(0). (98)

The error associated to the approximation (98) can be
identified with the equivalent of Eq. (47) for Dirac fields

Hy — hy ~ €2mc?, (99)

which, in turn, can be obtained from Eq. (46) for u(@)
modes. From Egs. (47) and (99) one can derive the error
made by considering scalar and Dirac states identical in
their time evolution [Egs. (43) and (98)],

hKG - hM ~ €2m02.

(100)
Equation (100) implies that corrective terms of Egs. (43)
and (98) that spoil the difference between scalar and Dirac
fields in the Minkowski spacetime can be found at order €.

A second error associated to the nonrelativistic limit
comes from considering the third and the fourth spinorial
component of u(#) vanishing quantities. Such approxima-
tion allowed us to replace the exact C* @ L?(R?) scalar
product with the C*> ® L?(R?) scalar product. The relative
error can be obtained from Eq. (93) and is of order ¢, as in
the scalar case [Eq. (49)].

Finally, we consider an interacting Dirac field, and by
following the same steps of Sec. I A we see that interacting
particles can be still described in the representation space of
free particles. The difference between the interacting and
the free theory is only given by the presence of a potential
energy in the approximated Schrodinger equation. Such a

term can introduce spin interactions that cannot appear in
the scalar theory.

The representative of any state |y(¢)) in the Schrodinger
picture reads

wzn(tvxn) :len(anvt)nual(glvt’}l)’ (101)
9, =1

where, differently from Eq. (92), ¥, (0,,t) is time depen-
dent. The time evolution of Eq. (101) in the nonrelativistic
limit reads

(102)

where, in this case, (8,|V(7)|@,,) are the matrix elements of
a potential V(r) that comes from a Dirac interacting
Lagrangian. The quantum numbers € also contain spinorial
degrees of freedom, and hence, (8, |V (7)|@,,) can break the
spin degeneracy present in the free theory. As explained in
Sec. IT A, we obtain Eq. (102) by supplementing the
definition of nonrelativistic limit of the free theory (22)
with Eq. (54).

III. NON-MINKOWSKI SPACETIME

At variance with Sec. II, here we work with coordinates
(T.X) and metric (T, X), which represent a curved
spacetime. The aim of this section is to derive a description
for nonrelativistic states of scalar ®(T, )?) and Dirac
$(T, X) fields.

We start from the description of fully-relativistic particle
states in static spacetimes [20], and then we perform the
nonrelativistic limit. We show how the representation of
nonrelativistic states changes from the Minkowski to the
non-Minkowski case. We also derive the Schrodinger
equation for particles affected by the curvature and the
consequent precision needed to distinguish between scalar
and Dirac fields.

A. Scalar field

The field considered in the present section is scalar. As in
Sec. IT A, we start by reviewing the relativistic theory of
particles for the free scalar field ®. Each positive-frequency
mode is associated to a single-particle state and the Klein-
Gordon product in curved spacetime is used as Hilbert
product for the single-particle space. Then we perform the
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nonrelativistic limit and show that such product can be
approximated by the L?(R?) inner product with a metric-
dependent measure. Moreover, we show that the quantum
states are solutions of a metric-dependent Schrodinger
equation. Finally, we extend the theory to the interacting
case by introducing a potential energy in the Schrodinger
equation.
We consider a free scalar field ® that is the solution of
the Klein-Gordon equation in curved spacetime,
' me2\ 27 . B
ot - (M) Je o, oy

where g is the determinant of g,,. We also consider the
curved Klein-Gordon scalar product,

i - -
(CD’CI)/)CKG = _% . d%X V _g(T’ X)QOM(Tv X)

x [@*(T, X)0,®' (T, X)

— (T, X)9,®* (T, X)]. (104)

Note that (®, ')k is time independent for solutions of
the curved Klein-Gordon equation (103). This can be
proven by using the integration by parts

d i
77 (@ Pexg =~ / X[(0®")/=g9"9, @' + ©*0y(v/=99"9,D") — (9 ®')/=99¥ 9, D" — @'dy(/=g9" 9, P")]

R3

_ _h; PBX {(aocb*)\/—_ggo"aﬂ” + o {‘ai(\/‘_ggi”‘)”) N V__g<%> 2} ¢
Y [—a,.(\/—_gg"”aﬂ) + /=9 <$> 2] q’*}

— (00®')\/=g¢*0, "

=z A  X[(0®7) /=999, @' + (") /99" 9, D" - (9 P')y/=99"9,®* — (0, @) /=g™, P"]

=~ | EX(0.07) 75940, -
hc R3

For this reason (@, ®')kg can be used as Hilbert product
for positive-frequency modes.

By expanding ® in terms of modes with real frequencies
with respect to the time 7, we obtain

O(T.X)=> [G(0.T.X)A(0)+H(0.T.X)B(9)]. (106)

where A(9) (B(9)) is the annihilation operator associated to
the particle (antiparticle) mode G(0) (H*(9)).

The G(@) and H(#) modes are defined to be orthonor-
mal with respect to the curved Klein-Gordon scalar
product (104),

(G(0),G(0'))ckg = eers (107a)
(H(0),H(0'))ckc = —So0r- (107b)
(G(6). H(8'))exq = 0. (107¢)

As in Eq. (34), the definition of positive and negative
frequency modes is expressed by
G(0,T,

X) = G(0,X)e 20OT (108a)

(0,@")\/=9g"0,D*]

(105)

H(0.T.X) = H(6.X)e 20T, (108b)
It is important to mention that the expansion of @ in
positive and negative frequency modes is not always
possible. For some metrics, the ansatz (108) is not
compatible with Eq. (103). The condition for the validity
of Eq. (108) is given by a static spacetime,
dg* =0, ¢"=4"=0. (109)
Indeed, Eq. (103) for G(0) becomes a Schrodinger equation
with eigenvalues proportional to Q2,
(hQ)*G(9)

= HekaG(0). (110)

with Hamiltonian

2
Hcke = oo |—F—= Nk

that is positive with respect to the curved Klein-Gordon
scalar product (104) for positive-frequency modes. The
positivity of Hcxg guarantees the existence of real Q
for Eq. (110).

