
A hybrid modified-NSGA-II VNS algorithm for the

Multi-Objective Critical Disruption Path Problem

Donatella Granata∗2,3 and Antonino Sgalambro†1,2

1University of Sheffield, Management School, Conduit Road S10 1FL, Sheffield, United
Kingdom

2Istituto per le Applicazioni del Calcolo “Mauro Picone”, National Research Council, via dei
Taurini 19, 00185 Rome, Italy

3 Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Plesso di Matematica,
Università degli Studi di Parma, Parco Area delle Scienze 53/A, 43124 Parma, Italy

Abstract

This paper considers a Multiple Objective variant of the Critical Dis-
ruption Path problem to extend its suitability in a range of security
operations relying on path-based network interdiction, including flight
pattern optimisation for surveillance. Given a pair of nodes s and t
from the network to be monitored, the problem seeks for loopless s− t
paths such that, within the induced subgraph obtained via deletion
of the path, the size of the largest connected component is minimised,
the number of connected components is maximised, while concurrently
reducing as much as possible the cost of such disruption path. These
three objectives are possibly in conflict with each other, and the scope
of this work is to allow for an efficient and insightful approximation of
the Pareto front, looking for a trade-off between costs and effectiveness
to secure the most convenient paths for security and surveillance oper-
ations. We first introduce and formulate the Multi-Objective Critical
Disruption Path Problem (Multi-Objs-CDP) as a mixed integer pro-
gramming formulation (MO-CDP), then we propose an original evo-
lutionary metaheuristic algorithm hybridising modified-NSGA-II and
VNS for finding an approximation of the Pareto front, as well as a
procedure securing the efficient generation of a high quality pool of
initial solutions. The experimental performance of the proposed al-
gorithm, as compared with a variety of competing approaches, proves
to be fully satisfactory in terms of time efficiency and quality of the
solutions obtained on a set of medium to large benchmark instances.

Keywords: Networks; Critical Disruption Path; Mixed Integer Program-
ming; Multiple Objective Optimisation; Metaheuristics.

∗email: donatella.granata@cnr.it
†Corresponding author: a.sgalambro@sheffield.ac.uk, antonino.sgalambro@cnr.it

1

1 Introduction: the role of critical disruption paths
in network surveillance and security

Many real-world problems arising in safety and security can be accurately
represented through networks, enabling the adoption of optimisation meth-
ods to support better decision making, also in presence of multiple and
often conflicting criteria. Network modeling is typically utilised to predict
and evaluate the behaviour of a system, to identify the most vital (also
called vulnerable or critical) components of a network, via measuring the
rules governing individual nodes, arcs, or associated substructures, whose
failure will prevent the functionality of the network as a whole. In the last
decades a growing scientific attention has been devoted towards a specific
class of problem, referred to as Network Interdiction, where one is concerned
with studying those disruption interventions which are expected to induce a
residual network as damaged as possible. Work in the field of network inter-
diction dates back to [23] and, over the years, network interdiction models
have been increasingly applied in many different areas [6, 32, 42, 53, 54].
These problems are relevant from both a protection and an interdiction per-
spective. In the latter case, the interdiction is an attack to the network that
leaves the network fragmented or disconnected and the interdictor chooses
his optimal strategy to attack a given network, or a part of it. In the for-
mer, the defender identifies which network components are the most critical
ones for maintaining the integrity of the network, and therefore should be
protected or reinforced. Network interdiction problems, besides focusing
on scenarios that cause the network to become non-operational after the
failure of some nodes or arcs, are also aimed at measuring the network’s
communication capability or level of degradation [1, 24, 35]. The definition
of network failure varies, but it typically involves either nodes or arcs or
specific topological substructure that may fail under certain conditions or
specific attacks. It is often advisable to evaluate the number of necessary
disruptive events to experience given levels of disruption in the target net-
work, in order to assess its vulnerability. This led to studies on how to lower
the overall pairwise connectivity as a measure of the network performance
[11]. Furthermore, examples of arc removal interdiction models have been
introduced in [27, 38], whereas interdiction models based on node removal
have been broadly studied by [3, 4, 8, 29, 40, 43, 48–50, 52, 58], and the
shortest path interdiction problem has been considered in [27]. In other
variants of interdiction problems, the aim of nodes and/or arcs removal is
to get minimum weight on specific structural and topological properties in

2

the remaining graph [42], including cliques [17, 33] and maximum match-
ing [56]. When planning complex security operations, an insightful analy-
sis and assessment of network’s vulnerability and control is sometimes best
achieved by seeking those loopless paths in the network whose removal max-
imally impedes network operability or maximises its disruption. These are
referred to as Critical Disruption Paths (CDPs) and were firstly introduced
in [21]. CDP’s applications arise for instance when defining optimal pat-
terns for surveillance purposes, thus including: flight patterns for military
surveillance and reconnaissance missions, realised through remotely piloted
or traditional aircraft, optimal pedestrian or cycling paths for surveillance
and control workforce.
With the aim of enhancing the outcome of the surveillance activity for net-
work control purposes, different measures have been adopted and investi-
gated as an objective for the CDP problem, including:

• minimising the size of the largest connected component in the induced
subgraph obtained via deletion of the CDP: this goal will lead to con-
taining the residual risk of adverse activities taking place in the resid-
ual network after the surveillance intervention [21];

• maximising the number of connected components in the induced sub-
graph obtained via deletion of the CDP: this goal is aimed at decreas-
ing the connectivity of isolated components after the disruptive action
[20].

A preliminary bi-objective study presented in [20] showed how a combined
use of both objective functions can yield a range of non-dominated solutions
to choose from, while evaluating the most appropriate intervention to be
implemented for practical purposes. Those experiments also revealed how
the cost allowed for the critical path impacts on the trade-off between such
different and often conflicting goals, thus revealing the presence of a promi-
nent research gap: how to design an efficient algorithm to approximate the
Pareto front for multiple-objective variants of the CDP with conflicting rele-
vant objectives. Furthermore, the cost of the CDPs clearly reveals a feature
to be considered as a major decision making driver, as it influences both:
the capability to implement surveillance operations within given limitations
in times, budget and vehicle endurance, and the chance of finding proper
trade-off between conflicting network disruption measures. In this work we
contribute to bridge these gaps, as follows.
First, we introduce the Multiple Objective Critical Disruption Path prob-
lem where, given a pair of nodes s and t and the network to be monitored

3

with weights associated to arcs, one seeks for the loopless s − t paths such
that, within the induced subgraph obtained via deletion of the path, the size
of the largest connected component is minimised, the number of connected
components is maximised, and the cost of such a disruption path is concur-
rently minimised. The three considered objectives are in conflict with each
other, and the scope of this work is to foster an efficient and insightful ap-
proximation of the Pareto front of this optimisation problem, looking for the
trade-off between costs and effectiveness in the solutions, thus supporting
the decision maker at identifying the most suitable paths for security and
surveillance operations.
Secondly, we propose an original evolutionary metaheuristic algorithm which
hybridises modified-NSGA-II and VNS for approximating the Pareto front
of the considered Multi-objective Critical Disruption Path problem. To the
best of our knowledge, this is overall the first solution approach proposed
for a multiple-objective CDP, and its performance is compared to a variety
of rigorous competing approaches, again proposed and implemented in this
work.
As a further contribution, we propose an original polynomial time proce-
dure aimed at generating a pool of tailored feasible solutions by identifying
in polynomial time nodes which cannot belong to any CDP, thus at com-
plementing and boosting the performance of the metaheuristic scheme. The
experimental performance of the proposed algorithm proves to be fully sat-
isfactory in terms of time efficiency and quality of the solutions obtained on
a set of medium-to-large benchmark instances. The considered testbed is
comprehensive and large enough to check and secure the scalability of the
proposed method on any realistic size application. The remainder of our
paper is organised as follows. In Section 2 we introduce formally the Multi-
Objective Critical Disruption Path problem (Multi-Objs-CDP) providing a
mixed integer programming formulation (MO-CDP). In Section 3 we discuss
algorithmic strategies to restrict the search for Pareto efficient solutions as
the generation of an initial pool of solutions. In section 4 we present our
Hybrid Multi-Objective Modified-NSGA-II Variable Neighborhood Search
(MO-NSGA-VNS) approach to solve efficiently the Multi-Objs-CDP prob-
lem. The experimental performance of the proposed MO-NSGA-VNS al-
gorithm is presented in Section 5 on a set of medium to large benchmark
instances, as compared to a variety of competing approaches, including two
further NSGA-based algorithms and a scalarisation technique implemented
to calculate non-dominated solutions by applying an off-the-shelf solver to
the MO-CDP MIP model resolution. Some final remarks and further re-
search avenues conclude the paper.

4

2 Problem statement

In this section we first introduce the Multi-Objective Critical Disruption
Path Problem (Multi-Objs-CDP) and its Mixed-Integer formulation (MO-
CDP). The Multi-Objective Critical Disruption Path Problem (Multi-Objs-
CDP) proposed in this paper is stated as follows.
We are given a directed graph G = (V,E,w, s, t) with node and arc sets V
and E of size n and m respectively and two special nodes: a source node
s ∈ V and a destination node t ∈ V . We assume w.l.o.g. that if (i, j) ∈ E
then also (j, i) ∈ E, and wij is the weight assigned to arc (i, j) ∈ E. Given
any path ρ, we refer to Gρ := (V ρ, Eρ) as the induced subgraph obtained
via deletion of ρ from G, V ρ := V \ V (ρ), Eρ := E ∩ (V ρ × V ρ), being V (ρ)
the subset of nodes of V which are included in path ρ.

