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Abstract A classical approach to the restricted three-
body problem is to analyze the dynamics of the mass-
less body in the synodic reference frame. A different
approach is represented by the perturbative treatment:
in particular the averaged problem of a mean-motion
resonance allows to investigate the long-term behav-
ior of the solutions through a suitable approximation
that focuses on a particular region of the phase space.
In this paper, we intend to bridge a gap between the
two approaches in the specific case of mean-motion
resonant dynamics, establish the limit of validity of
the averaged problem and take advantage of its results
in order to compute trajectories in the synodic refer-
ence frame. After the description of each approach, we
develop a rigorous treatment of the averaging process,
estimate the size of the transformation and prove that
the averaged problem is a suitable approximation of the
restricted three-body problem as long as the solutions
are located outside the Hill’s sphere of the secondary.
In such a case, a rigorous theoremof stability over finite
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but large timescales can be proven. We establish that a
solution of the averaged problem provides an accurate
approximation of the trajectories on the synodic refer-
ence frame within a finite time that depend on the min-
imal distance to the Hill’s sphere of the secondary. The
last part of this work is devoted to the co-orbital motion
(i.e., the dynamics in 1:1 mean-motion resonance) in
the circular-planar case. In this case, an interpretation
of the solutions of the averaged problem in the synodic
reference frame is detailed and a method that allows to
compute co-orbital trajectories is displayed.

Keywords Restricted three-body problem · Perturba-
tive treatment · Averaged Hamiltonian · Mean-motion
resonance · Co-orbital motion

1 Introduction

This work focuses on the restricted three-body prob-
lem, that is the study of the motion of a massless body
affected by the gravitational attraction of two massive
bodies. More precisely, we will consider the situation
for which the mass of the secondary body is treated as a
small quantity. Since the planetary three-body problem
will also be mentioned, we recall that it corresponds to
the study of the motion of two massive bodies orbiting
a more massive one, the three bodies being governed
only by their mutual gravitational interactions.

The analysis of the dynamics in the synodic refer-
ence frame, that is the frame rotating with the mean
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longitude of the secondary, is the classical approach
adopted for the restricted three-body problem. Usu-
ally, periodic orbit families and the dynamics located
in their neighborhood are computed by using Poincaré
maps and continuation methods (see, e.g., [13,37]).

Perturbative treatments provide another approach.
They allow to investigate specific regions of the phase
space through a proper approximation. Among them,
averaging methods are common techniques in order
to study the long-term dynamics of the solutions. For
instance, the secular problem studies the long-term
deformation of the ellipse of the massless body as well
as the evolution of its orientation in the tridimensional
space. It is obtained by the averaging of the Hamilto-
nian over the mean longitudes of the secondary and of
the massless body. More precisely, it corresponds to a
symplectic transformation, that is supposed to be close
to the identity, and that maps the original Hamiltonian
to the secular one.

Lagrange [17] introduced the secular problem in the
framework of the stability of the Solar System and the
expression of the secular Hamiltonian of the planetary
three-body problem was given by Poincaré [26]. Pre-
cise estimates on the size of the transformation of aver-
aging were required in order to prove theorems of sta-
bility like KAM theory and were provided, especially
by Arnol’d [1], Féjoz [10], Chierchia and Pinzari [6].

When the massless body is in mean-motion reso-
nance with the secondary, that is, when their orbital
periods are commensurable, the transformation lead-
ing to the secular Hamiltonian is no more close to the
identity and the solutions of the secular problem do not
provide a good representation of the real motion. In
such a case, it is still possible to use averaging tech-
niques: the averaging process is performed over one
mean longitude, generally the one of the secondary, and
after the introduction of a resonant angle, that is a par-
ticular linear combination of the two mean longitudes
which characterizes the mean-motion resonance. This
defines the averaged problem that will be considered in
this work.

Many authors investigatedmean-motion resonances
through an averaged Hamiltonian and the literature on
this subject has become so rich that it is impossible to
cite all the articles here. Nevertheless, let us mention
the important series of works realized by Schubart [31–
33], which took advantage of the canonical variables
and method suggested by Poincaré [27] and applied
an averaging process in order to get the interesting

part of the Hamiltonian for mean-motion resonances.
Likewise, the second fundamental model of resonance,
developed by Henrard and Lemaitre [16], follows the
strategy of Poincaré [27], and is commonly used in
order to study mean-motion resonances. Moons [19]
extended the work of Schubart and presented an inte-
grator adapted to the solutions of the averaged problem.
Being the latter not valid for the 1:1 mean-motion reso-
nance, Nesvorný et al. [24] adapted the algorithm with
a different choice of canonical variables.

The co-orbital motion, or equivalently, the trajecto-
ries in 1:1 mean-motion resonance with the secondary,
has been intensively studied in the framework of the
averaged problem (see, e.g., [18,20,34,35]). In such a
case, since the semimajor axis of the massless body
is almost the same as the one of the secondary, the
issue generated by periodical close encounters arises,
even for quasi-circular trajectories. In particular, Robu-
tel and Pousse [30] and Pousse et al. [28] highlighted,
with the help of a frequency analysis, that the aver-
aged Hamiltonian reflects poorly the dynamics close
to the singularity associated with the collision between
the secondary and the massless body. Rigorous esti-
mates on the averaging process have been given by
Robutel et al. [29]. More precisely, they allowed the
authors to prove in the planetary three-body problem,
that the averaged problem is valid for two co-orbital
bodies on quasi-circular orbits that stand at a mutual
distance larger than their respective Hill’s radius.

The limit of validity of the averaged problem is not
specific to the case of the co-orbitalmotion and can also
occur for other resonant trajectories that cross the orbit
of the secondary (i.e., trajectories with a non-negligible
eccentricity). This weakness was already outlined in
the works of Schubart [31] and Moons [19]. There-
fore, in the present paper, we intend to generalize the
result given by Robutel et al. [29] and provide rigorous
estimates on the averaging process in order to define a
domain of validity of the averaged problem, in the case
of a generic mean-motion resonance, and for any value
of inclination and eccentricities (massless body as well
as secondary).

According to the Poincaré classification (see, e.g.,
[5] for more details), some of the periodic families
described in the synodic reference frame are related to
mean-motion resonances and thus can also be tackled
in the averaged problem as defined here. For that rea-
son,we also intend to bridge a gap between the classical
approach in the synodic reference frame and the aver-
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aged problem with a unified Hamiltonian formalism
that allows to represent solutions in both approaches.
The underlying idea of this work is to understand the
limit of validity of the averaged problem and take
advantage of its solutions (e.g., initial conditions, types
of motion, frequencies) for the computation of trajec-
tories in the synodic reference frame.

The paper is structured as follows. Section 2 intro-
duces the restricted three-body problem through the
classical approach, recalls some remarkable solutions
in the synodic reference frame that are connected to the
co-orbital motion, and presents the reasoning that led
to the averaged problem.

In Sect. 3, the size of the transformation of averaging
is estimated. This allows to define a domain of validity
of the approximation and to prove a rigorous theorem
of stability over finite times.