9i(v/=99"9;) = (mc)? (111)
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It is possible to prove that H kg is positive thanks to the
following identity:

(@, Hexo®') ek =67 (H,®,H ;@) ok + (Ho®. Hy®') ok
(112)

with

Hy = mc*e’,

(113)

H; = nhcelye/o;,

where e,* is the vierbein field defined as

(CD’ (I)/)CKG - Tz d3 \/ OO

By integrating by parts, one obtains

eaﬂeﬁyg/w = Nap (l 14)

and with %, as inverse. Equation (112), in turn, can be
proven by using the static spacetime condition (109), which
in terms of the vierbein field reads

doea” = O, eio = €Oi =0. (115)
The product (104) in static spacetimes reads
)[@* (T, X)0p®' (T, X) — @' (T, X)0,®* (T, X)]. (116)

2

(@ Hoxo®)exo =11 | dX{@000,(=360))@) - (a0 ¥|on} 417 [ x50 a0l - @/0,)

2

— i / BX\/=gg7 [~ (0,0%) 040, + (0;D)9; aool>*]+lT / BX\/=G(D* 0@ — D' 9, D*)

:ihc/ d*X /=99 onie’ e/ [—(0,D*)0y0; D' +

mhc / BX/=Gg" e e (DD’ —

=6Y(H®,H;®')cyg + (Ho®, Hy®' ) ek

which proves Eq. (112).
Seemingly, one can prove that Hcgg is positive with
respect to the following scalar product:

.00 = =¢ [ X/ R0 (D),

(118)

which can be seen as the L?>(R?) inner product with a
metric-dependent measure. The positivity of Hckxg with
respect to such product can still be obtained from an
identity similar to Eq. (112),

(P, HCKG®/)L§(R3) = 6(H,®, qu’/)L§(R3)

This scalar product will appear in the nonrelativistic limit
and can be interpreted as the non-Minkowski version of the
usual L?(R?) inner product.

As in Sec. IT A, we interpret the Klein-Gordon equation
for positive-frequency solutions as a Schrédinger equation,

+ (0, @) 00D

D', D)

(117)

ihdyG(0) = hckaG(0), (120)
with Hamiltonian Acgg that is the square root of Hcgg. The
equivalent of Eq. (19) in curved spacetime reads

hCKG =V HCKG-

We will show that such Hamiltonian can be approximated by
a free single-particle Hamiltonian modified by the curvature.

In summary, the fully-relativistic single-particle descrip-
tion of the field is defined by the Hamiltonian Acxg and the
scalar product (©, ®)xg, as shown by the left column of
Table I11. Instead, general Fock states |®@) are represented in
the Schrodinger picture by

(121)

TABLE III. Inner product (first line) and Hamiltonian (second
line) for free scalar single particles in curved spacetime. The left
column is for the fully relativistic theory (QFTCS), while the
right one is for the nonrelativistic limit (NRQTCS).

QFTCS NRQTCS
(@|@) [hz/(Zm)](d), ;@) cka (@), @ )Lz(ﬂv)
Hamiltonian hcka Hgq
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®,(T.X,) = (2;;1)/22 HG 0.T.X)). (122)

0, =

where ®,,(6,) is defined from the decomposition of |®) in
the Fock space, similarly to Eq. (40),

D)= ">"d,0 (123)
n=0 6,
and is symmetric with respect to 04, ...,0,.

In the non-Minkowski spacetime, we still refer to the
nonrelativistic limit as

hQ
—= -1
mc

< L. (124)

We want to show that G(@) is approximately the solution to
a Schrodinger equation,

ihdyG(0) ~ HsG(0), (125)
with Hamiltonian
Hy =" = o (/agia). (126
2 2mc? /=g ’

and that the curved Klein-Gordon scalar product (®, ') kg
is approximated by (®, '),z g3,

2m
(G(0).G(O))exka ® 77 (G(0). GOz ). (127)
In this way, we show that the nonrelativistic single-particle
description of the field is defined by the Hamiltonian Hg
and the scalar product (®, @), ). The result can be seen

as the equivalent of Eqgs. (43) and (48) in curved spacetime
and is summarized by the right column of Table III.

Hg is Hermitian with respect to the curved Klein-Gordon
scalar product (116) and the product given by Eq. (118)
since it can also be written as

HCKG m02
2me> 27

s = (128)

and Hckg is Hermitian with respect to both products.
The nonrelativistic description of states with indefinite

numbers of particles is given by the wave functions ®,, of

Eq. (122), the Fock extension of the (®,d’) L3(we) Scalar

product,
(@@) ~ ) (D, D)) L) (129)
n=0

and the following Schrédinger equation,

n 2 5('
ihoy®, (T, X,) ~ Z{% {1 _ goo(2 1)}

=1 ¢

L PPon(X) g°°<Xl)v2} J(T.X,), (130)

2mc?

where, in this case,

I e

R3"

x [H V-ol®) %)

x @5 (X,) P, (X,), (131a)
(Do, cD6)L2(R°) = DDy, (131b)
and
v L 9N @2l a3
% =X X
—9(X)

A way to approximate Eq. (103) as a Schrodinger
equation is to replace the second-order time derivative of
a mode with a first-order time derivative. In the non-
relativistic limit, the second-order time derivative of
Eq. (103) acting on G(6) reads

m6'2 m02 mc

~08G(6) = =~ |2idy = —— + - 0(e?) |G(6). (133)

which is the equivalent of Eq. (44) in curved spacetime. By
using Eq. (133) in Eq. (103) for G(0), we obtain

ihdyG(0) = [Hs + mc*O(e?)]G(0), (134)

which leads to the Schrodinger equation (125). The error

associated to such approximation reads

— h’CKG ~ €2mC2. (135)

Equation (127) can be proven from Eqs. (108) and (116)

and by replacing the frequencies with mc?/#h. The relative

error associated to such approximation is of the order € as in
Eq. (49),

(G(9). G(#))cka
(G(0). G(#)) 2 w)

(136)

3 —1~e.

n

3

|

Finally, the interacting theory can be described similarly
to Sec. II A. The only modification from the free theory is
given by wave functions ®,(6,,7) that are now time
dependent and, hence, generate an extra term in the
Schrodinger equation,
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-

n 2 X
i10,®, (T, X,)) ~ {K {1 ~ ool z)}

2 c?

=1

(=)

m= 0:71

n

In order to obtain such a result, we consider the following
condition:
<on|‘7(T) |0;n> ~ emc?. (138)

Then by following the same arguments of Sec. I A, we
obtain Eq. (137).

B. Dirac field

Here, we work in the (7, X ) frame with a Dirac field P
We show how nonrelativistic single particles can be
represented by the space of positive frequency modes
and through an inner product that is metric dependent.
This result is similar to Sec. II B. However, the single-
particle representation is no more equivalent to the familiar
position representation in C> ® L?(R?).