Definition 2.1. The Multi-Objective Critical Disruption Path Problem
(Multi-Objs-CDP) is defined as the problem of finding a simple loopless
path ρ from s to t such that the following objectives are pursued:

• minimise the size of the largest connected component in Gρ;

• maximise the number of connected component in Gρ;

• minimise the cost of the path ρ.

The Multi-Objective Critical Disruption Path can be now formulated
through the following multiple objective Mixed Integer Programming model.

5

We term this model as MO-CDP.

MO-CDP : f1 :=minψ

f2 :=max
∑

i∈V \{s,t}

di

f3 :=min
∑

i,j:(i,j)∈E

wijxij

s.t.
∑

j:(i,j)∈E

xij =
∑

j:(j,i)∈E

xji ∀i ∈ V \ {s, t} (1)

∑
i:(s,i)∈E

xsi = 1 (2)

∑
i:(i,t)∈E

xit = 1 (3)

xij + xji ≤ 1 ∀(i, j) ∈ E, j > i (4)∑
i,j∈S: (i,j)∈E

xij ≤ |S| − 1 ∀S ⊂ V, |S| ≥ 2 (5)

yii = 1−
∑

l:(l,i)∈E

xli ∀i ∈ V \ {s, t} (6)

yij ≥ yih −
∑

l:(l,j)∈E

xlj

∀h, i, j ∈ V \ {s, t} : j ̸= i, (h, j) ∈ E (7)

ψ ≥
∑

j∈V \{s,t}, j≥i

yij ∀i ∈ V \ {s, t} (8)

n · di ≤ n · yii −
∑

j∈V \{s,t}:j<i

yji ∀i ∈ V \ {s, t} (9)

ψ ≥ 0 (10)

di ∈ {0, 1} ∀i ∈ V \ {s, t} (11)

xij ∈ {0, 1} ∀(i, j) ∈ E (12)

yij ∈ {0, 1} ∀i, j ∈ V \ {s, t} (13)

Among all the s− t paths, here we are concurrently looking for the shortest
ones (as required by the third objective function f3) and the most disruptive
ones, such that the arising connected components in the residual graph after
the path removal present the largest amount of connected components with
reduced size: this is obtained by including f2 and f1 as objective functions,
respectively. The proposed model is an arc-based formulation requiring the
selection of one simple s−t path in the network, in the following indicated as
Multi-Objs-CDP. The binary variables xij encode the decision on the choice

6

of the CDP, and the binary decision variables yij take value 1 if and only
if both nodes i ∈ V and j ∈ V belong to the same connected component
after path extraction and 0 otherwise; yii has value 1 if node i ∈ V is not
belonging to Multi-Objs-CDP path and 0 otherwise. A nonnegative variable
ψ is used to indicate the cardinality of the largest connected component
arising in the residual graph. Binary variables di are used to count the
number of connected components: as it is necessary to have a member of
each component in the residual graph to represent that component, we use
the node with the highest index as such one representative, hence di equals
1 if and only if node i is the rightful component representative, 0 otherwise.
Constraints (1)-(5) ensure that variables xij identify a simple s − t path,
where each path node has one associated arc in and out as verified by the
balance constraints (1). The complexity of sub-tour elimination constraints
(5) is reduced by a separation mechanism and by constraints (4). Constraints
(6) and (7) identify the connected components in the network: where two
nodes j ∈ V and i ∈ V are forced to be in the same connected component,
if j does not belong to the selected path and there exists a further node
h ∈ V connected via an arc to node j into the same connected component.
Constraints (8) assign the largest connected component size value to variable
ψ, whereas constraints (9) count the number of connected components. It
is worth recalling how the CDP detection problem was proven in [21] to
be NP -complete by reduction from the Hamiltonian Path problem, thus
characterising also the class of complexity of the Multi-Objs-CDP problem
proposed in this paper.

2.1 Relevance of the MO-CDP for application purposes

The enhanced potential for application purposes unleashed by the multi-
ple objective model above introduced, as compared to the single objective
variant of the CDP, can be better understood by observing the set of non-
dominated solutions obtained on the small example network presented in
Figure 1. In this toy example we are given a graph G = (V,E,w, s, t) with
nodes V = {s, t, 2, 3, 4, 5, 6, 7, 8, 9} and 27 arcs, and two special nodes: a
source node s ∈ V and a destination node t ∈ V . The weight wij assigned
to each arc (i, j) ∈ E is shown along the arc in the figure. Multi-Objs-CDP
efficient solutions for the graph example a) are presented in the following
subfigures {b),d)}, {c),e)} ,{f),j)}, {g),k)},{h),l)}, {i),m)}, where each sub-
figure couple shows on the left the s-t CDP path with the corresponding
values of the three objective functions (f1, f2, f3) and on the right a rep-
resentation of the remaining connected components into residual graph Gρi

7

after the removal of CDP ρi as depicted into subfigure i). We recall that
the objective function f1 minimises the size of the largest connected com-
ponent in Gρ, f2 maximises the number of connected component in Gρ and
f3 minimises the cost of the path ρ. Let us assume that the CDP is utilised
here to define the best flight pattern for an unmanned aerial vehicle (UAV)
aimed at automated aerial surveillance. The single objective CDP would
simply suggest h) as a flight pattern, as a way to minimise the size of the
largest component in the residual network l). Such a solution might require
a surveillance pattern exceeding (or not) the endurance of the adopted UAV,
depending on the amount of budget invested in purchasing the fleet for se-
curity operations. By using the MO-CDP model it is possible to explore
the progressive growth in the surveillance quality while allowing increasing
cost for surveillance paths, thus showcasing all the trade-offs between costs
and solutions quality. Computing and comparing solutions which approx-
imate the Pareto front of the MO-CDP will allow to appreciate, for each
given level of intervention cost, the associated expected impact on security
and surveillance operations, thus informing accurately the decision making
process to identify the most convenient level of investment.

8

Figure 1: Pareto front for a toy example.

s

t

1 6
3

7

9

8

8

9

3

2

5

5

5

7

6

3

3

1

4
2

1

6

4

3

1

1

a)

s

t

1
6

3

7

9

8

8

9

3

2

5

5

5

7

6

3

3

1

4
2

1

6

4

3

1

1

b) ρb = {s, t},
f1 = 8, f2 = 1, f3 = 1

s

t

1
6

3

7

9

8

8

9

3

2

5

5

5

7

6

3

3

1

4
2

1

6

4

3

1

1

c) ρc = {s, 9, t},
f1 = 7, f2 = 1, f3 = 4

6

7

8

9

2

5

3

4

d)

6

7

8

2

5

3

4

e)

9

s

t

1
6

3

7

9

8

8

9

3

2

5

5

5

7

6

3

3

1

4
2

1

6

4

3

1

1

f) ρd = {s, 6, 5, 3, t},
f1 = 4, f2 = 2, f3 = 8

s

t

1
6

3

7

9

8

8

9

3

2

5

5

5

7

6

3

3

1

4
2

1

6

4

3

1

1

g) ρh = {s, 6, 7, 8, 9, t},
f1 = 3, f2 = 2, f3 = 12

s

t

1
6

3

7

9

8

8

9

3

2

5

5

5

7

6

3

3

1

4
2

1

6

4

3

1

1

h) ρi = {s, 6, 5, 2, t},
f1 = 3, f2 = 3, f3 = 14

s

t

1
6

3

7

9

8

8

9

3

2

5

5

5

7

6

3

3

1

4
2

1

6

4

3

1

1

i) ρj = {s, 6, 5, 7, 8, 9, t},
f1 = 1, f2 = 3, f3 = 15

7

8

9

2

7

6

4

j)

2

5

3

4

k)

7

8

9

3

4

l)

2

3

4

m)

10

3 Generating an initial set of feasible solutions

With the twofold goal of generating a pool of good initial solutions and in-
crease the efficiency in computing high quality solutions, we are interested
in identifying quickly those nodes which result in suitable candidates for
inclusion in a CDP, and in excluding all the others from our search process.
Our approach is underpinned by the preliminary observation that a node
which cannot be included in any simple s − t path, can be excluded while
seeking for feasible solutions. In the following we refer to these as unreach-
able nodes. In order to find such nodes, we design a polynomial-time pair
node disjoint algorithm, denoted as Pool-Init-Gen, which draws upon a vari-
ant of the procedure presented in [45] and is applied on a modified network.
In this section, we first briefly recall some major results from the literature
on disjoint paths, then we describe the approach adopted in this paper for
generating an initial pool of feasible solutions.