In Sect. 4, we focus on the co-orbital motion in
the circular-planar case and detail the correspondence
between a solution of the averaged problem and its cor-
responding trajectory in the synodic reference frame.
In particular, we will recover the remarkable solutions
described in Sect. 2. Finally, a method that allows to
compute co-orbital trajectories in the synodic reference
frame will be described.

Appendix A gives the proof of the theorems and
lemma used in our reasonings.

2 Two approaches for the restricted three-body
problem

2.1 The restricted three-body problem

2.1.1 Definition in the heliocentric reference frame

Let (r, ṙ) be, respectively, the heliocentric position and
velocity vector in R

3 of a massless body (particle,
spacecraft or asteroid), that is affected by the gravi-
tational attraction of a massive primary (the Sun or a
planet) of mass 1− ε > 1/2, and a secondary (a planet
or a moon) of mass ε > 0.

The motion of the two massive bodies, respectively,
denoted as Sun and planet, follows a solution of the
two-body problem. Hence, the trajectory of the planet,
denoted r′(t) in the heliocentric reference frame, lies
on an ellipse that can be defined by the orbital ele-
ments (a′, e′, I ′,Ω ′, ω′, v′), i.e., respectively, semima-
jor axis, eccentricity, inclination, longitude of the node,

argument of the periaster and true anomaly. Without
loss of generality, the scale and orientation of the orbit
are arbitrarily chosen such that

(a′, I ′,Ω ′, ω′) = (1, 0, 0, 0).

Likewise, the orbital period of the planet is fixed to 2π
(and therefore its mean motion to 1) which imposes the
gravitational constant to be equal to 1.The eccentricity
e′ is a parameter of the problem associated with the
shape of the planet’s orbit while the angle v′ stands
for its position on the ellipse. Instead of using the true
anomaly, themean longitudeλ′ will be adopted in order
to take advantage of its proportionality to time since

t = λ′(t) + 2kπ where k ∈ Z.

In the heliocentric reference frame, the equations of
motion of the particle read (see [22]):

r̈ = −(1 − ε)
r

‖r‖3 − ε
r − r′(λ′)

‖r − r′(λ′)‖3 − ε
r′(λ′)

‖r′(λ′)‖3
(1)

where “‖ · ‖” is the Euclidean norm associated with the
scalar product denoted “ • ” in what follows. The two
first terms are, respectively, the gravitational force of
the Sun and of the planet. The third term is associ-
ated with the acceleration of the heliocentric reference
frame generated by the Sun–planet gravitational inter-
actions.

2.1.2 Hamiltonian formalism

Since the heliocentric vectors r and ṙ are canonical
variables, then the Hamiltonian function

H(r, ṙ, λ′) = ‖ṙ‖2
2

− 1 − ε

‖r‖ − ε

‖r − r′(λ′)‖
+ε

r • r′(λ′)
‖r′(λ′)‖3 (2)

provides the equations of motion (1). As H depends
on the periodicity of the planet, it is non-autonomous.
Moreover, the system just written, that describes the
dynamics of the particle, has 3 degrees of freedomasso-
ciatedwith the position and velocity vectors in the tridi-
mensional space. A classical technique that allows to
overcome the non-autonomous character of the system
consists in extending the phase space with the addi-
tion of a generic variable Ξ̂ conjugated with λ′. In this
extended phase space, the Hamiltonian reads H + Ξ̂ ,
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it has 4 degrees of freedom and describes the coupled
motion of the particle and the planet, namely

d

dt
(r, ṙ, λ′, Ξ̂ ) =

(
∂H
∂ ṙ

,−∂H
∂r

, 1,−∂H
∂λ′

)
.

As a consequence, investigating the restricted three-
bodyproblemconsists in studying an autonomousODE
whose solutions belong to a 8-dimensional phase space
(position and velocity in the tridimensional space, the
mean longitude of the planet and its conjugated vari-
able).A classical approach in order to simplify the anal-
ysis is to consider the behavior of the particle in the
synodic reference frame, that is the frame that rotates
with λ′ in the orbital plane of the planet.

2.2 A classical approach: the synodic reference frame

2.2.1 The synodic reference frame

Let us denoteRk(α), the rotation matrix of an angle α

about the k-axis (k ∈ {1, 2, 3}), and
L(r, ṙ) = r × ṙ,

the angular momentum of the particle in the heliocen-
tric reference frame. We recall that due to the influence
of the planet, L(r, ṙ) is not a conserved quantity of the
restricted three-body problem.

With the help of the Hamiltonian formalism, the
symplectic transformation associated with the synodic
reference frame reads

ΥSF : (R, R̃, λ′, ΞSF) �→ (r, ṙ, λ′, Ξ̂ )

with

R = R3(−λ′)r = (X,Y, Z),

R̃ = R3(−λ′)ṙ = (pX , pY , pZ ),

Ξ̂ = ΞSF − L3(R, R̃) = ΞSF + Y pX − XpY .

It provides the Hamiltonian

(H + Ξ̂) ◦ ΥSF = HSF + ΞSF

such that

HSF(R, R̃, λ′) = 1

2

∥∥∥R̃∥∥∥2 − 1 − ε

‖R‖ − ε

‖R − R′(λ′)‖
+ε

R • R′(λ′)
‖R′(λ′)‖3 − L3(R, R̃)

with R′(λ′) = R3(−λ′)r′(λ′) that corresponds to the
position of the planet. Moreover, the velocity of the
particle in the synodic reference frame is deduced as
follows:

Ṙ = ∂

∂R̃
HSF(R, R̃, λ′) = R̃ + (Y,−X, 0).

This framework gives rise to an important reduction
in the context of the circular case (e′ = 0): since the
planet is a fixed point located in R′ = (1, 0, 0), the
Hamiltonian does not depend on λ′ and ΞSF is an inte-
gral of motion that can be dropped. Hence, the dimen-
sion of the phase space to explore is reduced by two
units. Moreover, HSF is related to the Jacobi constant
that defines the energy of the particle. In the synodic
reference frame centered on the Sun, the Jacobi con-
stant can be written as follows:

C (R, Ṙ) = −2HSF(R, R̃) + ε

= (X − ε)2 + Y 2 + ε(1 − ε)

+2

(
ε

‖R − (1, 0, 0)‖ + 1 − ε

‖R‖
)

− ∥∥Ṙ∥∥2 .

(3)

Thus, for a given value of C , the corresponding isoen-
ergetic hypersurface is a manifold of dimension 5. C
being the only conserved quantity (see [37]), it is not
possible to reduce the problem through another global
transformation. A further way to simplify the study is
to consider the particle’s motion restricted to the orbital
plane of the planet. Hence, the phase space to explore
can be reduced by two units. Consequently, investigat-
ing the restricted three-body problem in the circular-
planar case is equivalent to explore a one-parameter
family of 3-dimensional manifolds parametrized by the
energy. Without too much details, the following part is
dedicated to some remarkable solutions of the circular-
planar case that are relevant for the scope of this work,
i.e., the families that are connected to the co-orbital
motion.