We also show that nonrelativistic Fock states are
approximately solutions of a Schrodinger equation that
is different from the one obtained in Sec. IIT A for scalar
fields. Such difference is noticeable at any order, unless the
metric is almost flat and the limit g,, — 7, is controlled by
the nonrelativistic parameter e. In that case, the difference
between the scalar and Dirac Hamiltonians is not vanishing
only at some orders. We discuss the situation in which
these orders differ from the one seen for the Minkowski
case [Eq. (100)].

The present section is organized as the previous ones. We
start from the free theory. We provide the fully relativistic
theory of particles, and then we consider the nonrelativistic
limit. Finally, we introduce an interaction through a
potential term in the Schrodinger equation.

The free field W is the solution of the curved spacetime
Dirac equation due to Fock and Weyl—see, for instance,
[21]—which reads

(icea“y"’Dﬂ - mTcz)‘i‘ =0, (139)
with
D,=0d,+T,. T,T.X)= —%aaﬂwaﬂ,,, (140)
the spin connection,
Oopy = Ny (085" +T7,e4”), (141)

<33 S0, V1)6,)8, 0,7 [ G0 7. X)),
0,

12 g00(X;) 2m\ /2
4 g0l v?}l ®,(T,X,)+ o

2mc

n

(137)
=1
|
the Christoffel symbols,
7, = Lo 142
o — Eg/ (avgrw + a/lgb{f - ao'g;w)’ ( )
and the generators of the Clifford algebra,
1
o = 11,7 (143)

The following product [12] can be defined for any couple
of solutions of Eq. (139),

(LIJ, IPI)C4®L%)(R3) =C A} dSX\/ —g(T, )?)eao(T, )?)

x W (T, X)y'y“¥/ (T, X). (144)

Note that (¥, ¥ )c‘*@Li, (r?) can be seen as the inner product

of C* ® L*(R?) but with a metric dependent measure.
It has been proven [12] that when the metric is static,
(v,9 )C4®L%) (r?) is time independent for solutions of
Eq. (139). Therefore, we consider the case in which
condition (109) holds.

As a consequence of condition (109), Eq. (115) holds,
together with

l”,, =0, FO,-j = FiOJ- = Fijo =0. (145)
Correspondingly,

0y@ep, = 0, w;j0 = w; = wy;; =0, (146)
which leads to
o, =0, To= —41—‘0)0i000i, I = —%a)jkiajk. (147)

By taking into account Eq. (60), we also find out that Iy is
Hermitian while I'; anti-Hermitian,

=", Il=-.

1

(148)

Moreover, Eq. (144) now reads
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(‘"P LP C4®L2 R‘ = A} d3 \/ 60

x WH(T, X)¥(T, X), (149)
thanks to Egs. (59) and (115).

In a static spacetime, the Hamiltonian associated to the
curved Dirac equation (139) is Hermitian with respect to
the scalar product (¥, ¥ )C4®L2 (r?)- Such Hamiltonian is
defined from the curved Dirac equation (139) for static
spacetimes,

2

iceq®y* (9 +To) +icedy'(9; +T;) —% P =0, (150)

and reads
hNM:—lhcze 0€; /}/ J/( j+Fj)—|—mC3eOOy0—thO. (151)

Indeed, by acting with 72ce®,y° on the left of Eq. (150) and
using Eq. (59), one obtains

ihogW = hyy . (152)

The proof for the Hermiticity of hyy with respect to
(V. W) cror ) arises from the fact that (W, V') cigr2 (w3

is time independent for solutions of the curved Dirac

equation (139) and, hence, for solutions of Eq. (152),
d oy

O = lha(\P, lIl )C4®L%)([R3)
—(iho,yP, lP/)C“@Lf)(W) +

(W, ihaoqﬂ)c“@Lﬁ,(W)

(W am¥) cigrz me)-  (153)
The Hermiticity of sy guarantees the separation of the
field into positive and negative frequency modes,

W(1.X) = [UO.T.X)C(0)+V(0.T.X)D"(0)]. (154)

U0, T,.X) = e OT{(0,X), (155a)

V(0.T,X) = @079, X). (155b)
The single-particle space is generated by the U(6) modes

and is supplemented by the (¥, ¥)c1g;2 () Product. It can
be noticed that even in the nonrelativistic limit (124), such
representation is not equivalent to C> @ L*(R?), at vari-
ance with the flat case. This occurs for two reasons:
(W.¥)ciLz@e) is metric dependent, and the curved
Dirac equation (139) in the nonrelativistic limit (124) does
not lead to vanishing spinorial components for U(6)

modes. The familiar NRQT prescription of position rep-
resentation through the C?> ® L*(R3) space cannot be
restored in the curved case (g,, # 17,,)-

Single particles are also described by the Hamiltonian
hau- In this section, we want to find an approximation for
hnu in the nonrelativistic limit by following the same steps
of Sec. II B. For this reason, we are interested in a Klein-
Gordon-like equation for U(#). Such an equation exists and
reads [22]

b_ D,(/=g¢"D,) - <m7(:2>2_%2R] U(0) =0, (156)

with R as the Ricci scalar. In Appendix A, we give a
detailed proof for such identity. In the static case, Eq. (156)
reads

c? -
{02900(00 + 1) + = (0; + i) [v/=99"(9; + T';)]
me2\2 2
- (7) _ZR U() = 0.

By using the curved Dirac equation (152) for U(6) on
Eq. (157), we obtain

(157)

—h22U(0) = {i’/g_‘z)w +T9)[v/=99"(0; +T;)]

_ 90 {(mcz)2 + (he)” R}

2 4

— i2A0 g hyy + hzl“(z)}U(H). (158)

In this way, we have been able to find /iy squared. Indeed,
by using Eq. (152) for U(0) and Eq. (158), we obtain

—R2RU(0) = i U(0), (159)
and
2 1 goo ij
R == O+ T)lV=0"(2; 1)
_ % [(mcz)2 + @R} — i2A0hny + KT,
(160)

The second-order time derivative of Eq. (156) is the same
of Eq. (103). Moreover, Eq. (133) is valid also for Dirac
modes U(0) in the nonrelativistic limit. For these reasons,
Eq. (159) reads

mc?2ihdy — mc? + mc?O(e?)|U(0) = hiyU(0).  (161)

045012-18



NONRELATIVISTIC LIMIT OF SCALAR AND DIRAC FIELDS ...