Finding disjoint paths: variants and complexity. The term k short-
est disjoint paths is plainly interpreted as follows: given an undirected graph
G = (V,E) and k distinct pairs of nodes (s1, t1), . . . , (sk, tk), the objective
is finding whether there exist k pairwise disjoint paths P1, . . . , Pk such that
Pi is a path from si to ti, for every 1 ≤ i ≤ k. One may consider several
variants: directed or undirected, node or arc disjoint. The node disjoint
path problem was shown to be NP -hard by Li et al. [30]. Fortune et al.
[15] proved that the directed version is NP -hard even if k = 2. Shiloach
[41] presented a a linear O(n ·m) algorithm that, given an undirected graph
G = (V,E) and nodes s1, s2, t1, t2, determines whether or not G admits
two node disjoint paths, one connecting s1 to t1 and the other one s2 to
t2. Eilam-Tzoreff [12] proved that directed or undirected and node or arc
disjoint path problems are also NP -complete for arbitrary values of k even
for planar graphs with unit arc-costs. But the author actually provided a
polynomial algorithm for the case of k = 2 with positive arc-costs. Further-
more, in [47] the problem of finding a pair of length-bounded disjoint paths
between nodes s and t of an undirected graph was proven NP -complete.
The problem of finding two disjoint paths from s to t such that the length of
the longer path is minimised was proven to be NP -complete on directed and
undirected graphs[31]. Whenever the min-sum disjoint path variant is con-
sidered, namely where k disjoint paths with the total cost to be minimised
are to be found, the problem is known to be polynomially solvable [44, 45].
Suurballe and Tarjan [45] proved that given a directed graph G = (V,E)
withm arcs and with non negative weight assigned to each arc, finding a pair

11

of shortest node/arc disjoint paths from s to a single sink t can be obtained
in O(m · log(1+m/n)n) time. More results on the complexity of finding dis-
joint paths can be found in [16, 51]. A recent heuristic for the computation
of node disjoint path pair for any set of at least two intermediate nodes has
been presented in [34], which can be used on undirected and directed sym-
metric graphs. The paper also succinctly describes a procedure to obtain
a min weight path visiting a specific node in undirected networks. In the
next section, we propose and detail a novel algorithm which can be adopted
on any graph. This routine is based on Suurballe’s approach and consid-
ers one single intermediate node. Its worst-case complexity is bounded by
O(m+ n · log(n)) which stems from shortest path tree calculation.

3.1 Pool-Init-Gen algorithm construction

To generate a pool of good initial solutions and to timely identify those un-
reachable nodes which cannot belong to any CDP, we design a polynomial-
time algorithm, namely Pool-Init-Gen, able to find a min-hop s − t path
passing through a specific node i, by solving via an auxiliary modified net-
work. This algorithm draws inspiration from [45], where finding a shortest
s− t pair of arc/node disjoint paths is used as a minimum-cost flow problem
via Dijkstra algorithm. Its adaptation to this particular case is similar to
the approach detailed in the introductory section of [34].

The first step of Pool-Init-Gen algorithm consists in a building phase,
to produce an auxiliary graph G′ = (V ′, E′, s, t) from the original input
graph G = (V,E, s, t), which contains |V ′| = 2 · |V − 2| + 2 nodes and
|E′| = |V − 2| + |E|. This building phase of G′ incorporates the following
finite steps:

• Each node v ∈ V \ {s, t} is split in a pair of nodes denoted as v and
v′.

• An arc e = (v, v′) is created connecting each couple of split nodes
(v, v′).

• All the outcoming arcs of v are moved to be outcoming arcs of v′.

• A weight w(u, v) = 1 is assigned to each arc (u, v) ∈ G′.

The unitary weight value assigned in the last step to each arc in the
auxiliary graph is instrumental at enabling the search for a min-hop path in
original path. The effort of our algorithm is based on the idea that finding
path p from s to t passing through a node i in the original graph G means

12

looking for a shortest pair of node-disjoint paths, one from s to i and one
from i′ to t in the auxiliary graph G′. The Pool-Init-Gen involves these
polynomial operations:

1. Find the shortest path tree SPT (s) rooted at node s by running the
Dijkstra’s algorithm on the graph G′, and let call p1 the found shortest
path (s⇝ i) from source s to i.

2. Modify the weight of each arc (u, v) in the graph by replacing its
weight w(u, v) by w′(u, v) = w(u, v) − d(s, v) + d(s, u), being d(i, j)
the distance between any nodes i and j.

3. Create a residual graph G′p1 formed from G′ by reversing the direction
of the zero weight arcs along path p1 and by removing the arcs that
are directed into s and, for all arcs (u, v) ∈ |E| : v ∈ V (p1) \ {s, i}, set
the weight w(u, v) = |E|.

4. Find the shortest path p2 = (i′⇝ t) from the node i′ to the sink t in
the residual graph G′p1 by running Dijkstra’s algorithm. For each arc
(u, v) ∈ p2 remove arc (v, u), if it exists, from both paths p1 and p2.

5. Construct the s− t path p concatenating p1 and p2.

6. Modify p by shrinking any node splits previously operated during the
building phase, thus preserving only those nodes and arcs which were
originally part of the original graph G.

An example of auxiliary graph construction is presented in Figure 2.b)
applied to the dummy graph example represented in Figure 2.a). So, Figures
c)–f) depict the algorithm’steps in finding the path between the node s and
t that passes through the node 1; both steps 1-2 of Pool-Init-Gen algorithm
are depicted in Figure 2.c), step 3 in Figure 2.d), step 4 in Figure 2.e) and
steps 5-6 in Figure 2.f).

Claim 1. If the cost of path p2, defined as W (p2) =
∑

(u,v)∈E(p2)
w(u, v), is

greater than or equal to |E|, then there exist no s− t path p passing through
a given node i.

Proof. Seeking for the path p2, during the fourth step of the Pool-Init-Gen
algorithm, means seeking for a simple path from i′ to t in the residual graph
G′p1, produced by step 3. In G′p1, all the arcs in SPT (s) have weights equal
to 0, and there are some arcs whose weight equals |E|, namely, those arcs
entering any node v belonging to V (p1)\{s, i} (by algorithmic construction).

13

If an arc (u, v) with w(u, v) > 0 is included in p2, this arc does not belong
to the shortest path tree SPT (s), because all the arcs in SPT (s) have
weights equal to 0. Furthermore, we can assert that the distance d(i′, v)
from i′ to v is bounded from above by d(i′, u) + w(u, v), namely, it holds
d(i′, v) ≤ d(i′, u) + w(u, v), otherwise there would exist a shorter path to
v via u, such that d(i′, u) − d(i′, v) + w(u, v) is non negative and less than
the longest path, which in turn can be at most equal to n− 1. Suppose for
absurd, that w(u, v) = |E|: this would imply that during the construction
of p2 via Dijkstra’s algorithm, one arc incident on V (p1) \ {s, i} has been
included into the path p2, but this means that the final path p is not a
feasible s − t path solution for the graph G, and it is not passing through
the node i, so a contradiction follows.

Furthermore, it is easy to show that G′ contains a pair of arc-disjoint
paths p1 and p2, the former from s to i and the latter from i′ to t, if and
only if the original graph contains a path from s to t through node i.

3.2 Generating an initial population

Instead of simply using any preliminary random population generator as
it often happens for genetic algorithms, we adopt iteratively the procedure
presented above, with the scope of generating tailored initial solutions, tak-
ing into account the main features of the Multi-Objs-CDP, thus also se-
curing increased chances to include non-dominated solutions in the starting
population P0. Here we explain how the Pool-Init-Gen algorithm utilised
the Algorithm 3.1) to generate the initial population P0. The algorithm
Init phase is fed with a weighted directed graph G = (V,E,w, s, t) with
source s and destination t and returns as an output two sets: UN ⊂ V and
ND, filled with unreachable nodes and with a first pool of non-dominated
solutions, respectively, with respect to the set of feasible solutions currently
considered. Init phase works by initially exploiting an implementation of
the Dijkstra’s algorithm for generating as its first solution a path which be-
comes in turn the first solution to be included in the set of non-dominated
solutions ND (lines 1- 2). The procedure Pool-Init-Gen is repeatedly exe-
cuted upon each node i other than s and t (as detailed in Algorithm 1, lines
3-13). If a feasible solution is identified, the path p is included in the set
ND, whereas if a feasible solution cannot be identified, the node i is labelled
as unreachable and added to UN , as it is not possible to find any simple
path from s to t through i.

14

Figure 2: Example of construction of shortest pair of node-disjoint paths s
to 1 and from 1′ to t.

a)

b)

c) d)

e)

f)

15

Algorithm 1 Init phase(G(V,E,w, s, t),ND,UN)

1: p← Dijkstra(G(V,E,w, s, t))
2: ND ← p {set of non-dominated solutions }
3: for all i ∈ V \ {s, t} do
4: if degree[i] = 2 and arcs (i, k), (k, i) exist then
5: ADD(UN, i)
6: end if
7: Use Pool-Init-Gen algorithm for finding a path p passing through

node i
8: if p is not a feasible solution then
9: ADD(UN, i)

10: else
11: ADD(ND, p)
12: end if
13: end for
14: return ND, UN

4 Hybrid Multi-Objective Modified-NSGA-II Vari-
able Neighborhood Search (MO-NSGA-VNS)

In this section we present the original algorithmic procedure we designed
ad-hoc to approximate the Pareto front for large size instances of the Multi-
Objs-CDP problem. The adoption of bio-inspired search paradigms has
proved to be effective in solving many multi-objective optimisation problems
[14, 60], as they are able to find multiple solutions simultaneously in a single
execution. Methods such as Non-dominated Sorting Genetic Algorithm-II
(NSGA-II) [10], Non-dominated Sorting Genetic Algorithm-III (NSGA-III)
[9], Strength Pareto Evolutionary Algorithm 2 (SPEA2) [59], S-Metric Se-
lection Evolutionary Multiobjective Optimisation Algorithm (SMS-EMOA)
[13], and Multiobjective Evolutionary Algorithm based on Decomposition
(MOEA/D) [57] have become extremely popular when it comes to solving
multi-objective optimisation problems. NSGA-II [10] can be taken as a rep-
resentative of Pareto-based approaches, the advantage to use this kind of
method is the necessity to have few configuration parameters and the possi-
bility to work well with a lot of objective functions meanwhile it is difficult
to guarantee and measure the convergence of the solutions. SMS-EMOA
[13] is a representative of the hypervolume indicator-based approaches: for
these methods, it is possible to assess convergence at a high computational