2.2.2 Some remarkable solutions in the
circular-planar case (e′ = 0)

We recall that the configuration space of the circular-
planar case coincides with the orbital plane of the
planet. In the following, the motion of the particle
will be described in terms of polar coordinates with
φ = arg(R) that illustrates the relative motion between
the planet and the particle and R = ‖R‖. Most of the
results mentioned below can be found with different
notations in the book of Szebehely [37].
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Fig. 1 Periodic orbits in the
synodic reference frame for
a Sun–Jupiter-like system
(ε = 1/1000) in the
circular-planar case. More
precisely, the periodic orbits
belong to (a) the Lyapunov
family L3, (b) the
short-periodic family L s

4 ,
(c) the long-periodic family
L l

4 , and (d) the family f .
Their initial conditions are
computed with the help of
the Poincaré maps defined
by the following sections:
(a, d) Σ0 = {Y = 0,
Ẏ < 0}, (b) Σ = {Y =√
3/2, Ẏ > 0}, and (c)

Σ ∩ {X > 0}

a c

db

First of all, the five Lagrange fixed points, denoted
L j for j = 1, 2, 3, 4, 5, are the unique equilibria of the
restricted three-body problem in the circular case. L1

and L2 belong to the Sun–planet axis, in

φ j = 0 ◦, R j = 1 + (−1) j ×
(ε

3

)1/3 + O(ε2/3),

that is, from either side of the planet. Moreover, they
embody the diameter of the Hill’s sphere of the planet,
that is the region of the configuration space inside
which the gravitational influence of the planet dom-
inates with respect to the one of the Sun. L3 is also
located on the Sun–planet axis, in

φ3 = 180 ◦, R3 = 1 − 7

12
ε + O(ε2).

L4 and L5 are the Lagrange configurations such
that the particle lie at the vertex of an equilateral tri-
angle formed with the Sun and the planet, that is, in
φ j = (−1) j × 60 ◦ and R j = 1.

For j = 4, 5 and ε small enough1, L j is an elliptic
equilibrium where two one-parameter families of peri-
odic orbits stem from. They are tangential to each cen-
ter eigenspace of the equilibrium point. Being the two
center eigenspaces associatedwith frequencies, respec-
tively, in O(1) and O(

√
ε), these families are gener-

ally denoted as short-periodic L s
j and long-periodic

L l
j , in correspondence to their associated timescale

in the neighborhood of the equilibrium. L1, L2 and
L3 are unstable for all ε > 0 and each equilibrium
possesses one center eigenspace. The same reasoning
applies and provides three one-parameter families of
periodic orbits generally known as the Lyapunov fam-
iliesL1,L2 andL3. OnlyL3 will be discussed in the
following.

The Poincaré map is the classical way to com-
pute periodic orbits. For L s

j and L l
j , suitable sec-

1 More precisely, L4 and L5 are elliptic fixed points for ε < ε∗
with ε∗ � 0, 038.
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a

b d

c e

f

Fig. 2 Dynamics located in the neighborhood of (a, b) the fam-
ily f , (c) the long-periodic family L l

4 , (d) the short-periodic
family L s

4 and (e, f) the Lyapunov family L3. Considering a
periodic orbit that belongs to each family (black curve) whose
cross section is denoted (X0, Y0, Ẋ0, Ẏ0) a trajectory located
in its vicinity, that is, with an initial condition (X, Y, Ẋ , Ẏ ) =

(X0, Y0, Ẋ0, Ẏ0) + O(ε) is propagated after 100 revolutions of
Jupiter. The dynamics observed are : (a) the “satellized” ret-
rograde satellite orbits, (b) the quasi-satellite motion, (c, d, e)
the tadpole motion, and (f) the horseshoe motion . (Color figure
online)

tions are given by Σ = {Y = R j sin φ j , Ẏ > 0} and
Σ ∩ {X > 0}, which require three free parameters
(e.g., the energy, X and Ẋ ) in order to locate the
crossing. We recall that the Lyapunov trajectories are
symmetrical with respect to the Sun–planet axis and
cross the X -axis in Ẋ = 0. Thus, a natural section,
that requires only two parameters (e.g., the energy and
X ), is given byΣ0 = {Y = 0, Ẏ < 0, Ẋ = 0}. Then, a
fixed-point method is generally performed from a suit-
able initial guess that makes the method convergent.
For that purpose, a first approximation of a crossing
is obtained by the resolution of the linearized system
associated with the equilibrium L j and a continuation
method is implemented.

Figure 1 displays some periodic orbits, computed in
the case of a Sun–Jupiter-like system (ε = 1/1000) by
varying X along the section.

Since X > −R3 increases, the size of a trajectory
that belongs toL3 (Fig. 1a) increases and its shape no
longer looks like to an ellipse centered on L3. More
precisely, φ and R oscillate, respectively, about 180 ◦
and 1, whose respective amplitude increases with X
and reaches large values close to 180 ◦ and 1. More-
over, the “guiding center” of each periodic trajectory
(the approximate position around which the trajectory
oscillates) remains L3. Decreasing X < 1/2, the shape
of the trajectories of L s

4 (Fig. 1b) has a quite similar
evolution to the one of L3. However, two main differ-
ences exist: the shape is not symmetric, and the guiding
center shifts from L4 toward L3 along the circle R = 1.
The same behavior is observed symmetrically forL s

5 .
Wepoint out that, for a given energy,L s

4 andL s
5 merge

together with L3. This result was found by Deprit et
al. [9] for an Earth–Moon-like system (ε = 1/81) in
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the circular-planar case. The features of L l
4 (Fig. 1c)

are different. Indeed, as long as X < 1/2 decreases, the
size of a trajectory increases, while its shape changes
and looks like a tadpole, with the head centered on L4

and the tail that extends toward L3. In other words, by
decreasing X , R oscillates about 1 with an amplitude
that increases but remainsmuch smaller than 1, whileφ

encompasses 60 ◦ with increasing oscillations included
in the range ]0 ◦, 180 ◦[.

Other families of periodic orbits exist, and sev-
eral classifications have been realized (see [14,36,37]).
Among them, the family f is especially remarkable:
it is a one-parameter family of symmetrical periodic
orbits whose motion in the synodic reference frame
looks like the one of a retrograde satellite of the planet,
and that extends from an infinitesimal neighborhood
of the planet (i.e., inside its Hill’s sphere) to the colli-
sion with the Sun (i.e., far beyond the Hill’s sphere of
the planet). Its computation is similar to the one of the
Lyapunov families. However, since it does not origi-
nate from a Lagrange fixed point, the initial guess of
the method is given by the two following limit cases
(see [4]):

– Ẏ = −X +
√

2−X
X for ε � 0,

– Ẏ = −(X − 1) −
√

ε
X−1 for X � 1.

Figure 1d depicts some trajectories of the family f .
By varying X > 1, their shape has the same evolution
to the one of L3. More precisely, the family f seems
the symmetrical family of L3 with respect to the Y -
axis, characterized by φ that oscillates about zero and
thus a guiding center located on the planet.