PHYS. REV. D 107, 045012 (2023)

If we now define the Hamiltonian

Wy mc?
—_ 162
2mc? + 2 (162)

HD:

then Eq. (161) reads

ihdyU(0) = [Hp + mc>O(e*)|U(0). (163)
Equation (163) leads to the Schrédinger equation,
ihd U (0) ~ HpU(9), (164)
with an error given by
Hp — hyy ~ €2mc?. (165)

From Eq. (162) one can see that the Hamiltonian Hyy is
Hermitian with respect to (¥, ¥')c1g2 (m?) and can be used

for the time evolution of nonrelativistic states.

In summary, single particles are described by the inner
product (¥,¥’ )C4®L2 ). The time evolution of single
particles is given by “the Hamiltonian hnms Which, in the
nonrelativistic limit, can be replaced by Hp. These results
are shown schematically by Table IV.

By comparing Eq. (160) with Eq. (111) we can write

h%M = HCKG + 2mczAH, (166)
and hence,
HD:Hs‘l—AH, (167)
with
goo [ (\/ gl] )] i R
AH = UT(20;, + 1) ——
2mc? { N +¢'Ti(20; +T7) 4
n h2

For a nonflat metric (g,, # 7,,), the difference between
Hg and Hp is nonvanishing. At variance with the flat case,
the spinorial decoupling does not occur, and Dirac particles
evolve differently from scalar states.

TABLE IV. Inner product (first line) and Hamiltonian (second
line) for free Dirac single particles in curved spacetime. The left
column is for the fully relativistic theory (QFTCS), while the
right one is for the nonrelativistic limit (NRQTCS).

QFTCS NRQTCS
<lP|‘PI> (1}117 lP/l)C4®L§([R3) (1pl ¥ )C4®L2(|R3)
Hamiltonian ham Hp

For Minkowski spacetimes (g,, = 1,,), AH is identi-
cally vanishing, and the difference between scalar and
Dirac fields is detectable only at order €? [Eq. (100)]. We
wonder if this is also true for a quasiflat spacetime
(9w = n,). By considering the limit g, — 7, regulated
through the nonrelativistic parameter €, different scenarios
occur for different orders of magnitude of AH/(mc?) with
respect to €. For instance, if AH is of order lower than
e2mc?, then the difference between hkg and Ay, is also of
order lower than e?mc?. In that case, one can distinguish
between scalar and Dirac fields with less precision than the
one needed for the flat case [Eq. (100)].

For completeness we provide the nonrelativistic theory
for states different from the single particles. A general Fock
state |¥) is represented in the Schrodinger picture by

v (T, X,)

le )ﬁUﬂz(el,T,ig), (169)
=1

where ¥, (6,) comes from the decomposition of |¥) in the
Fock space, as in Eq. (91),

(170)

= io: Z lNPn(an) 0n>
[/

n=0

n

The inner product between two states |¥), |¥') can be
achieved through a generalization of (¥, )C4®LG (¥ for

states with indefinite number of particles,

(P9 = Z(\yn,wg)mnmmﬁ), (171)
n=0

with
(‘Pn, ‘P;)CMI@L%(RM)

1 L > -
_ 3n 0
= C_”;[w a’"X, [111 \V —9(X)) eo (Xl):|

x [ (T, X)W (T, X,,)] ™. (172a)

The Schrodinger equation for W¥,(7,X,) is equi-
valent to Eq. (130) with extra terms coming from a
nonvanishing AH,
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n? goo(
2mc

. “~ (mc? goo(X1)
ihd, W (T, X)%Z{T {1— L ]

3
=1 ¢

) }‘P;;‘"(T X,) + ZAH X))o, Wi Pt (T, X,).

(173)
=1

Finally, regarding the theory with interaction, we may use the same arguments of Sec. II B to conclude that the resulting
modification is an extra term in the Schrodinger equation (173),

, s
h”goo(X;) 2

) ~ [ mc? go0(X1)
ihdg W (T, X,l)zZ{T {1— 0002 :|+

=1

lea]“'ﬁl'“an T, Xn +Z
0, m

n

IV. RINDLER FRAME

As an example of noninertial frame (7, X), here we
consider a Rindler frame, such that
9 (T, X) = diag(—c?e>X X 1,1),  (175)
where @ = c?a is the acceleration along the X axis. Without
loss of generality we consider a > 0. We adopt the theory
of Sec. III to derive the nonrelativistic limit for particle
states in the Rindler spacetime. We discuss the cases in
which the time evolution of scalar and Dirac fields differs.

A. Scalar field

Here we work with the scalar field @(T, X). Firstly, we
derive the nonrelativistic limit of single particles. We
compute the Schrodinger equation and the inner product
of nonrelativistic single particles. Thanks to the particular
form of the Rindler metric, we conclude that such product
can be approximated by the L?(R?) inner product. In this
way, we show that nonrelativistic Rindler particles can be
equivalently treated as if they were in a flat spacetime but
with a modified free Schrodinger equation. Such modifica-
tions depend on the magnitude of the acceleration. By
considering an «a that is constrained by the nonrelativistic
limit, we show how the Schrodinger equation is further
approximated by the familiar Schrodinger-Newton equation.

In the case of scalar fields in Rindler spacetime,
Eq. (103) reads

mc\ 2] &
{_ag £ 204 et [ag e (7> } }cp _0. (176)
An explicit decomposition of ® is known [23] and reads

~ . +o0 - > A -
<I>(T,X)—A dQ Rzaakl[F(Q,kL,T,X)A(Q,kL)

+ F(Q.k,.T.X)B

(Q, kL)] (177a)

FQ.k . T.X) = F(Q. k., X)eFXi=i9T  (177p)

>3

Xy
> }lp (T.X,) ZAHX, 5

2mc
n‘V >~ m’ HU“/ QI,T Xl) (174)
=0 @, =1
|
~ - 1 h ﬂ'g
F(Q, k| ,X)==—=/—sinh| —
@k, X) 27° a" <ca>
2 aX
XKIQ/ (ca) 2k2
(177¢)

with X, = (Y, Z) and where K(£) is the modified Bessel
function of the second kind. It can be noticed that in the
Rindler spacetime

goo = €/~ (178)

and hence,
(q)’q)l)CKG = (q)’q)l)KG’ (¢’¢/)L§(R3) = <¢7¢/)L2(R3)'
(179)

The F(Q, k 1) modes defined in Eq. (177b) are orthonormal
with respect to the (®,®’)y scalar product and, hence,
orthonormal with respect to (®, ®)cxg.