16

cost, since a set’s hypervolume is measured in relation to a reference point
and it equals the total size of the space dominated by the solutions in the
set. MOEA/D [57] is a good representative of the decomposition-based
approaches, for these methods is possible to incorporate various scalarisa-
tion methods but this requires some prior knowledge of the position of the
Pareto front. Though, at a certain point it has become evident that a
single metaheuristic is not sufficient to deal with the real world and large
scale problems, so hybridised metaheuristics started to be presented in lit-
erature as reported by [18]. The interaction among metaheuristics can take
place at different levels, at low-level using specific functions from each meta-
heuristics or at high-level using a portfolio of metaheuristics for automated
hybridisation [46]. Indeed, it has become popular the hybridisation between
genetic algorithms and local search, that is also referred to as genetic local
search, or memetic algorithms [25, 26]. Hybrid metaheuristics provide a
more efficient behavior and a higher flexibility. For instance, a two-phased
approach based on the combination of a multi-objective evolutionary algo-
rithms and single-objective techniques to solve Vehicle Routing Problems
has been proposed by [28] and two methods hybridised with the path relink-
ing procedure, a Pareto ant colony optimisation algorithm and a variable
neighborhood search method by [39]. A first hybrid NSGA-II and VNS for
solving a bi-objective no-wait flexible workshop scheduling problem has been
introduced in [5]. Extended surveys have been provided in [7, 14, 46, 55, 60].
Our procedure is based on a hybridisation of NSGA-II and Variable Neigh-
borhood search (VNS), and we refer to this as the Hybrid Multi-Objective
Modified-NSGA-II Variable Neighborhood Search (MO-NSGA-VNS). Sim-
ilarly to other population-based algorithms, the Pareto fronts (PFs) are
formed and re-elaborated throughout the whole search process. At each
step, solutions in the fronts are either kept or discarded according to a set of
criteria and a new offspring population is generated. While many variants of
NSGA algorithms generate preliminary random populations, we utilise the
Pool-Init-Gen algorithm (see Algorithm 3.1) to create the initial popula-
tion P0. Furthermore, instead of using basic operators such as mutation and
crossover in order to generate new populations, in our algorithmic approach
we adopt a modified Variable Neighborhood Search scheme (see Section 4.1),
which combines a variety of neighboring structures and intensification pro-
cedures. A previous example of hybridisation between NSGA and VNS had
been presented in the literature [5]: in this work, the algorithm was applied
to a bi-objective problem, the initial input solution to VNS was a random
offspring obtained by a mutation operator, the neighbours were applied to
random jobs into layers and no intensification features were exploited. Be-

17

fore presenting the complete pseudocode description of MO-NSGA-VNS as
applied to our problem in Algorithm 2, we describe some of the used support
structures, parameters and useful recalling functions, to allow for a thorough
understanding of the procedure scheme, as follows:

UN : set of unreachable nodes.

ND: set where all found non-dominated solutions are stored.

α: parameter related to neighborhood Nα(p) (as presented in section 4.1),
increased at each iteration i.

β: parameter related to neighborhood Nmax
β (p) (as presented in section

4.1), increased at each iteration i.

Q̂: population size limit.

T̂ : time limit in seconds.

L̂: intensification iterations limit.

ADD(ND, p): handler function defined to update the set ND. Given any
solution p this function adds p to the current set of the non-dominated
ND if and only if p is non-dominated by any other solution belonging
to the set ND.

An initial population P0 of size at most Q̂ is generated using Algorithm 1,
then a generational loop is repeated until time limit T̂ is reached. At any ith
population generation, an offspring population Qi of size Q̂ is created using
the MOVNS Algorithm (see Algorithm 3).

The new Pareto front population is obtained as PQi = Pi
⋃
Qi of size

2Q̂, this is divided into different non-dominated classes, or fronts, using
the procedure Fast non dominated sort presented by [10]. The domination
counter is used to count how many solutions dominate the solution p, and
it is adopted to determine whether a solution p belongs to a different non-
dominated class, or front. The domination counter starts from zero for the
first non-dominated front and reaches |V | − 1 for the last non-dominated
front. Only the first Q̂ individuals are kept to form the next generation,
even if some of them can be members of the same last front. Note that
no sub-procedures have been included to select and rank the last front. A
graphical description of the whole evolutionary metaheuristic procedure is
provided in Figure 3.

18

Algorithm 2 NSGAII-MOVNS(G(V,E,w, s, t), Q̂, T̂, L̂)

1: UN ← ∅ {Set of unreachable nodes of any path from s to t}
2: ND ← ∅ {Set of the non-dominated Pareto solutions}
3: t = 0 {Time counter}
4: i = 0 {Iteration counter}
5: Pi ← Init phase(G(V,E,w, s, t),ND,UN)
6: F ← Fast non dominated sort(Pi)
7: Qi ←MOVNS(G,Pi, Q̂, α, β, t, T̂,ND, L̂)
8: while t has not reached the time limit T̂ do
9: PQi ← Pi

⋃
Qi

10: F ← Fast non dominated sort(PQi)[10]
11: ADD(ND,F) {update the set of non-dominated solutions with those

ones coming from frontiers stored in F}
12: Pi+1 ← F [1 : Q̂] {Take the first frontiers until to fill the next popula-

tion Pi+1 with at most Q̂ solutions }
13: Qi+1 ←MOVNS(G(V,E,w, s, t),Pi+1, Q̂, α, β, t, T̂,ND, L̂)
14: i← i+ 1
15: if α > (|V |/2) then
16: α = 1 {re-initialise α to 1 }
17: else
18: α++ {Increase α until to reach half size of node number }
19: end if
20: if β > (|V |/2) then
21: β = 1 {re-initialise β to 1 }
22: else
23: β++ {Increase β until to reach half size of node number }
24: end if
25: end while

19

Figure 3: Graphical sketch of the MO-NSGA-VNS procedure.

4.1 Using a modified Multi-Objective Variable neighborhood
search to generate the offsprings

Variable neighborhood search, introduced by [36], is a metaheuristic method
whose search process draws upon systematic changes of neighborhood. The
effectiveness of this procedure for solving single-objective optimisation prob-
lems has been broadly proved [22, 36, 37]. The first multi-objective VNS
(MOVNS) was applied to a machine scheduling problem and proposed in
[19], differing from single-objective VNSs for having introduced two main
arbitrary choices: the base unvisited non-dominated solution (starting point
of the next neighborhood search) and the used neighborhood, both chosen at
random from those available. This procedure has been further developed by
[2], where some non-dominated solutions have been constructed from partial
results found by the inner procedures.
In our algorithm, we propose and adopt three parametric neighborhoods
Nα(x

′), Nβmax(x′), NCROSS
γ and, at each iteration of the algorithm, all of

the defined neighborhoods are applied to a non-dominated solution p as
randomly selected from the set Pi. Such neighborhoods are:

20

Nα(p): obtained by removing up to α nodes from p and adding up to α
nodes, completely at random.

Nmax
β (p) : obtained by removing up to β nodes from p and adding up

to β nodes, where such nodes are chosen from those belonging to the
maximum connected component. This choice is aimed at reaching
better solutions by creating paths passing through nodes belonging to
larger connected components.

NCROSS
γ (p): is obtained from p and a random non negative index γ, with

1 ≤ γ ≤ |p| − 1 by concatenation of the subpaths pγ and pi, where
pγ = {vs, . . . , vγ}, (that is the subpath of p truncate at position γ)
and pi = {vb, . . . , vt} ⊂ ρ ∈ ND with vb = vγ (that is the subpath of
a solution ρ ∈ ND having vγ as inner node).

A pseudo-code describing the complete modified Multi-Objective Variable
Search (MOVNS) including the intensification phase is provided in Algo-
rithm 3, which is also depicted in Figure 4.

The aim of the intensification procedures is to add some new nodes to
the current solution in order to shake the search procedure and escape from
any local minima.This is realized by a recursive function, that is calling itself
until no improvement can be performed on the best current solution (base
case) or until one of the following terminating conditions is met: time limit
T̂ and depth of the recursion tree T̂ . We present two different procedures,
both of them aimed at cutting a path p, which can be depicted by a sequence
of nodes, in a specific position i, thus obtaining two subpaths p1 = s, . . . , i
and p2 = j, . . . , t, and filling the gap between nodes i and j with a new
shortest path passing through a specific node u. The two procedures differ
from how the node u ∈ V is chosen (see Algorithm 4, and refer to lines
6 and 9). Hence a node u is selected at random from two sets, V − and
V max, for Intensification TY PE 1 and Intensification TY PE 2 respec-
tively. The set V − includes all reachable nodes except those belonging to
the path p, whereas V max is the set of all nodes belonging to the maximum
size connected component. At each offspring generation, both intensifica-
tion procedures are applied on a random solution chosen from the parent
population, differently from [2] where intensification is aimed at improving
a partial V NS solution.