The linear stability character of a periodic orbit can
be deduced from the monodromy matrix. For ε small
enough2, the family f is normally elliptic except in
two particular orbits that split the neighborhood of the
family in three different domains (see [28] for more
details). One belongs to the Hill’s sphere and corre-
sponds to the “satellized” retrograde satellite orbits.
The two others stand for the quasi-satellite orbits, also
known as distant retrograde orbits (DRO). Examples
of “satellized” retrograde satellite and quasi-satellite
orbits, computed during 100 revolutions of Jupiter, are
depicted in Fig. 2a–b. Both of the families L l

j and
L s

j are normally elliptic close to the equilibrium. The

2 More precisely, the whole family f is stable for ε < ε∗ with
ε∗ < 0.0477 (see [15]).

tadpole-shaped trajectories depicted in Fig. 2c and d,
start in the neighborhood of periodic orbits that belongs
to L l

4 and L s
4 , respectively. A part of L3 near the

equilibrium is normally hyperbolic and two types of
dynamics can be observed in its neighborhood: tadpole-
shaped orbits with a large amplitude (Fig. 2e), and
horseshoe-shaped orbits that encompass the three fixed
points L3, L4 and L5 (Fig. 2f). The horseshoe-shaped
orbit is characterized by R that oscillates about 1 with
an amplitude smaller than 1, and φ that features very
large oscillations centered on 180 ◦.

To summarize the situation, we described four types
of dynamics— “satellized” retrograde satellite, quasi-
satellite, tadpole motion and horseshoe motion—that
starts in the vicinity of periodic orbits that belong to
the six families mentioned above. These dynamics are
related by the same features, that is, R that oscillates
about 1 and φ that does not circulates but oscillates
around a given value. A natural issue is to understand
how these dynamics are organized in the phase space
of the restricted three-body problem, and especially, if
some boundaries can be identified. Nevertheless, the
four dimensions of the phase space make difficult the
achievement of this goal.

A way to overcome this difficulty is given by a suit-
able perturbative treatment that focuses on the families
of periodic orbits. First of all, let us recall that the parti-
cle and the planet are considered in mean-motion reso-
nance, and especially in p:q mean-motion resonance, if
they complete, respectively, p and q revolutions around
the Sun in the same time. According to the Poincaré
classification (see [5]), a periodic orbit of the second or
the third “sort” (also translated as “kind”) is the con-
tinuation, from the limit case ε = 0, of a heliocentric
Kepler orbit in mean-motion resonance with the planet.
For instance, the familiesL3,L s

j as well as the part of
the family f that stands outside theHill’s sphere are the
continuation of Kepler orbits in 1:1 mean-motion reso-
nance (see the book of Hénon [14] for complete details
on the periodic orbit classification). Hence, a pertur-
bative treatment that considers ε as a small parame-
ter, and focuses on a small enough neighborhood of
a given mean-motion resonance provides another way
to approach some families of periodic orbits and thus
to understand the corresponding dynamics. This is the
underlying idea associated with the averaged problem
that is considered in this work and that we recall in the
following section.

123



966 A. Pousse, E. M. Alessi

2.3 Perturbative treatment of a mean-motion
resonance: the averaged problem

From now on, we go back to the general case of the
restricted three-body problem. If we consider ε as a
small parameter, the Hamiltonian function given in the
heliocentric reference frame, Eq. (2), can be split in two
terms, namelyH = HK + HP such that

HK(r, ṙ) = 1

2
‖ṙ‖2 − 1

‖r‖ ,

HP(r, λ′) = − ε

‖r − r′(λ′)‖ + ε

‖r‖ + ε
r • r′(λ′)
‖r′(λ′)‖3 .

(4)

HK corresponds to the unperturbed Kepler motion of
the particle, more precisely the motion around a fixed
center of mass 1, while HP models the perturbations
that depend on ε: the gravitational influence of the
planet, the acceleration of the heliocentric frame and
a term associated with our choice of Kepler problem.

A closed solution ofHK describes an ellipse whose
shape, orientation and position at a time t are given by
the orbital elements (a, e, I,Ω,ω, v(t)).We recall that
the position at a time t can also bedescribedby themean
anomaly M(t), a fictitious angle, linear with respect to
the time and whose rate of variation—generally known
as mean motion—reads Ṁ(a) = 1/

√
a3 in the units

adopted here. Instead of using the orbital elements,
the Poincaré complex variables are adopted because
of their regularity for circular and coplanar orbits and
since they preserve the symplectic geometry of the
problem. In the following, the angles 
 = Ω + ω and
λ = M + 
 denote, respectively, the longitude of the
periaster and themean longitude. The symplectic trans-
formation associated with the Poincaré variables reads

Υ̂ : (r, ṙ, λ′, Ξ̂ ) �→ (λ,Λ, x̃, x, ỹ, y, λ′, Ξ̂ )

with

Λ = √
a,

x =
√

Λ(1 −
√
1 − e2) exp i
,

y =
√

Λ
√
1 − e2(1 − cos I ) exp iΩ,

that are, respectively, conjugated to λ, x̃ = −i x and
ỹ = −i y. We specify that x and y derive from the
angular momentum in the heliocentric reference frame
as follows:

‖L‖ ◦ Υ̂ = Λ − |x |2 , L3 ◦ Υ̂ = Λ − |x |2 − |y|2 .

Moreover, x
√
2/Λ and y

√
8/Λ are equivalent to

e exp(i
) and I exp(iΩ) for quasi-circular and quasi-
planar orbits.

In the extended phase space, the integrable motion
is given by the Hamiltonian Ξ̂ + ĤK with ĤK(Λ) =
−1/(2Λ2). Notice that the variable linked to the time
is an action variable since the system is periodic. That
is the reason why the unperturbed Hamiltonian is inte-
grable. Being the planet and the particle coupled but
independent, the solutions describe two ellipses whose
respectivemeanmotions are equal to λ̇(Λ) = 1/Λ3 and
λ̇′ = 1. In otherwords, the solutions of the problemcor-
respond to quasi-periodic orbits with two frequencies.
Since the frequencies are commensurable, the orbits
can be periodic. In such a case, the planet and the parti-
cle are considered inmean-motion resonance. Studying
the restricted three-body problem in this perturbative
framework consists in understanding how the pertur-
bation ĤP = HP ◦ Υ̂ transforms the unperturbed phase
space. More precisely, the analysis can be split in two
disjoint situations:

– At a suitable distance to mean-motion resonances
via a secular model built in order to study the per-
sistence of the quasi-periodic solutions;

– Or, on the contrary, in a neighborhood of a mean-
motion resonance with the help of special variables
and an adapted averaging process.

2.3.1 The resonant variables

For p and q two coprime positive integers, let us con-
sider a neighborhood of the p:q mean-motion reso-
nance. An unperturbed solution is associated with the
p:q mean-motion resonance if the semimajor axis of
the particle is equal to ã = (q/p)2/3. In what follows,
ã will be defined as the semimajor axis of the “exact”
mean-motion resonance.

The symplectic transformation

Υ̌ : (θ, u, x̃, x, ỹ, y, λ′, Ξ) �→(λ,Λ, x̃, x, ỹ, y, λ′, Ξ̂ )

with

θ = λ − p

q
λ′, u = Λ − √

ã, Ξ̂ = Ξ − p

q
u, (5)

introduces the resonant angle3 θ that characterizes the
commensurability, and u, its conjugated action, whose

3 Notice that the resonant angle−q(p−q)−1θ is generally used
in the literature in order to take advantage of the properties of the
leading harmonic of the Hamiltonian (see, e.g., [19,22]). This
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Revisiting the averaged problem in the case of mean-motion resonances 967

modulus measures the distance to the “exact” mean-
motion resonance. We recall that θ is not a physical
angle and thus it is difficult to represent. Nevertheless,
for quasi-circular and quasi-planar orbits, the angu-
lar separation φ between the particle and the planet
is equivalent to θ + (p − q)q−1λ′.