For Q such that Eq. (124) holds, F(Q,k ) is approx-
imately the solution of

iho F(Q.k ) ~ HsF(Q, k), (180)
with, in this case,
n? mc?
Hy = =3[0} + (3 + )] + - (14+ &%), (181)

Equations (180) and (181) can be checked by using
Eq. (175) in Egs. (125) and (126).

Moreover, in the nonrelativistic limit, the Klein-Gordon
product can be approximated by Eq. (127). In the case of
Rindler modes,
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(F(Q.KL). F(Q.K\))eka
2m -
22T FQE) F@ )y (18)

Thanks to Eq. (179), Eq. (182) can be also replaced by

(F(Q%1), F(, F))exg

2m - -
o (F(Qu.ky). F(Q.K\)) 2. (183)

This means that nonrelativistic Rindler single particles can
be treated identically to Minkowski particles but with a
different free Schrodinger equation (180).

Such a result is independent of the orders of magnitude
for X k 1, and a. Therefore, Eq. (180) can be considered in
all physical scenarios where the energy of the system is

nonrelativistic, while X , k 1, and a can assume any values.

It can be proven that a further approximation for Eq. (180)
holds if, together with the nonrelativistic limit (124), one
considers the following orders of magnitude for the variables

X and k | and the parameter a:

alX| ~e. MNel/z, @Nes/z,
mc mc

(184)
where € is defined in Eq. (45) and represents the ratio
between the nonrelativistic energy E = 7Q — mc? and the
mass energy mc>. The limits expressed by Egs. (124)
and (184) can alternatively be obtained from ¢ — oo, with

X, I_c'l, a, and E fixed.

The condition |X| < 1/a means that we consider states
with wave functions that are mostly localized in a region of
spacetime that is close to the accelerated observer position
X = 0 with respect to the Rindler length scale 1/a. In other
words, the limit a|X| < 1 can be identified with a locality
condition such that curvature effects are considered small.
Indeed, it is straightforward to see that when a|X| < 1, g,
is almost flat. For this reason we name Eq. (184) “quasi-
inertial limit.” The fact that a|X| goes to zero with the same
order of € means that

U, = maX (185)
has the same magnitude of £ (i.e., Uy ~ E ~ emc?) and can,
therefore, be regarded as a nonrelativistic energy. We
anticipate that U, represents the potential energy for the
approximated Schrodinger equation in the limits (124)
and (184). The condition #2k% /m? ~ ¢ can also be inter-
preted as a nonrelativistic condition for the transverse
kinetic energy #2k? /(2m) ~

When Egs. (124) and (184) hold, Eq. (177c) can be
approximated by

F(Q,/}'L,X)

hd/6 2/3
~ Aif213 (2
27/%7a!/%(mc)'/3 ha

7K o
X [2m262+aX— <m—cz—1):|>, (186)

where Ai is the Airy function. The proof for Eq. (186) is
provided by Appendix B. From Eq. (186), one can see that

F(Q, k 1) is approximately the solution of

ihdgF(Q, k) % Hy F(Q,k,), (187)

with

2

h
Ho = —%(a% + 03+ &3) + mc* + U, (188)

Indeed, by knowing that the Airy function is the solution of
the differential equation Ai”(x) = xAi(x), one can prove
from Eq. (186) that

. - 27 7212
a%F(Q,kL,T,X)z2<E) V’k +aX

h 2 2.2
hQ > -

- <__1>]F<Q,M,T,x>, (189)
l’l’lC

which, together with Eq. (177b), proves Eq. (187).

Equation (187) is a Schrodinger-Newton equation with a
mass term mc? and a potential energy U ¢ generated by a
uniform gravitational force ma along the X axes. This can
be interpreted as the fact that an accelerated frame is locally
equivalent to an observer that experiences a gravitational
force. The result is, hence, expected by the equivalence
principle of general relativity and the limits that we have
considered.

The error associated to Eq. (187) approximating
Eq. (180) can be obtained by evaluating the difference
between the two Hamiltonians Hg, Hy acting on F(, k| ),

h2k2 2aX __ 1

L(eZaX_])+mC2<
m

e

HS_HQI:

—aX>. (190)

For nonrelativistic modes F(<, k 1) and in the quasi-inertial
limit (184), Hg — Hy acts on F(Q, k ) with the following
leading order:

Hg — Hop ~ €mc?. (191)

By comparing Eq. (191) with Eq. (135), one notices that the
errors associated to Eq. (187) are of the same orders of
Eq. (180). Therefore, no reason to prefer the Hamiltonian
Hg over Hg exists: they can be considered equivalent
in the nonrelativistic quasi-inertial regime. Moreover, the
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difference between the Hamiltonian H; and the exact fully-
relativistic hcgg reads

HQI - hCKG ~ €2mC2. (192)

Equation (192) gives an esteem of the GR corrections to the
Schrodinger-Newton equation (187) for scalar fields.

It can be noticed that a similar result holds when one
considers the following limit:

hlk h
alX| ~e, %Nel/z, m—i~€.

(193)
Equation (193) can be identified with the quasi-inertial
limit (184) considered above but with a different order of
magnitude for za/(mc), with respect to the nonrelativistic
limit. Moreover, Eq. (193) cannot be obtained from the limit

¢ — oo, with X, k 1, a, and FE fixed. A larger acceleration is
required here, as opposed to the limit (184). We, hence,
name Eq. (193) “high acceleration limit.”

By following a proof similar to Appendix B, one can
show that in the high acceleration limit (193), the Rindler
modes F(Q, k) can be approximated by Eq. (186) and,
hence, are approximately solutions of Eq. (187). The
only difference with the previous case relies on the fact
that the argument of the Airy function is of order e'/3.
Equation (192) also holds in the high acceleration limit (193)
and provides the error associated to the Schrodinger-Newton
equation (187).

B. Dirac field

Here we discuss the case of Dirac fields ¥ in Rindler
spacetime. We first review the nonrelativistic limit of
single particles. We derive a Schrodinger equation that is
different from the scalar case.

We then show that in the quasi-inertial limit (184) such an
equation can be approximated by the Schrédinger-Newton
equation (187). GR corrections to such an equation are of
order €?mc?, as for the scalar field. Conversely, by con-
sidering the high acceleration limit (193), we show that, in
such case, GR corrections to the Schrodinger-Newton
theory are ¢ 2/3 times larger than the ones obtained for
the scalar field. This means that Dirac fields are better
candidates for detecting GR corrections to the Schrodinger-
Newton theory. Moreover, we show that the difference
between scalar and Dirac Hamiltonians is e~/ times larger
than what we found for the Minkowski case [Eq. (100)]. In
other words, the Rindler metric is able to enhance the
distinguishability between scalar and Dirac fields.