21

Algorithm 3 MOVNS(G(V,E,w, s, t), Pi, Q̂, α, β, t, T̂ , ND, L̂)

1: Qi ← ∅ {set of offspring solutions}
2: while t ≤ T̂ AND |Qi| ≤ Q̂ {Until time or Offspring size limits are

reached} do
3: Select randomly a solution p from the population set Pi

4: and mark p as visited
5: pd1 ← Intensification(G(V,E,w, s, t),p, L̂,TYPE← 1)
6: pd2 ← Intensification(G(V,E,w, s, t),p, L̂,TYPE← 2)
7: ADD(Qi, pd1) AND ADD(Qi, pd2)
8: Determine randomly a solution p′ from Nα(p)
9: for all p′′ ∈ Nα(p

′) do
10: Evaluate the solution p′′

11: ADD(Qi, p
′′) {p′′ is non-dominated by any solution of offspring set

Qi}
12: end for
13: Determine randomly a solution p′ from Nmax

β

14: for all p′′ ∈ Nmax
β (p′) do

15: Evaluate the solution p′′

16: ADD(Qi, p
′′)

17: end for
18: Determine randomly a non negative index γ, with 1 ≤ γ ≤ |p| − 1
19: Determine randomly a solution p′ from NCROSS

γ (p)

20: for all p′′ ∈ NCROSS
γ (p′) do

21: Evaluate the solution p′′

22: ADD(Qi, p
′′)

23: end for
24: end while
25: for all p ∈ Qi do
26: ADD(ND, p)
27: end for
28: return Qi

22

Algorithm 4 Intensification(G(V,E,w, s, t), p, L̂, T̂ , TY PE)

1: p′ ← p
2: while L̂ and T̂ limits are not satisfied do
3: for i = 0 to |V (p)− 2| do
4: for j = i+ 1 to |V (p)− 1| do
5: if TY PE = 1 then
6: pick a random node u from V −,
7: V − ← V \ {s, t, V (ps, . . . , pi), V (pj , . . . , pt), UN}
8: else
9: pick a random node u from V max,

10: {
V max ← CC \ {UN} where |CC| is the maximum connected
component obtained removing p }

11: end if
12:

13: r′ ← Dijkstra(G(V \ V (p), E \ E(p), w, s, t)i, u, j) {
that is a shortest i-j path passing through node u, where i is the
source and j is the sink }

14: if r′ ̸= ∅ then

15: p′ = (ps, p1, . . . ,

r′︷ ︸︸ ︷
pi = ri, . . . , u, . . . rj = pj , . . . , pt)

16: end if
17: if p′ ≺ p then
18: L̂++ // increment to handle the recursion tree depth
19: Intensification(G(V,E,w, s, t), p′, L̂, T̂ , TY PE) //recursive

case
20: add(ND, p′)
21: else
22: return p′ //case base
23: end if
24: end for
25: end for
26: end while
27: return p′

23

Figure 4: Graphical sketch of the Algorithm 3.

5 Testbed and Computational Experiments

In this section, we present and analyse the results of the articulated com-
putational experience that has been developed in this work. The scope of
the experiments is assessing the efficiency of the MO-NSGA-VNS algorithm
and its efficacy at approximating the Pareto front of the Multi-Objective
Critical Disruption Path Problem. We first provide here a description of
the adopted testbed and of the range of different methods we considered in
order to assess the performance of our algorithm. Then in Section 5.1 the
results of the computational experiments are presented and discussed.

Computational testbed. A large set of increasing size random instances
has been generated uniformly distributed as a test bed, overall made up of
two different classes of instances:

• six groups of medium size, with a number of nodes n = 40 + 10 × κ,
κ ∈ [0, 1, . . . , 5]

24

• ten groups of large size instances, with a number of nodes n = 100 +
100× σ, σ ∈ [0, 1, . . . , 9].

For both classes, the number of arcs is m = n × (n − 1) × ρ where ρ ∈
{0.1, 0.5, 0.9} and, for each pair (n,m), two distinct randomly generated
instances are created and referred to by using the notation (n,m, o), with
o = {0, 1}, to denote the instance occurrence. The algorithm for instance
generation primarily consists of two phases: the connecting phase, with at
most n − 1 steps, where arcs are iteratively generated at pseudo-random
connecting one node already inserted in the building graph and the other
one not yet connected, until none of the nodes are left out; the building
phase, where all other arcs are generated at pseudo-random, by iteratively
selecting origin and destination in V with uniform probabilities, until the
required target number of arcs m is reached. Furthermore, for each arc
e a weight le is generated at random with a uniform distribution in the
interval [1, n]. The MO-NSGA-VNS was coded in ANSI C++-14. All the
computations have been performed on an Intel(R) Xeon(R) CPU E5-2680
v2 @ 2.80GHz with 16 GB of RAM. The following parameters were adopted:

T̂ = 3600 seconds, as a computational time limit.

L̂ = 100 ∗ |E|, with a maximum value of 10000, (i.e., the recursion tree
depth cannot exceed the value of 10000) as an intensification depth
parameter, used in the Intensification procedures (see Algorithm 4).

Q̂ = 20, as an offspring set size.

Note that the parameters L̂ and Q̂ have been set by following the results of
a preliminary calibration phase based on the execution of the algorithm on
a sample of instances.

Benchmarking against scalarisation technique. In order to assess
quality and exhaustiveness of the MO-NSGA-VNS at generating the Pareto
front, a comparison with the results of a multi-objective scalarisation tech-
nique, implemented by using a state-of-art off-the-shelf solver, is also pro-
vided in this paper for the class of medium size instances. To this aim, sev-
eral convex combinations of the three objective functions were considered
and experiments conducted at varying weight coefficients λi , i = 1, 2, 3, in
the range [0,1] with such interval divided in 100 steps for each dimension,
such that

∑
λi = 1 for each triple of weight coefficients considered. As the

goal of this specific comparison is concerned with challenging the capabil-
ity of the MO-NSGA-VNS to produce a comprehensive Pareto front, rather

25

than its computational efficiency, each experiment was executed by using
IBM ILOG CPLEX 12.9 on the same machine without any time limitation
in order to get the largest possible number of solutions, although clearly not
exhaustive. The proposed model has been implemented using ANSI C++
and Concert Technologies libraries, using Cplex callbacks to cope with sub-
tour elimination contraints (5). Thus, the set of non-dominated solutions
ND(MO-CDP) =

⋃
λi
NDλi

(MO-CDP) found through implementing and
solving the (MO-CDP) model by CPLEX consists in the union of all non-
dominated solutions found whilst varying the convex weight λi combinations
through the above described scalarisation technique.

Benchmarking against evolutionary algorithms. In order to test also
time-efficiency and effectiveness of the MO-NSGA-VNS algorithm, two fur-
ther comparisons against standard evolutionary algorithms were developed,
through the implementation of the standard Multi-objective Evolutionary
algorithms: basic-NSGA and subpaths-NSGA. The basic-NSGA is based on
the classic implementation of NSGA-II where the mutation operator is ob-
tained by replacing a node with a new one, as follows: given a solution path
p = {s, . . . , i− 1, i, i+ 1, . . . , t}, a random node i is substituted by another
random node j as it is expected within the basic-NSGA algorithmic frame-
work. As this simple mutation operator often does not guarantee the exis-
tence of another valid path, we also introduced subpaths-NSGA algorithm,
whose main idea is to replace a node i by a simple sub-path {i-1, . . . i+1},
created between the adjacent nodes i-1 and i+1 whose nodes are not belong-
ing to the original path p. We use the Intensification procedure of TY PE
1 (see Algorithm 4) as operator to find the best fitting subpath.

Adopted benchmarking metrics. non-dominated

NDsbyR(ND,R) = |nd ∈ ND| ∄r ∈ R : r ≺ nd (14)

NDsRbyR(ND,R) =
NDsbyR(ND,R)

|ND|
(15)

The reference set R is defined as a collection of candidate solutions with
respect to which we can compare two algorithms. In other words, these
metrics estimate, respectively, the amount of solutions in the set ND which
are dominated by any solution belonging to the reference set R, expressed
as absolute number and percentage, respectively.