In the resonant variables given by Eq. (5), the inte-
grable Hamiltonian reads Ξ + HK with

HK(u) = − 1

2(
√
ã + u)2

− p

q
u.

HK highlights that θ is constant for u = 0, while it
circulates for |u| > 0. More precisely, the angular vari-
ables evolve at different rates: λ′ is a “fast” angle with
a frequency 1, θ undergoes “slow” drift in O(u) while
(
,Ω) are fixed. Consequently, for a small enough |u|,
the timescales of the integrable problem are separated.
In the full problem that reads Ξ + H with

H = HK + HP and HP = ĤP ◦ Υ̌ ,

all the variablesmight vary and themotion is very tricky
to understand. However, for ε and |u| small enough, the
timescales separation between the “fast” and “slow”
degrees of freedom still remains. A classical way to
exploit this feature is to replace the original problem
by another one in which the fast oscillations have been
removed. For that purpose, an averaging over the period
of revolution of the planet is performed. This process
defines the averaged problem.

2.3.2 The averaged problem

The averaged Hamiltonian reads H = HK + HP with

HP(θ, u, x̃, x, ỹ, y)

= 1

2π

∫ 2π

0
HP(θ, u, x̃, x, ỹ, y, λ′)dλ′.

(6)

choice is arbitrary, and does not affect the dynamics of the solu-
tions but changes their representation. In the framework of a
p:q retrograde mean-motion resonance (sometimes denoted as
a −p:q mean-motion resonance), the considered resonant angle
is neither θ nor proportional to θ (see, e.g. [21,34]). In such a
case, that has become an important topic in recent years, the par-
ticle orbits around the Sun in the opposite direction to the one
of the planet, and the canonical variables usually used in order
to describe the motion are not the Poincaré variables introduced
by the transformation Υ̌ . However, being the study equivalent
to the one of trajectories in (prograde) mean-motion resonance
with inclinations |I | > π/2, the followingdiscussions and results
remain valid for a retrograde mean-motion resonance. Only the
representation of the dynamics will change.

Since H does not depend on λ′, Ξ is a first integral
that can be dropped. Hence, only three degrees of free-
dom are required in order to explore the averaged phase
space: the resonant variables (θ, u), and (x̃, x), (ỹ, y),
that are, respectively, the Poincaré variables associated
with eccentricity and inclination.

There exist at least two classical techniques of com-
putation of the averaged problem. The analytical one
is based on the expansion of the Hamiltonian in power
series of eccentricity and inclination (see, e.g., [30]).
In spite of its efficiency for quasi-circular and quasi-
coplanar orbits, reaching higher values of eccentric-
ity or inclination requires high-order expansions which
generate very heavy expressions. Also worth mention-
ing the asymmetric expansion developed by Ferraz-
Mello and Sato [11] in order to deal with highly eccen-
tric trajectories in mean-motion resonance. The other
technique consists on anumerical evaluationof the inte-
gral of Eq. (6) and its derivatives. It is a powerful tool
since it deals with the Hamiltonian in its exact form
which allows to explore the phase space for all values
of eccentricity lower than one and all values of incli-
nation.

Following the idea of Poincaré [27], Schubart [31–
33] developed a numerical averaging procedure for the
Hamiltonian in canonical resonant variables. Moons
[19] extended the method of Schubart and provided
an algorithm that allows to compute the equations of
motion of the averaged problem, and thus to construct
an integrator for trajectories in p:q mean-motion res-
onance, for p �= q. This algorithm has been adapted
by Nesvorný et al. [24] in order to deal with the 1:1
mean-motion resonance. In either case, the numerical
averaging can be implemented as follows. Let f an aux-
iliary function that depends on (θ, u, x̃, x, ỹ, y, E, E ′)
where E and E ′ are, respectively, the eccentric anomaly
of the particle and the planet. The averaging of f
over λ′ being calculated for fixed (θ, u, x̃, x, ỹ, y), the
Kepler equation implies that: dλ′ = L(u, x, E)dE with
L(u, x, E) = qp−1(1 − e(u, x) cos E). Moreover,
since

θ = E − e(u, x) sin E + 
(x) − pq−1(E ′ − e′ sin E ′)

then E ′ can be expressed in terms of (θ, u, x, E) and
e′. Finally, the averaging of 2π f , that reads

2π f (θ, u, x̃, x, ỹ, y)

=
∫ 2π

0
f (θ, u, x̃, x, ỹ, y, E, E ′(θ, u, x, E))

× L(u, x, E)dE,
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is computed by discretizing the variable E as Ek =
k2π/N with 100 ≤N ≤300 (see [31] formore details).

In the averaged problem, the phase space to explore
is 6-dimensional. However, and similarly to the clas-
sical approach, the dimension can be reduced in the
framework of the circular case (e′ = 0).

2.3.3 Reduction in the circular case (e′ = 0)

First of all, we recall that the perturbation HP is ana-
lytical outside the collision manifold and thus can be
expanded in power series of eccentricity and inclina-
tion. In the Poincaré complex variables, the expansion
reads

∑
(l,l̃,m,m̃,k,k′)∈D

f k,k
′

l,l̃,m,m̃
(u)xl x̃ l̃ ym ỹm̃ei(kλ+k′λ′)

where the integers occurring in these summations sat-
isfy the relations

D =

⎧⎪⎨
⎪⎩

(l, l̃,m, m̃, k, k′) ∈ N
4 × Z

2

s.t. m − m̃ = 2 j, j ∈ Z,

and l + m − (l̃ + m̃) + k + k′ = 0

⎫⎪⎬
⎪⎭

known as D’Alembert rules. These relations are the
result of the invariance of the HamiltonianH under the
action of symmetry groups: the orthogonal symmetry
with respect to the orbital plane of the planet, and the
group of rotations SO(2) around the vertical axis. In the
resonant variables, since the expansion of HP reads∑
(l,l̃,m,m̃,k,k′)∈D

f k,k
′

l,l̃,m,m̃
(u)xl x̃ l̃ ym ỹm̃ei

(
kθ+(pk+qk′)q−1λ′)

,

the integers occurring in the expansion of the integral
of Eq. (6) satisfy the relations

D = D ∩
{

(l, l̃,m, m̃, k, k′) ∈ N
4 × Z

2

s.t. kp + k′q = 0

}
.

In other words, the angular part of the averaged Hamil-
tonian depends on the linear combination of only two
angles: a “modified” resonant angle θ − (q − p)q−1


and the argument of periaster ω = 
 − Ω . Since the
averaged Hamiltonian is invariant under the rotations
of a third angle, the symplectic geometry imposes the
following quantity

K = |x |2 + |y|2 + (p − q)q−1u

to be a first integral. We point out that this property
can also be derived from the Jacobi constant, Eq. (3).