We consider a Dirac field ¥ that is the solution to
the Dirac equation (139) in Rindler spacetime (175).
The explicit form of such an equation can be given by

computing the vierbein field e,* and the matrices T',.

The only nonvanishing components of e, d,e,", 9,9,,,
[7,,, ®4p,, and T', are the following:

e (T, X) = e, ¢, (T.X) = =X, (194a)

(194b)

(194d)
Tloo(T.X) = ca,  T0(T.X) =a. (194e)
(7. X)=a, T (T.X)=a, (194f)
@100(T, )?) = c’a, @o10(T, )?) = —c%a, (194¢)
To(T,X) = C%ayoy‘- (194h)

Equation (139) now reads
[icyodo + i%y' +icy'o,
me*\ ] -
+ X (icyzaz +icy’o; — T)] ¥ =0, (195
while the scalar product (149) reads

(W) o ) = A X (1. R)W(T. ).

(196)

In the nonrelativistic limit (124), U(6) is approximately
the solution of the Schrodinger equation (164) that reads
ihdyU(0) ~ (Hs + AH)U(6), (197)

where, in this case, Hg is given by Eq. (181) and AH by

n ha)?
AH = —l—ayo}/thM + ( a) N (198)
8m
It = —hey {i%y‘ +icylo,
mc?
+ eX <icy202 +icy’o; — 7)} ) (199)

It can be noticed that the Schrodinger equation (197)
differs from the scalar field case [Eq. (180)]. The difference
between the two Hamiltonians Hp and Hg is given by
Eq. (198), which in the nonrelativistic limit reads
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hc’a (ha)?
AH ~ —i—— Oyt + 2
T T

(200)
Equation (200) is generally nonvanishing. As already
explained in Sec. III B, this occurs because the metric is
not flat.

Different scenarios are possible when a varies with
respect to other dimensional quantities and €. For instance,
in the case of quasi-inertial limit defined by Eq. (184),
the scalar product (196) can be approximated by the
C* ® L*(R?) inner product,

(‘P, T/)C4®L%(R3) ~ (lP, T/)C4®L2(R3)’ (201)
and the dynamics of the single particles are reduced to the
familiar Schrodinger-Newton equation,

ihdy U (0) ~ HyU(6), (202)
already defined for scalar particles by Egs. (187) and (188).

Equation (201) is due to the fact that in the quasi-inertial
limit, wave functions are localized inside the region
a|X| < 1, and hence, ¢** ~ 1. Equation (202) can be
proven by noticing that AH, acting on nonrelativistic
states, is approximated by Eq. (200) and, hence, in the
quasi-inertial limit (184),

AH ~ e*mc?, (203)
which is e times smaller than the potential energy
U, ~ emc?. This, together with the fact that in the quasi-
inertial limit (184), Hg can be replaced by H [Eq. (191)],
leads to Eq. (202).

Equation (203) comes from the fact that in the quasi-
inertial limit ca ~ €¥/?mc? and that for any nonrelativistic
couple of modes U(6), U(@'),

cUN @)y ' U(0) ~ €'/ (204)

Equation (204), instead, comes from the following property:

iU(0) ~e'uU(0), (205)
which holds for any nonrelativistic mode U(#). This
cannot be proven identically to Eq. (93) since one cannot
consider solutions of the curved Dirac equation with defined
momentum. To prove Eq. (205), one has to consider the
exact solutions of the Dirac-Rindler equation (195) and
compare their spinorial components. We provide such proof
in Appendix C.

In summary, Dirac modes are approximately the solution
of the same Schrodinger equation for the scalar field and
the scalar product is the same one defined for Dirac fields in
Minkowski spacetime. Analogously, the scalar product for
scalar fields is approximated by the L?(R3) inner product

[Eq. (183)]. This means that nonrelativistic quasi-inertial
Dirac particles can be described identically to scalar states
with the exception of spin degeneracy, as it occurs in the
Minkowski spacetime.

From Egs. (165), (191), and (203), one can derive
the errors associated to the Schrodinger-Newton equa-
tion (202),

HQI - hNM ~ €2mC2.

(206)
By comparing Eq. (206) with Eq. (192), one can deduce
that GR corrections to the Schrodinger-Newton equation
for Dirac fields are of the same order as the GR corrections
for scalar fields. Moreover, the difference between scalar
and Dirac Hamiltonians is of the same order as in the
Minkowski case [Eq. (100)] and reads

hCKG - hNM ~ €2mC2. (207)

A different scenario can be considered by changing the
asymptotic behavior of a with respect to the nonrelativistic
limit. For instance, by considering the high acceleration
limit (193), one obtains

AH ~ e*PPmc?. (208)

Equation (208) can be proven similarly to Eq. (203) with
the difference that #ica ~ emc?, and that for any non-
relativistic couple of modes U(@), U(#'),

cU™ (027 U(9) ~€'/3. (209)
Equation (209) comes from the equivalent of Eq. (205) in
the high acceleration limit, which reads
piU(0) ~ ' PulU(0). (210)

From Egs. (165), (191), and (208), one can notice that
the errors associated to the Schrodinger-Newton equa-
tion (202) are dominated by AH and read

4/3mc2‘

Hgp = hay ~ € (211)
By comparing Eq. (211) with Eq. (192), one can deduce that
GR corrections to the Schrodinger-Newton equation for
Dirac fields are ¢~2/3 times larger than the GR corrections
for scalar fields. By increasing the experimental precision
for energies up to the order of €*/3mc?, a term proportional
to y%y! [Eq. (200)] appears in the Dirac case, while nothing
shows up for scalar fields.

By also comparing Eqgs. (192) and (211), we find out that

4/3 02

hckg — haw ~ € (212)
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TABLE V. Asymptotic behavior with respect to the nonrela-
tivistic parameter ¢ for different limits. The quasi-inertial and the
high acceleration limit are defined by, respectively, Eqs. (184)
and (193) in terms of the position X, the transverse momentum

k |, the acceleration a = ac?, and e. The variable Ah = hegg —
hnw 1s the difference between the scalar and Dirac Hamiltonians.
The orders of Ah for the two limits are shown in the last column.
In the high acceleration limit, A/ is lower than its equivalent for
Minkowski spacetime (hgg — hy)/(mc?) ~ €* [Eq. (100)]. This
means that lower precision is needed to distinguish between the
time evolution of scalar and Dirac fields.

a| X| Alk, | ha Ah

me mc mc?
Quasi-inertial limit (184) € el/? /2 e
High acceleration limit (193) € el/? € /3

which means that the difference between scalar and Dirac
Hamiltonians is visible at order ¢*/3. Such order is lower
than the one needed for the distinguishability between the
two types of fields in the Minkowski spacetime [Eq. (100)].
The result is that in the Rindler frame, when the accel-
eration is sufficiently high, it is easier to distinguish
between scalar and Dirac fields than in the Minkowski
spacetime.