26

5.1 Discussion of the results

The results of the computational experiments are now presented and dis-
cussed, focusing on the performance of MO-NSGA-VNS algorithm as mea-
sured against the Pareto front in terms of quality of the obtained solutions
by adopting a variety of convergence-diversity criteria. Experiments are
presented as follows. Firstly we present the comparison between the re-
sults obtained by MO-NSGA-VNS and those provided by the scalarisation
technique approach on the (MO-CDP) model. Table 1 is aimed at com-
paring the overall number of non-dominated solutions provided (NDs) and
the required CPU times, against each distinct instance. Recall for each pair
(n,m) a couple of instance occurrences are generated, denoted with two
triplets (n,m, o), with o = {0, 1}. Computational times for the MO-CDP
scalarisation technique express the sum of all computational times needed
to solve each convex combination obtained at varying λi into the objective
function, where no time limit was applied. As regards MO-NSGA-VNS,
Min(Time) and AV G(Time) report respectively the time when the first
solution was found and the average time when non-dominated solutions ND
were identified, recalling how a time limit of 3600 seconds was set for this
case. A value of theMin(Time) column equal to 0 suggests therefore how at
least one solution among the final set of non-dominated solutions was found
during the initialisation phase by the Pool-Init-Gen algorithm (see Section
Algorithm 3.1). From the results, it is apparent how the MO-NSGA-VNS
provided clear advantages in terms of computing times and number of iden-
tified solutions. It is also worth clarifying that the measured CPU time
needed for executing the whole Init phase iterative algorithm on instances
of any size was negligible as regularly less than one second. This evidence
matches with the worst-case analysis already provided for the proposed Pool-
Init-Gen algorithm, and corroborates experimentally its high performance,
as it requires very limited computational resources but in some cases even
produces non-dominated solutions. In order to explore and compare the
quality of the solutions obtained by the two approaches, the results in Ta-
ble 2 adopt the metrics 14 and 15 above described to appreciate how only
a few solutions provided by MO-NSGA-VNS (around 1.25 on the average)
are dominated by other solutions in the reference set, which includes the
solutions found by the MO-CDP algorithm, whereas the MO-NSGA-VNS
outperformed the MO-CDP approach by 25 solutions on the average. Re-
sults in Table 3 report the range of values for the three objective functions: if
the Pareto front solutions span on a broader interval, then a better approx-
imation of the reference set is reflected. These results are therefore devoted

27

to evaluate diversity and inclusiveness of the set of obtained non-dominated
solutions for each algorithm, and assess how broadly these are spread over
the Pareto front. The two approaches show a quite different behaviour in
this respect, as functions f1 and f2 span a quite wider range on most of the
solved instances, with exception for the larger ones, while the range for f3
is consistently wider for the metaheuristic approach.

Also, it is worth noticing how the lowest values in terms of cost of the
CDP are regularly identified by the evolutionary metaheuristic, thus hit-
ting one of the underlying goals of this multi-objective extension of the
CDP approach: containing as much as possible the transportation costs for
surveillance operations while securing the highest possible effectiveness in
terms of quality of the surveillance.

The results of the experiments aimed at benchmarking MO-NSGA-VNS
against standard evolutionary algorithms are provided in Table 4 by report-
ing, for each instance, the number NDs of solutions provided as an output
by each algorithm, and the percentage NDsRbyR of such solutions which
result to be dominated by using the metric 15 presented above. Note such a
metric is applied with a one-vs-all method, where each non-dominated solu-
tion set ND produced by a given algorithm is compared to a reference solu-
tion set R, being the latter equal to the union of all the solutions produced
by the remaining algorithms. Clearly, such a reference set R differs from
the one adopted in Table 2. It can be observed how the MO-NSGA-VNS
outperforms both the competing approaches, providing somewhat regularly
the highest number of solutions, and presenting at the same time the lowest
values for the dominance metric. Indeed, although at a first glance on some
instances the number of solutions returned by the subpaths-NSGA may ap-
pear higher than those provided by the MO-NSGA-VNS, NDsRbyR scores
are effective at showing how most of such produced solutions are dominated
and thus do not represent suitable candidates to approximate the Pareto
front. Figures 5-6 are instrumental at visualising the prevailing profile of
the MO-NSGA-VNS algorithm solutions as compared to the competing ap-
proaches.

Conclusions

In this paper we proposed a multiple objective approach to extend the Crit-
ical Disruption Path problem, a path-based network interdiction problem
aimed at optimising surveillance operations. While coupling the size of the
maximal connected component and the number of such components in the

28

Table 1: Performance comparisons between MO-CDP and MO-NSGA-VNS.
Column 1 describes the instance triplet (n,m,o). Columns 2 and 4 present
the number of non-dominated solutions NDs for both algorithms: MO-CDP
and MO-NSGA-VNS. Running times are reported into columns 3, 5 and 6.

MO-CDP MO-NSGA-VNS
(n,m,o) NDs Time (s) NDs Min(Time(s)) AV G(Time(s))

(40,156,0) 16 25816.76 33 1133 3024.15
(40,156,1) 11 19098.29 21 0 2947.00
(40,780,0) 9 153529.76 29 0 2461.55
(40,780,1) 13 189728.45 26 0 2093.81
(40,1404,0) 17 246153.33 29 2 2333.97
(40,1404,1) 14 260671.31 27 126 1578.22
(50,245,0) 20 39137.43 39 0 2705.69
(50,245,1) 17 27888.02 16 7 2826.88
(50,1225,0) 9 123010.44 27 1 2792.30
(50,1225,1) 6 139596.33 26 1822 3147.50
(50,2205,0) - - 22 1365 3126.77
(50,2205,1) - - 28 315 2052.75
(60,354,0) 23 81649.94 48 196 1470.44
(60,354,1) 10 63908.25 54 182 2120.20
(60,1770,0) - - 40 449 2462.05
(60,1770,1) - - 48 336 1868.25
(60,3186,0) - - 31 409 2767.23
(60,3186,1) - - 25 0 2744.80
(70,483,0) 16 184657.06 53 49 1765.02
(70,483,1) 28 153343.14 68 119 1602.93
(70,2415,0) - - 32 5 2288.56
(70,2415,1) - - 44 693 2602.36
(70,4347,0) - - 22 0 3018.64
(70,4347,1) - - 27 748 2596.74
(80,632,0) 5 48229.90 21 0 2412.76
(80,632,1) 12 169140.29 18 20 1533.89
(80,3160,0) - - 46 82 1673.41
(80,3160,1) - - 50 0 2306.84
(80,5688,0) - - 14 1457 2325.43
(80,5688,1) - - 22 3 2603.00
(90,801,0) 1 63118.42 26 19 2628.27
(90,801,1) 1 52530.52 19 0 3055.53
(90,4005,0) - - 26 961 2793.58
(90,4005,1) - - 26 0 2903.46
(90,7209,0) - - 21 1745 2753.76
(90,7209,1) - - 30 0 2899.10

29

Table 2: Results of the capacity performance measure for MO-NSGA-VNS
algorithm, where the reference set R contains the solutions found by the MO-
CDP algorithm. Column 1 describes the instance triplet (n,m,o). Columns
2-3 report the NDs for algorithms MO-CDP and MO-NSGA-VNS. Columns
4-5, report NDsbyR and NDsRbyR metric values (Metrics 14, 15). Last
column 6 reports the solutions in common with the reference set R.

MO-CDP MO-NSGA-VNS
(n,m,o) NDs NDs NDsbyR NDsRbyR ∩

(40,156,0) 16 33 5 0.16 6
(40,156,1) 11 21 3 0.15 6
(40,780,0) 9 29 2 0.07 4
(40,780,1) 13 26 6 0.24 1
(40,1404,0) 17 29 9 0.32 2
(40,1404,1) 14 27 8 0.30 1
(50,245,0) 20 39 5 0.13 1
(50,245,1) 17 16 2 0.13 2
(50,1225,0) 9 27 1 0.04 2
(50,1225,1) 6 26 1 0.04 1
(50,2205,0) - 22 - - -
(50,2205,1) - 28 - - -
(60,354,0) 23 48 9 0.19 4
(60,354,1) 10 54 3 0.06 4
(60,1770,0) - 40 - - -
(60,1770,1) - 48 - - -
(60,3186,0) - 31 - - -
(60,3186,1) - 25 - - -
(70,483,0) 16 53 4 0.08 2
(70,483,1) 28 68 8 0.12 4
(70,2415,0) - 32 - - -
(70,2415,1) - 44 - - -
(70,4347,0) - 22 - - -
(70,4347,1) - 27 - - -
(80,632,0) 5 21 1 0.05 2
(80,632,1) 12 18 3 0.17 1
(80,3160,0) - 46 - - -
(80,3160,1) - 50 - - -
(80,5688,0) - 14 - - -
(80,5688,1) - 22 - - -
(90,801,0) 1 26 0 0.00 1
(90,801,1) 1 19 0 0.00 1
(90,4005,0) - 26 - - -
(90,4005,1) - 26 - - -
(90,7209,0) - 21 - - -
(90,7209,1) - 30 - - -

30

Table 3: Performance comparisons between MO-CDP and MO-NSGA-VNS
algorithms, column 1 describes the instance triplet (n,m,o). Columns 2-5
report the range of the three objective functions f1,f2 f3 and the cost as a
number of hops for the MO-CDP problem. Columns 6-9 report these ranges
for the MO-NSGA-VNS problem.