Indeed, for a given c, such that C (R, Ṙ) = c, the
composition of transformations ΥSF ◦ Υ̂ ◦ Υ̌ in reso-
nant variables provides the following expression of the
Jacobi constant:

c = 2
√
ã + ε − 2(H + K ). (7)

Thus, the average of the Jacobi constant over λ′ intro-
duces the averagedHamiltonian H , such as c = 2

√
ã+

ε − 2(H + K ), that is conserved in the averaged prob-
lem and implies that K is also a first integral of the
averaged problem.

Without revealing details on the symplectic trans-
formation that takes advantage of K , we outline that
q(p − q)−1K , |x |2 and |y|2, respectively, conjugated
with θ , −
 + q(q − p)−1θ and −Ω + q(q − p)−1θ ,
are action-angle variables that can be used. Since these
previous variables are singular for the 1:1mean-motion
resonance, the canonical variables that can be adopted
are u, K and |y|2, respectively, conjugated to θ , −


and ω.
Being the degree of freedom associated with K sep-

arable to the other two, a reduction is possible. By fix-
ing a value K , seen as a parameter, and eliminating
its conjugated cyclic angle, one degree of freedom is
removed. Consequently, the averaged phase space can
bedescribedby a1-parameter family of reducedHamil-
tonians with two degrees of freedom. We point out that
in the circular-planar case, the number of degrees can
be reduced to one. Hence, for a fixed K , the “reduced”
averaged Hamiltonian is integrable and the description
of the phase portrait obtained for various values of K
allows to understand the global dynamics of the mean-
motion resonance.

2.3.4 Some conclusions about the averaged problem

In Table 1, we summarize the respective features of the
averaged problemwith respect to the classical approach
in the synodic reference frame. First of all, the averaged
problem has the advantage to describe the solutions in
terms of orbital elements (or variables close to these
ones), and thus profits of the symplectic geometry of
the problem which allows to reduce by one unit the
dimension of the phase space to explore in any case.
The algorithms of Moons [19] and Nesvorný et al. [24]
are easy to implement to this end. Furthermore, it gives
a complete understanding of the resonant dynamics in
the circular-planar case.
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Revisiting the averaged problem in the case of mean-motion resonances 969

Table 1 Comparison of the features of the restricted three-body
problem in the averaged phase space and in the synodic reference
frame. C , H and K denote, respectively, the Jacobi constant, the
averaged Hamiltonian and the quantity conserved in the aver-

aged problem in the circular case. The notations “(N d.o.f)” and
“(Non-aut.)” stand, respectively, for “N degrees of freedom” and
“non-autonomous”

General (3 d.o.f.) Circular (3 d.o.f.) Planar (2 d.o.f.) Circular-Planar (2 d.o.f.)

Synodic RF (Non-aut.) C (Non-aut.) C

Averaged Pb H H , K H H , K

However, the averaged problem possesses also some
important drawbacks. First of all, since H has been
replaced by H in order to remove the fast oscillations, it
does not correspond to the original problembut approx-
imates it with an accuracy that depends on the size of ε.
Besides, according to the remarkofSchubart [31], it has
been shown by Robutel and Pousse [30] and Pousse et
al. [28], that the averaged problem fails to describe tra-
jectories that feature close encounters with the planet.
In such a case, the “distance” between the averaged
Hamiltonian and the original one is important, and the
results given by the averaged problem may not be reli-
able. The clarification of the accuracy as well as the
limit of validity is a serious issue. We devote the next
section to that purpose.

3 On the validity of the averaged problem

3.1 Notations

Before going further, let us introduce some useful nota-
tions associated with the Hamiltonian formalism.

In the following, since it will be necessary to switch
from the resonant variables to the heliocentric coordi-
nates, we denote

Υ : (θ, u, x̃, x, ỹ, y, λ′, Ξ) �→ (r, ṙ, λ′, Ξ̂ )

the composition of transformations Υ̂ ◦ Υ̌ . These two
sets of variables preserve the symplectic form, that is,

3∑
i=1

dri ∧ dṙi + dλ′ ∧ dΞ̂

= dθ ∧ du + dx̃ ∧ dx+d ỹ ∧ dy+dλ′ ∧ dΞ.

Hence, the Lie derivative of an auxilliary function
G(r, ṙ, λ′, Ξ̂ ) along the Hamiltonian flow of a given

function F(r, ṙ, λ′, Ξ̂ ) reads:

LFG = ∂G
∂r

•
∂F
∂ ṙ

− ∂F
∂r

•
∂G
∂ ṙ

+ ∂G
∂λ′

∂F
∂Ξ̂

− ∂F
∂λ′

∂G
∂Ξ̂

= ∂g

∂θ

∂ f

∂u
− ∂ f

∂θ

∂g

∂u
+ ∂g

∂ x̃

∂ f

∂x
− ∂ f

∂ x̃

∂g

∂x
+ ∂g

∂ ỹ

∂ f

∂y

− ∂ f

∂ ỹ

∂g

∂y
+ ∂g

∂λ′
∂ f

∂Ξ
− ∂ f

∂λ′
∂g

∂Ξ

= L f g

with f = F ◦ Υ and g = G ◦ Υ . Finally, Φh
t (X0)

denotes the Hamiltonian flow at a time t , generated by
an auxiliary function h(X) that crossesX0 at t = 0.We
recall that it is connected to the Lie derivative through
the exponential of an operator, denoted exp, such as:

Φh
t = expLh = Id +

∑
k>0

tk

k! Lh . . .LhLh︸ ︷︷ ︸
k times

.

3.2 The averaging process

According to the perturbation theory, the averaging
process coincides with the existence of a symplectic
transformation Υ , close to the identity, which maps the
original Hamiltonian Ξ + H to Ξ + H + H∗, where
H∗ is a remainder that is supposed to be small with
respect to HP and thus neglected in the averaged prob-
lem. Υ is computed with the time-one map of the
Hamiltonian flow generated by some auxiliary func-
tion S, that is, Υ = ΦS

1 = expLS , which satisfies

LSΞ = − ∂S

∂λ′ = HP − HP.

In this paper, we choose

S(θ, u, x̃, x, ỹ, y, λ′)

= 1

2π

∫ 2π

0
s(HP − HP)(θ,u,x̃,x,ỹ,y,λ′+s)ds.
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Based on the previous assumptions, the remainder
of the averaging process reads

H∗ = (expLS − Id)H + (expLS − LS − Id)Ξ. (8)

H∗ can be neglected if and only if it is a perturba-
tion of higher order with respect to HP . However,
since H∗ depends on the derivatives of HP and S that
increase as long as the planet and the particle are getting
closer, then |H∗| and

∣∣HP
∣∣ can increase simultaneously

according to the distance to the singularity and can be
at least of the same order. In such a case, the hierar-
chy between the perturbative terms is not ensured and
the approximation provided by the averaged Hamil-
tonian H might not reflect properly the dynamics of
the restricted three-body problem. In other words, in
the neighborhood of the collision manifold can exist
an “exclusion zone” inside which the solutions of the
restricted three-body problem fall outside the scope of
the averaged Hamiltonian.

The following section is devoted to the character-
ization of this exclusion zone through a quantitative
treatment of the averaging process.

3.3 Quantitative treatment of the averaging process

We first introduce a domain and a norm on the extended
phase space that will allow us to compute quantitative
estimates.