This is a difference between the quasi-inertial (184) and
the high acceleration limit (193) that is summarized in
Table V.

V. CONCLUSIONS

We investigated the nonrelativistic limit of scalar and
Dirac particles in curved static spacetimes. It is well known
that particles in flat spacetime are approximated by the
same Schrodinger equation in the nonrelativistic limit
[Egs. (43) and (98)]. On the contrary, scalar and Dirac
fields in curved spacetimes have different nonrelativistic
asymptotic Hamiltonians Hg and Hp. This implies that the
two kinds of particles evolve differently when the gravi-
tational field is sufficiently strong.

As an example, we considered nonrelativistic particles in
a Rindler metric with acceleration a. For an « sufficiently
large, AH = Hp — Hg cannot be ignored and leads to
noticeable differences on the time evolution of the particles.
If the spacetime is almost flat [Eq. (184)], then AH
becomes negligible if compared to the gravitational poten-
tial U P in this way, one finds the usual Schrodinger-
Newton equation (187) for both scalar and Dirac fields.

We remark that the nonrelativistic limit is often regarded
as the one in which ¢ — oo. However this limit may vary in
a way dependent on the acceleration. Letting a = a/c?, the
limit ¢ — oo does not specify if @ has to go to infinity with
finite a, or a has to go to zero with finite a.

By considering @ ~ ¢ and a ~ ¢~! [Eq. (193)], we find
that GR corrections coming from AH are of order e*/3

[Eq. (211)], while the GR corrections coming from the
Klein-Gordon equation (176) are of the order € [Eq. (135)].
This implies that an improved experimental precision will
eventually unveil a second-order GR correction only for
Dirac fields. We believe that this scaling addresses the
possibility of observing spin-gravity coupling as a signal for
general relativity in quantum particle phenomena.

APPENDIX A

In this section, we give a proof of Eq. (156) for any ¥
that is the solution of Eq. (139). Here we use the usual
definition of derivatives V covariant with respect to the
tensorial indexes y, v, p, o, and D such that

D,=V,+T,. (A1)
In this way, we replace Eq. (139) with
<icea”y“D” - mTcz)\P =0, (A2)
Eq. (141) with
Oopy = Nay€” V4", (A3)
and Eq. (156) with
{czg;wDﬂDy - <m762> T CZZR] ¥=0. (A4)

The aim here is to prove Eq. (A4) from Eq. (A2).
We proceed by acting on the left of Eq. (A2) with

icegy"D, + mc?/h, in order to obtain

mc2

2
—c?es’y"D, (e,y*D,) — <7> ]‘I’ =0. (AS)

And thanks to Egs. (59), (A3), and the antisymmetry of
@qp, With respect to a and f we prove that D, and e y*
commute as follows:
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[DU’ ea”ya] = (vyeaﬂ)}/a + eaﬂ [Fl/7 }/a]

1
= r]ﬂyeyﬂwﬁmz}/a - Z ea'ua)/)’yv [7’/}7’}/, ya]

1 1
= e/'wgy, (ﬂﬂ“ﬂ - ZWW“ + ZW’W)

1 1 1
= el wpp (5 ey =t =7 7/”}”)

_ u lﬂa}’ l)’aﬂ
= €4 a)ﬂyv 2’1 4 +27] 4

1
=—e

2
=0.

In this way Eq. (AS) reads

me2\ 2
—c?eglety"y*D,D, — (T) }‘P =0. (A7)

We are now interested in the commutation relation
[D,.D,]¥, which can be computed by separating D, into
V, and T',. Therefore, we derive the following quantities:

V,.V,]¥ = (3,0, — 17,0, — 3,0, +17,,0,)¥ = 0,(A8a)

v

[vw Fﬂ]lP = (vury)q"

=[(3,T,) = T?,,I,]¥

vt p

1
= |77 (ava)aﬂﬂ)yayﬂ -rr,r,|¥Y

) uwlp|¥. (AS8Db)

1

[Fm r ] = Zwayuwéﬁy [Gay’ 05/}]
1

= Zwavaéﬁﬂ(_naﬂayé + nyﬁaaﬁ + W“ﬁfﬂﬂ - nyﬁgaﬁ)

— 0 0,
- _a)ayya)ﬁ/},uny o 4

1
= - Z wayuwﬁﬂu’//m b/a’ yﬂ]
1

=== (a)(lyywéﬂu - a)a}/,ua)ﬁf)’u)ny(syayﬁ»

1 (A8c)

where we have used the antisymmetry of spinorial indexes

of @y, and the Clifford algebra commutation relation,

[Gay’ Gﬁﬁ] — _ﬂaﬂo.yé + nyﬂo.aé + naéayﬁ _ ﬂyédaﬂ. (A9)

From Eq. (A8), one can derive

aﬂ (wﬁyu + wyﬂu)nﬂayy

(A6)

|
[DD’DM]T = ([vb’vll] + [v r } - [vwru] + [F r D‘P

vl vl
1
= _1 [(avwaﬂﬂ) - (aﬂwaﬂu)

+ (wayu wéﬂu - wayﬂ a)&ﬁu ) ’775] ya},ﬁlp

1
== o’ "R o v vV, (A10)
where
R[)(TIJ# = eapeﬂ(r[(avwa/}ﬂ) - (aﬂwa/)’u)
+ (a)avaéﬂﬂ - a)ayywéﬂl/)rl}/é] (Al 1)

is the Riemann tensor in the form of Cartan’s structure
equation—see, for instance, [24].
Such tensor has the following properties:

-R -R

o = R =—-R

vupo pupc R

povp — ~Ropup = pHov

(A12)

and is related to the Ricci scalar R through the following
identity,

(A13)

R = gpyggﬂRpavﬂ'

Equations (A12) and (A13) are used together with Eq. (59)
for the following chain of identities:
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eﬂyeaﬂ eypeﬁaRpo'uyyﬂyayyyé = _eﬂyea# eypeéngaW yﬂyayé},y