MO-CDP MO-NSGA-VNS
(n,m,o) f1 f2 f3 Hops f1 f2 f3 Hops

(40,156,0) [1-36] [2-19] [24-711] [2-22] [4-36] [2-17] [24-417] [2-15]
(40,156,1) [1-30] [3-15] [203-827] [7-25] [4-30] [3-15] [203-587] [7-19]
(40,780,0) [1-32] [2-7] [122-1241] [6-32] [10-32] [2-3] [122-2313] [6-27]
(40,780,1) [1-37] [2-7] [134-1327] [1-33] [12-37] [2-3] [134-2825] [1-26]
(40,1404,0) [0-35] [0-3] [84-2440] [4-39] [10-35] [1-2] [84-9237] [4-29]
(40,1404,1) [0-36] [0-3] [130-2302] [3-39] [11-36] [1-2] [130-8301] [3-27]
(50,245,0) [1-36] [11-32] [93-970] [3-20] [5-36] [11-26] [93-944] [3-17]
(50,245,1) [1-30] [14-32] [73-986] [6-21] [10-30] [14-22] [73-486] [6-17]
(50,1225,0) [1-45] [1-7] [83-3269] [4-45] [21-45] [1-2] [83-3822] [4-27]
(50,1225,1) [1-45] [1-7] [166-3103] [4-45] [18-45] [1-2] [166-9588] [4-31]
(50,2205,0) [-] [-] [-] [-] [19-46] [1-1] [117-10107] [3-30]
(50,2205,1) [-] [-] [-] [-] [18-46] [1-2] [129-15299] [3-30]
(60,354,0) [1-52] [5-30] [88-1969] [3-31] [8-52] [5-26] [88-1897] [3-21]
(60,354,1) [1-52] [4-27] [135-2080] [4-32] [9-52] [4-25] [135-2638] [4-25]
(60,1770,0) [-] [-] [-] [-] [24-53] [1-9] [247-10659] [6-30]
(60,1770,1) [-] [-] [-] [-] [27-57] [1-4] [135-8213] [2-30]
(60,3186,0) [-] [-] [-] [-] [28-56] [1-3] [458-17497] [3-29]
(60,3186,1) [-] [-] [-] [-] [25-57] [1-3] [188-17405] [2-32]
(70,483,0) [1-57] [9-34] [239-3346] [4-36] [6-57] [9-30] [239-2533] [4-21]
(70,483,1) [1-59] [8-33] [219-3039] [3-37] [10-59] [8-29] [219-2436] [3-21]
(70,2415,0) [-] [-] [-] [-] [35-64] [2-6] [119-12206] [4-28]
(70,2415,1) [-] [-] [-] [-] [33-68] [1-7] [122-12359] [1-30]
(70,4347,0) [-] [-] [-] [-] [36-63] [1-2] [123-21697] [6-32]
(70,4347,1) [-] [-] [-] [-] [38-63] [1-2] [249-27361] [5-30]
(80,632,0) [3-67] [6-35] [402-2371] [5-36] [37-67] [6-21] [402-1537] [5-20]
(80,632,1) [1-73] [4-47] [64-3133] [3-36] [39-73] [4-23] [64-359] [3-14]
(80,3160,0) [-] [-] [-] [-] [48-76] [1-11] [312-18037] [3-22]
(80,3160,1) [-] [-] [-] [-] [40-75] [1-11] [165-15957] [4-32]
(80,5688,0) [-] [-] [-] [-] [51-71] [1-1] [280-12378] [8-28]
(80,5688,1) [-] [-] [-] [-] [48-70] [1-2] [210-18573] [9-30]
(90,801,0) [86-86] [1-1] [170-170] [3-3] [54-86] [1-1] [170-4218] [3-35]
(90,801,1) [88-88] [1-1] [60-60] [1-1] [61-88] [1-1] [60-2008] [1-28]
(90,4005,0) [-] [-] [-] [-] [63-84] [1-2] [451-21072] [5-25]
(90,4005,1) [-] [-] [-] [-] [57-83] [3-7] [159-18480] [4-27]
(90,7209,0) [-] [-] [-] [-] [61-83] [1-2] [261-44696] [5-28]
(90,7209,1) [-] [-] [-] [-] [62-87] [1-2] [288-45496] [2-26]

31

Table 4: Results of the capacity performance measure for all the created
algorithms, where the reference set R is the union of all the ND sets found
by the other algorithms. Column 1 describes the instance triplet (n,m,o).
Columns 2-3, 4-5 and 6-7 report the NDs value and the NDsRbyR metric
value (see Metric 15) for each genetic algorithm.

MO-NSGA-VNS Subpaths-NSGA Basic-NSGA
(n,m,o) NDs NDsRbyR NDs NDsRbyR NDs NDsRbyR

(40,156,0) 33 0.15 35 0.29 3 0.33
(40,156,1) 21 0.14 20 0.35 4 0.50
(40,780,0) 29 0.07 30 0.70 1 1.00
(40,780,1) 26 0.23 23 0.83 4 0.25
(40,1404,0) 29 0.31 26 0.77 2 0.50
(40,1404,1) 27 0.30 35 0.66 2 1.00
(50,245,0) 39 0.21 37 0.35 7 0.71
(50,245,1) 16 0.19 38 0.29 5 0.40
(50,1225,0) 27 0.04 44 0.64 3 0.33
(50,1225,1) 26 0.04 32 0.66 3 0.67
(50,2205,0) 22 0.00 30 0.60 2 0.50
(50,2205,1) 28 0.21 27 0.48 2 1.00
(60,354,0) 48 0.31 50 0.32 5 0.80
(60,354,1) 54 0.17 44 0.41 4 1.00
(60,1770,0) 40 0.02 58 0.36 4 0.50
(60,1770,1) 48 0.04 50 0.48 6 0.50
(60,3186,0) 31 0.00 39 0.56 4 0.50
(60,3186,1) 25 0.00 36 0.47 4 0.75
(70,483,0) 53 0.15 53 0.45 6 0.50
(70,483,1) 68 0.25 48 0.38 6 0.67
(70,2415,0) 32 0.03 50 0.40 6 0.33
(70,2415,1) 44 0.00 43 0.56 5 0.20
(70,4347,0) 22 0.00 23 0.61 3 0.67
(70,4347,1) 27 0.00 23 0.74 2 1.00
(80,632,0) 21 0.19 37 0.19 7 0.86
(80,632,1) 18 0.17 51 0.24 4 1.00
(80,3160,0) 46 0.04 36 0.22 6 0.67
(80,3160,1) 50 0.06 47 0.19 6 0.50
(80,5688,0) 14 0.00 35 0.31 3 0.67
(80,5688,1) 22 0.00 31 0.32 3 0.67
(90,801,0) 26 0.00 25 0.80 3 1.00
(90,801,1) 19 0.00 26 0.58 4 0.25
(90,4005,0) 26 0.00 34 0.59 4 0.75
(90,4005,1) 26 0.00 24 0.25 6 0.50
(90,7209,0) 21 0.00 23 0.43 2 0.50
(90,7209,1) 30 0.03 27 0.56 3 0.67

32

Figure 5: Comparisons among the different evolutionary algorithms report-
ing NDs-NDsbyR values for each pair (n,m).

Figure 6: Comparisons among the different evolutionary algorithms report-
ing average time values for each pair (n,m).

33

effort to maximise the surveillance effectiveness, our variant of the CDP
problem concurrently seeks for the minimisation of the critical path cost,
thus increasing the impact of adopting a CDP approach for practical pur-
poses, supporting surveillance planning for a variety of application fields
and different transportation means. Motivated by the provably high level of
complexity of the considered problem, we developed an original evolution-
ary metaheuristic algorithmic approach, which hybridises modified-NSGA-II
and VNS for finding efficiently an approximation of the Pareto front on in-
creasing size networks. We also complemented this algorithm with a tailored
preliminary procedure, based on a minisum variant of the shortest disjoint
path pair problem, and aimed at allowing a preliminary efficient calculation
of high quality initial solutions to feed the evolutionary algorithm, concur-
rently decreasing its computational effort requirements by reducing the set
of candidates.

References

[1] R. Albert, H. Jeong, and A. L. Barabasi. Error and attack tolerance of
complex networks. Nature, 406:378–382, aug 2000.

[2] J. E. C. Arroyo, R. dos Santos Ottoni, and A. de Paiva Oliveira. Multi-
objective variable neighborhood search algorithms for a single machine
scheduling problem with distinct due windows. Electronic Notes in
Theoretical Computer Science, 281:5– 19, 2011. Proceedings of the
2011 Latin American Conference in Informatics (CLEI).

[3] A. Arulselvan, C. W. Commander, P. M. Pardalos, and O. Shylo. Man-
aging network risk via critical node identification. In B. Rustem and
N. Gulpinar, editors, Risk Management in Telecommunication Net-
works. Springer, 2007.

[4] A. Arulselvan, C. W. Commander, L. Elefteriadou, and P. M. Pardalos.
Detecting critical nodes in sparse graphs. Computers & Operations
Research, 36(7):2193–2200, 2009.

[5] H. Asefi, F. Jolai, M. Rabiee, and M. E. Tayebi Araghi. A hybrid
NSGA-II and VNS for solving a bi-objective no-wait flexible flowshop
scheduling problem. The International Journal of Advanced Manufac-
turing Technology, 75(5-8):1017–1033, 2014.

[6] M. O. Ball, B. L. Golden, and R. V. Vohra. Finding the most vital arcs
in a network. Operations Research Letters, 8(2):73–76, 1989.

34

[7] M. Basseur, A. Talbi, E.-G.and Nebro, and E. Alba. Avancées des
métaheuristiques pour l’optimisation combinatoire multi-objectif. Tech-
nical report, INRIA research report, 2006.

[8] R. Cohen, S. Havlin, and D. Ben-Avraham. Efficient immunization
strategies for computer networks and populations. Physical Review
Letters, 91(24):247–901, Dec 2003.

[9] K. Deb and H. Jain. An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
Part I: Solving problems with box constraints. IEEE Transactions on
Evolutionary Computation, 18(4):577–601, 2014.

[10] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and eli-
tist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, 2002.

[11] T. N. Dinh, Y. Xuan, M. T. Thai, E. K. Park, and T. Znati. On
approximation of new optimization methods for assessing network vul-
nerability. In Proceedings of the 29th conference on Information com-
munications, INFOCOM’10, pages 2678–2686, Piscataway, NJ, USA,
2010. IEEE Press.