For given ρ > 0, σ > 0, Δ > 0, Δ̃ > 0, small
enough, and a given κ > 0, independent of the previ-
ous quantities, we define the following domain of the
extended phase space:

Dκ

=

⎧⎪⎪⎨
⎪⎪⎩

(θ, u, x̃, x, ỹ, y, λ′, Ξ) ∈ T × R × C
4 × T × R

s.t. |u| ≤ κρ, max(|x | , |x̃ |) ≤ r̃σ/κ ,

min
λ′∈T

(∥∥r ◦ Υ − r′∥∥) ≥ Δ/κ, min
λ′∈T

‖r ◦ Υ ‖ ≥ Δ̃/κ

⎫⎪⎪⎬
⎪⎪⎭

with r̃σ/κ = ã1/4(1 − σ/κ) and being ã the resonant
semimajor axis ã = (q/p)2/3. Hence, we consider
a neighborhood of the p:q mean-motion resonance
which excludes very high eccentricities (|x | � ã1/4)
as well as sets of elements associated with the crossing
of the spheres of radius Δ/κ and Δ̃/κ , respectively,
centered on the planet and the Sun in the heliocentric
reference frame.

In this development, we are not interested in the situ-
ations of close encounters with the Sun, that occur for a
very high eccentricity. They are avoided by considering

Δ̃ and σ as arbitrarily fixed small numbers independent
of ε, ρ and Δ.

The estimates will be computed through the supre-
mum norm on Dκ , denoted ‖ · ‖κ such that

‖f‖κ = max
i≤n

sup
Dκ

|fi |

where f = (fi )i≤n is a n-dimensional vector field that
depends on the resonant variables (θ, u, x̃, x, ỹ, y, λ′,
Ξ). Since we do not attempt to obtain estimates with
particularly sharp constants, all constants have been
suppressed and replaced by the Pöschel’s notation, that
is,

x ≤• y, x •≤ y, and x =• y

to indicate, respectively, that

x < Cy, Cx < y, and x = Cy

with some constant C ≥ 1 independent of ε, ρ and Δ.
In this setting, the size of the functions involved in

the averaging process can be estimated.Hence,we state
the following:

Lemma 1 For ρ > 0,Δ > 0 and ε > 0, small enough
quantities, that is

ρ •≤ 1, Δ •≤ 1, ε •≤ 1,

the Hamiltonian of the restricted three-body problem
Ξ + H, the averaged Hamiltonian Ξ + H and the
symplectic transformation Υ , are analytic on the col-
lisionless domain D2.

Consequently, HK, HP, HP and Υ are bounded
together with their partial derivatives with respect to
θ , u, x̃ , x, ỹ and y. More precisely, for each order
k lower or equal to an arbitrarily fixed n ≥ 1 and
(Wi )i≤k ∈ {θ, u, x̃, x, ỹ, y}, the following thresholds
are satisfied on D2:

‖HK‖2 =• 1, ‖HP‖2 ≤• ε
Δ

,
∥∥HP

∥∥
2 ≤• ε

Δ
,∥∥H ′

K

∥∥
2 ≤• ρ,

∥∥H ′′
K

∥∥
2 ≤• 1,∥∥∥∥ ∂k HP

∂W1 . . . ∂Wk

∥∥∥∥
2

≤•
ε

Δk+1 ,

∥∥∥∥ ∂k(r ◦ Υ )

∂W1 . . . ∂Wk

∥∥∥∥
2

≤• 1.

The previous lemma allows to state an averaging
theorem where quantitative estimates on the averaging
process are computed.

Theorem 1 Assuming ε, ρ and Δ small enough such
that

ε •≤ ρΔ2 and ε •≤Δ3, (9)
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there exists a symplectic transformation close to the
identity, denoted as

Υ :
{

D3/2 → D2

(θ. , u. , x̃. , x. , ỹ. , y. , λ
′, Ξ. ) �→ (θ, u, x̃, x, ỹ, y, λ′, Ξ),

with

‖Ξ. − Ξ‖3/2 ≤•
ε

Δ
,
∥∥W. − W

∥∥
3/2 ≤•

ε

Δ2

for W ∈ {θ, u, x̃, x, ỹ, y}, such that, in the “averaged”
resonant variables (θ. , u. , x̃. , x. , ỹ. , y. , λ

′, Ξ. ), the Hamil-
tonian reads:

(Ξ + H) ◦ Υ = Ξ. + H + H∗
where H∗ is the remainder of the averaging process.

Furthermore, on the domainD3/2, H∗ together with
its partial derivatives with respect to θ , u, x̃ , x, ỹ and
y are bounded and satisfy the following thresholds:

‖H∗‖3/2 ≤ ε

Δ
η with η =•

( ε

Δ3 + ρ

Δ

)
,∥∥∥∥∂H∗

∂u

∥∥∥∥
3/2

≤•
ε

Δ2 , and,

∥∥∥∥∂H∗
∂W

∥∥∥∥
3/2

≤•
ε

Δ2 η for W ∈ {θ, x̃, x, ỹ, y}.

Lemma 1 and Theorem 1 provide the estimates that
allow to compare how

∣∣HP
∣∣ and |H∗| increase as long

as the planet and the particle are getting closer. In order
to understand the role of the distance to the planet in the
size of the remainder, we first relate the upper bound of
the distance to the resonance to ε and Δ by choosing

ρ =•
√

ε

Δ
(10)

which satisfies Eq. (9) and such that the two terms in η

depend on the same quantity: the ratio ε
Δ3 . Hence, we

have

η =•
√

ε

Δ3

(
1 +

√
ε

Δ3

)
(11)

which imposes the lower bound Δ≥• ε1/3 in order to
get decreasing perturbations in the “averaged” resonant
variables. More precisely, we recover the size of the
Hill’s sphere of the planet. We recall thatΔ denotes the
minimal mutual distance, that is, the minimal distance
between the particle and the planet, which is allowed
in the considered domainDκ . As a consequence, if we
relate Δ to ε as follows:

Δ = NεRH with Nε = ε−α, 0 < α ≤ 1/3,

being RH = ( ε
3

)1/3 the Hill’s radius of the planet, then
Theorem 1 ensures that the domain D4/3 stands out-
side the exclusion zone of the averaged problem for ε

small enough and Nε > 1, that is, for a minimal mutual
distance larger than the Hill’s radius of the planet.

In spite of this feature, Theorem 1 does not establish
that a given solution of the averaged problem that starts
inside D3/2, does not escape and does not cross the
exclusion zone of the averaged phase space. To this
end, a careful analyze of the behavior of the averaged
solutions has to be led for each type of dynamics in
mean-motion resonance. Nevertheless, assuming that
the solution remains insideD3/2 until a certain amount
of time, a theorem of stability over finite times can be
proven in the restricted three-body problem.

Before stating the theorem, let us denote a solution
governed by the averaged Hamiltonian Ξ + H , that
starts inX0 ∈ D1 and remains inside this domain up to
a given time T1 > 0, as

X. (t) = (W. (t), λ′(t),Ξ. (t))

with

W. (t) = (θ. (t), u. (t), x̃. (t), x. (t), ỹ. (t), y. (t))

and λ′(t) = t .