= eg’eq e,/ es"Rog (VY v + v’y )y’
= egleqt e, €5 R o (=40 y" — Py — v yPy0)y
= eg’eqt e, e R g (=41 v + 270y + yPyey?
= egeqt e, es R g, (60°%y + 2Py Y0 )y!
= ey ey e,/ €57 R o (6177 Yy 4 2Py y%y7)

B’ (yPy" +y7yP) = 2/ y7y)
(=670t — 2Py y7y?)
—2e5%et e, es" Ry, ¥ Y YT Y

- 6/3 ea/‘e r 65 POV
= eglel'ele
p Ca 5 /mz//,t

= ~6¢7 " R

povp

- rPy)y

= —6R - 26/3’/60/6/)6,56 pguﬂ}/ﬂya}/yy(s’

which leads to

eﬂ’“eo/‘e},”e,g“sz,W}//3}/0‘}/7;/‘S = -2R. (A15)
Equations (A10) and (A15) lead to the following
identity:

1
eg’e v’y [D,. DY = ERT’ (A16)

which in turn can be used in Eq. (A7) together with Eq. (59)
in order to obtain Eq. (A4),

—c? eﬂ”ea"yﬁy“DbDﬂ‘I’
2

C
=-Seed({ r + I DD,

2
= (02613”60”17/3“1?”1?” - % eg’e v’y (D, Dﬂ]> P

2 c?
= <c ¢"D,D, - —R) P, (A17)

4

APPENDIX B

A proof for Eq. (186) can be provided in the following
way. Firstly, we manipulate Eq. (177c) by using the
following identity [25]:

O 4 L M)

where H él) is the Hankel function, ¢ and & are both complex

values with 0 <arg({) <z/2, and -z <arg(é) <.
Equation (B1) can be used in Eq. (177c¢) if we make the
following identifications:

) Q 2\ 2 ,aX
[=em2Z, = c2k3+(ﬂ> <. (B2

ca

In this way, Eq. (177c) reads

eilr/2 T .
— _ 2 —in/2 Q

n . iz (1)
X \/a sinh (e /ZC(Q))H&Q)
X (ei”/zrf(l;J_,X)), (B3)

F(Q.k,.X)

where the functions ¢(Q) and &(k,.X) are defined
by Eq. (B2).

The limits (124) and (184) can be expressed in terms of
and ¢ in the following way:

e > 1, emRPER 90, (B4)

with

Jin3 (M€ 237 k% nQ
8 = /3 <ha> |:—2m2C2 +aX — <%_ 1>:| (BS)

Equation (B4) can be proven in the following way:

. Q
e—zﬂ/ZC _ ==

ca

_mc+mc hQ _1
" ha | ha \mc?

_me -1/2
ha + O(e7'/?)

= 0@ 3), (B6)
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nK

nmc
f:—[1+ﬁ

+ O<€2):| [1+aX + O(e?)]

Q hQ 242
- {——mc<—2—1>} {1+2hf2+ax+0 }

Q

‘{fw%—kwﬂc+owﬂ%(—7—l
mc

. , h2k?
— e—tﬂ/2C+ e—m/2§|:
2m

— e—iﬂ/2C+( _lﬂ/ZC)l/3 |:h +O< 1/2):|2

2/3 h2k2
— —m/ZC_'_e—m/Gé«l/'% <ha> % |: 21_2

2m=c
= e7"2(L + 9¢'3) + O(e°).

When Eq. (B4) holds, the limit of H ( i7/2£) is [25]
HO(e2) =

In terms of Q, 1@, and X, Eq. (B8) reads

)}[1+2222+ax+0( )

k nQ
22_2 + aX — (W - 1>:| + 0(61/2)
Al (he
a — — —
2m2c? me?
hQ
me

1)} + O(e'?)

. - . -1/3 2/3[ p2k2 nQ
() ¢ inj2 iy minfa [ 2 ! 1/3 (M€ L (e
H b (67E(K L. X)) = 2*e (Ca> A28 (5] St ax = (1) | )+ 0le)
-1/3 me\ 23 [ h2k? nQ
— D4/3 p=in/2 Ail 21/3 L X - (—=_1
{ha 1+ 0l )]} 1( (ha) [2m202 ta (mc2 )]) +O(e)

— 4/3 p=i/2 ha USA a1/3 (M€ 2/3
mc ha

At the same time, in the limit e */2{ — oo,

T : 1
exp <— — e‘”’/2C> sinh (e~ /%) x —=.
2 V2

Therefore, Eq. (B3) can be approximated by Eq. (186).

(B10)

APPENDIX C

Here we prove Eq. (205) in the quasi-inertial limit (184)
and Eq. (210) in the high acceleration limit (193). For such
proofs, we use the exact solutions of the Dirac-Rindler
equation (195), which can be found, e.g., in [26].

We consider solutions with defined energy and trans-
verse momentum U(Q, k| ), and we compare their spinorial
components, to obtain [26]

- . 1 .
DIU(Q, kJ_) N Héiﬂ]/z(l‘f) - Hé)]/z(la
ul U(Q k) Héljl/z(lf) +H§1—)1/2(i‘5)

.

(B7)

3
—m/3A1( 21/36i2n/319) + O(|€|_2/3). (B8)
%mx- <%-1>D[1+0(e)], (B9)

with Hél)(f) as the Hankel function and ¢, & defined
by Eq. (B2).

The numerator in the right side of Eq. (C1) can be
manipulated by using a recursive identity for Hankel
functions [27],

C+1/2

HLL ) = HY, o (i8) =522 1L (). ()

where HV'(¢) = 0.H é”(é‘) is the derivative of the Hankel

function. In the limit defined by Eq. (B4), Eq. (C2) can be
approximated by

(V:) g 1/2(’5) (+1/2(Z§) (C3)

and Eq. (Cl) reads
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W@k HGE) (c4)
wu@k) H(E)

s

The equivalent of Eq. (B8) for its derivative reads [27]

(C5)

(. 23 —i2m/3 A3t 1/3 ,i2z/3
H; (lf)%@@ 2r3 AN (=21/3127/39),

By using Egs. (B8) and (C5) in Eq. (C4), one obtains the
following asymptotic behavior:
.I. d
v, U(Q, k 1 ha\ /3
% ~ =~ (_a) ) (C6)
115/ U(Q, kL) C mc
In the quasi-inertial limit (184), Eq. (C6) leads to Eq. (205),

while in the high acceleration limit (193), Eq. (C6) leads
to Eq. (210).
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