[12] T. Eilam-Tzoreff. The disjoint shortest paths problem. Discrete Applied
Mathematics, 85(2):113 – 138, 1998.

[13] M. Emmerich, N. Hochstrate, and B. Naujoks. An EMO algorithm
using the Hypervolume Measure as Selection Criterion. In In interna-
tional Conference on Evolutionary Multi-Criterion Optimization, pages
62–76. Springer, 2005.

[14] M. T. M. Emmerich and A. H. Deutz. A tutorial on multiobjective
optimization: fundamentals and evolutionary methods. Natural Com-
puting, 17(3):585–609, September 2018.

[15] S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph home-
omorphism problem. Theoretical Computer Science, 10(2):111 – 121,
1980.

[16] A. Frank. Packing paths, circuits and cuts: a survey. Report. Sonder-
forschungsbereich 303, 1988.

35

[17] F. Furini, I. Ljubić, S. Martin, and P. San Segundo. The maximum
clique interdiction problem. European Journal of Operational Research,
277(1):112 – 127, 2019.

[18] X. Gandibleux and M. Ehrgott. 1984-2004–20 years of multiobjective
metaheuristics. but what about the solution of combinatorial problems
with multiple objectives? In Evolutionary Multi-Criterion Optimiza-
tion, pages 33–46. Springer, 2005.

[19] M. J. Geiger. Randomised variable neighbourhood search for multi
objective optimisation. CoRR, abs/0809.0271, 2008.

[20] D. Granata and A. Sgalambro. Network interdiction through length-
bounded critical disruption paths: a bi-objective approach. Electronic
Notes in Discrete Mathematics, 2016.

[21] D. Granata, G. Steeger, and S. Rebennack. Network interdiction via
a critical disruption path: Branch-and-price algorithms. Computers &
Operations Research, 40(11):2689–2702, 2013.

[22] Pierre Hansen and Nenad Mladenović. Variable neighborhood search
for the p-median. Location Science, 5(4):207–226, 1997.

[23] T. E. Harris and F. S. Ross. Fundamentals of a method for evaluat-
ing rail net capacities. Research Memorandum RM-1573, The Rand
Corporation, Santa Monica, CA, 1955.

[24] P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han. Attack vulnerability
of complex networks. Physical Review E, 65:056109, May 2002.

[25] H. Ishibuchi and T. Murata. Multi-objective genetic local search al-
gorithm. In Evolutionary Computation, 1996., Proceedings of IEEE
International Conference on, pages 119–124, May 1996.

[26] H. Ishibuchi and T. Murata. A multi-objective genetic local search
algorithm and its application to flowshop scheduling. Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions
on, 28(3):392–403, Aug 1998.

[27] E. Israeli and R. K. Wood. Shortest-path network interdiction. Net-
works, 40:97–111, 2002.

[28] N. Jozefowiez, F. Semet, and E.G. Talbi. From single-objective to
multi-objective vehicle routing problems: Motivations, case studies, and

36

methods. In B. Golden, S. Raghavan, and E. Wasil, editors, The Vehicle
Routing Problem: Latest Advances and New Challenges, volume 43 of
Operations Research & Computer Science Interfaces, pages 445–471.
Springer US, 2008.

[29] M Lalou, Tahraoui M. A., and Kheddouci H. The critical node detection
problem in networks: A survey. Computer Science Review, 28:92 – 117,
2018.

[30] C.L. Li, S.T. McCormick, and D. Simchi-Levi. On the computational
complexity of combinatorial problems. Networks, 5:45–68, 1975.

[31] C.L. Li, S.T. McCormick, and D. Simchi-Levi. The complexity of find-
ing two disjoint paths with min-max objective function. Discrete Ap-
plied Mathematics, 26(1):105 –115, 1990.

[32] C. Lim and J. C. Smith. Algorithms for discrete and continuous mul-
ticommodity flow network interdiction problems. IIE Transactions, 39
(1):15–26, 2007.

[33] P. F. Mahdavi, V. Boginski, and E. L. Pasiliao. Minimum vertex blocker
clique problem. Networks, 64(1):48–64, 2014.

[34] L. Martins, T. Gomes, and D. Tipper. Efficient heuristics for determin-
ing node-disjoint path pairs visiting specified nodes. Networks, 70(4):
292–307, 2017.

[35] I. Mishkovski, M. Biey, and L. Kocarev. Vulnerability of complex net-
works. Communications in Nonlinear Science and Numerical Simula-
tion, 16(1):341 – 349, 2011.

[36] N. Mladenović and P. Hansen. Variable neighborhood search. Computer
and Operations Research, 24(11):1097–1100, November 1997.

[37] M. Polacek, R. F. Hartl, K. Doerner, and M. Reimann. A variable
neighborhood search for the multi depot vehicle routing problem with
time windows. Journal of heuristics, 10(6):613–627, 2004.

[38] J. O. Royset and R. K. Wood. Solving the bi-objective maximum-flow
network-interdiction problem. INFORMS Journal on Computing, 19
(2):175–184, 2007.

[39] M. Schilde, K. F. Doerner, R. F. Hartl, and G. Kiechle. Metaheuristics
for the bi-objective orienteering problem. Swarm Intelligence, 3(3):
179–201, 2009.

37

[40] S. Shen, J. C. Smith, and R. Goli. Exact interdiction models and
algorithms for disconnecting networks via node deletions. Discrete Op-
timization, 9(3):172–188, 2012.

[41] Y. Shiloach. A polynomial solution to the undirected two paths prob-
lem. J. ACM, 27(3):445–456, July 1980.

[42] J. C. Smith and Y. Song. A survey of network interdiction models and
algorithms. European Journal of Operational Research, 283(3):797 –
811, 2020.

[43] M.D. Summa, A. Grosso, and M. Locatelli. Complexity of the critical
node problem over trees. Computers & Operations Research, 38(12):
1766–1774, 2011.

[44] J. W. Suurballe. Disjoint paths in a network. Networks, 4(2):125–145,
1974.

[45] J. W. Suurballe and R. E. Tarjan. A quick method for finding shortest
pairs of disjoint paths. Networks, 14(2):325–336, 1984.

[46] E-G. Talbi, M. Basseur, A. J Nebro, and E. Alba. Multi-objective opti-
mization using metaheuristics: non-standard algorithms. International
Transactions in Operational Research, 19(1-2):283–305, 2012.

[47] S. Tragoudas and Y. Varol. Computing disjoint paths with length con-
straints. In F. d’Amore, P. Franciosa, and A. Marchetti-Spaccamela,
editors, Graph-Theoretic Concepts in Computer Science, volume 1197
of Lecture Notes in Computer Science, pages 375–389. Springer Berlin
Heidelberg, 1997.

[48] M. Ventresca. Global search algorithms using a combinatorial
unranking-based problem representation for the critical node detection
problem. Computers & Operations Research, 39(11):2763–2775, 2012.

[49] M. Ventresca and D. Aleman. A derandomized approximation algo-
rithm for the critical node detection problem. Computers & Operations
Research, 43:261– 270, 2014.

[50] M. Ventresca and D. Aleman. A fast greedy algorithm for the critical
node detection problem. In Z. Zhang, L. Wu, W. Xu, and D.-Z. Du,
editors, Combinatorial Optimization and Applications, volume 8881 of
Lecture Notes in Computer Science, pages 603–612. Springer Interna-
tional Publishing, 2014.

38

[51] J. Vygen. Disjoint paths. Citeseer, 1994.

[52] J. L. Walteros, A. Veremyev, P. M. Pardalos, and E. L. Pasiliao. Detect-
ing critical node structures on graphs: A mathematical programming
approach. Networks, 73(1):48–88, 2019.

[53] R. Wollmer. Removing arcs from a network. Operations Research, 12
(6):934–940, 1964.

[54] R. K. Wood. Deterministic network interdiction. Mathematical and
Computer Modelling, 17(2):1–18, 1993.

[55] G. R. Zavala, A. J. Nebro, F. Luna, and C.A. Coello Coello. A sur-
vey of multi-objective metaheuristics applied to structural optimization.
Structural and Multidisciplinary Optimization, 49(4):537–558, 2014.

[56] R. Zenklusen. Matching interdiction. Discrete Applied Mathematics,
158(15):1676 – 1690, 2010.

[57] Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary
algorithm based on decomposition. IEEE Transactions on evolutionary
computation, 11(6):712–731, 2007.

[58] T. Zhou, Z. Q. Fu Fu, and B. H. Wang. Epidemic dynamics on complex
networks. Progress in Natural Science, 16:452, 2006.

[59] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the
Strength Pareto Evolutionary Algorithm. Technical report, 2001.

[60] E. Zitzler, M. Laumanns, and S. Bleuler. A tutorial on evolutionary
multiobjective optimization. In Metaheuristics for multiobjective opti-
misation, pages 3–37. Springer, 2004.

39

	Introduction: the role of critical disruption paths in network surveillance and security
	Problem statement
	Relevance of the MO-CDP for application purposes

	Generating an initial set of feasible solutions
	 Pool-Init-Gen algorithm construction
	Generating an initial population

	 Hybrid Multi-Objective Modified-NSGA-II Variable Neighborhood Search (MO-NSGA-VNS)
	Using a modified Multi-Objective Variable neighborhood search to generate the offsprings

	Testbed and Computational Experiments
	Discussion of the results