For |t | ≤ T1 and Nε > 1, X. (t) approximates the
solution of the restricted three-body problem that starts
in X0. In the resonant variables, the solution governed
by Ξ + H can be written as (W(t), λ′(t),Ξ(t)) with

θ(t) = θ. (t) + δ1(t),

x̃(t) = x̃. (t) + δ3(t),

ỹ(t) = ỹ. (t) + δ5(t),

u(t) = u. (t) + δ2(t),

x(t) = x. (t) + δ4(t),

y(t) = y. (t) + δ6(t),

being (δi (t))i≤6 the functions that denote the error on
each coordinate in the approximate solution given by
the averaged problem.

Theorem 2 With the previous notations, the errors in
the approximate solution satisfy the following upper
bounds:

|δ1(t)| ≤•
ε1/3√
Nε

, |δi (t)| ≤•
ε1/3

N2
ε

i = 2, . . . 6,

for |t | ≤ min (T , T1) and T = 2π
√
N3

ε .

In the following reasonings, it is assumed that
T ≤ T1. First of all, in the limit case given by
Nε = ε−1/3, that is, Δ = 1 and ρ =•

√
ε, Theorem 2

ensures that, up to a finite time inO(1/
√

ε), the approx-
imate solution given by the averaged problem remains
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inside a neighborhood of order O(
√

ε) of the solution
obtained in the synodic reference frame. Hence, we
obtain the results for which the particle is considered
distant enough from the planet.

The other limit case, that is, for Nε � 1, the particle
can approach the edge of the Hill’s sphere while the
distance to the resonance can reach the order O(ε1/3).
Even though the gravitational influence of the planet is
not dominant, it can be strong enough with respect to
the one of the Sun. Hence, we can only ensure that the
accuracy of the approximate solution will not exceed
a quantity of order O(ε1/3) for one or few periods of
revolution of the planet. In such a case, the solution
of the averaged problem might not be reliable in order
to approach the one obtained in the synodic reference
frame.

By increasing Nε > 1, the minimal mutual distance
moves away from the Hill’s sphere, the gravitational
effect of the planet becomes weaker with respect to the
one of the Sun, and the upper bound on the distance
to the mean-motion resonance decreases as ρ =• ε1/3√

Nε
.

Thus, the approximate solution becomes more accu-
rate with an upper bound on the error that decreases as
1/

√
Nε for the resonant angle θ and 1/N2

ε for the other
variables, and a time of stability that increases as

√
N3

ε .
Consequently, multiplying by a factor 5 the minimal
mutual distance divides the errors by a factor

√
5 � 2

and 25, respectively, on θ and the other variables, and
multiplies the time of stability by a factor 53/2 � 10.

In amore practical way, for a given number n > 0 of
revolutions of the planet,withn ≤ O(1/

√
ε), this result

provides a domain of initial conditions such that the
approximate solution given by the averaged problem
is reliable in order to approximate the one obtained in
the synodic reference frame. The errors in the approx-
imate solution being, respectively, ε1/3n−1/3 in θ and
ε1/3n−4/3 in the other variables, the smaller the planet
mass ratio is, the greater the accuracy would be.

3.4 Discussion

The proofs of Lemma 1, Theorems 1 and 2 are given
in the Appendix A.

The key ingredient of the proof of Lemma 1 is our
definition of the collisionless domains Dκ given in
terms of heliocentric coordinates instead of resonant
variables in order to exclude a neighborhood of the col-
lision manifolds. Since the Poincaré complex variables

prevent singularities associated with the eccentricity or
inclination equals to zero, the transformation Υ is ana-
lytic and can be bounded independently to ε, ρ and Δ.
Hence, the estimates on HK, HP and HP are deduced
directly fromHK and HP.

The proof of Theorem 1 has two parts. We first char-
acterize the conditions that allow to ensure that the
transformation of averaging Υ is close to identity and
maps the domainD3/2 in the domainD2 inside which
the estimates are computed in Lemma 1. In the second
part, we estimate the remainder H∗, Eq. (8), and its
associated vector field by using the Taylor expansions
at zero and first order combined with the estimates of
Lemma 1.

Finally, Theorem 2 is a direct application of the clas-
sical strategy to prove stability over finite times (see
[2]). For that purpose, we compare the vector field of
the approximation given by the averaged problem with
the one of a solution of the original problem. Assuming
that the two solutions remain in a given neighborhood
up to a time T , we can choose T such that the order
on the errors in the approximation is of the same order
as the one of the transformation in “averaged” resonant
variables.

The validity of the averaged problem was discussed
by Robutel and Pousse [30], Robutel et al. [29] and
Pousse et al. [28] in the framework of the 1:1 mean-
motion resonance. Moreover, it is a key ingredient of
the proof given by Niederman et al. [25] on the exis-
tence4 of the horseshoe-shaped trajectories followed
by the two Saturn’s moons, Janus and Epimetheus.
Since the semimajor axes of the two small bodies
are almost the same, the issue generated by periodi-
cal close encounters is manifest. For instance, in [30]
and [28], the authors highlight, through a frequency
analysis, that, when an initial condition tends to the sin-
gularity of mutual collision, the approximation given
by the averaged problem has fundamental frequencies
that increase and tend to infinity. This phenomenon is
inconsistent with the hypothesis of timescales separa-
tion required by the averaged problem. For that reason,

4 More precisely, the authors of [25] proved the existence of
quasi-periodic horseshoe-shaped trajectories with the help of an
integrable approximation deduced from the averaged problem,
precise estimates on the remainders and transformations in the
considered domain of the phase space, and the application of
KAM theory. Let us also mention the work of Cors et al. [8]
which provides another way to prove the existence of these orbits
without the help of the averaged problem.
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Revisiting the averaged problem in the case of mean-motion resonances 973

an arbitrary criterion5 on the frequencies was intro-
duced in [28] in order to localize the exclusion zone in
the averaged phase space.

The work of Robutel et al. [29] provides a rigor-
ous treatment of the averaging process for resonant
dynamics in the planar planetary three-body problem.
In the framework of quasi-circular co-orbital trajecto-
ries, it gives quantitative estimates on the remainder
generated by the averaging process as well as its vec-
tor fields in order to state a theorem of stability over
finite times. The proof uses a complex domain of holo-
morphy inside which estimates are computed through
the Cauchy inequality. The results of the present paper
are based on the same idea but applied in the general
case (eccentric and spatial trajectories) of a generic p:q
mean-motion resonance of the restricted three-body
problem. Even though the technique of complexify-
ing used in [29] is very efficient in the case of quasi-
circular and quasi-planar orbits, the definition of the
minimal mutual distance Δ in terms of resonant vari-
ables is really difficult in the general case. That is why,
we have chosen the direct computation of estimates by
taking advantage of the form of HK, as well as the one
of the HP, that only depends on r and λ′.

4 The co-orbital motion in the circular-planar case

In this section, we focus on the co-orbital motion (1:1
mean-motion resonance) in the circular-planar case.
More precisely, in the framework of the averaged prob-
lem, we intend to approach the six families of peri-
odic orbits described in Sect. 2.2.2 (the short-periodic
L s

j and long-periodic L l
j for j = 4, 5, the Lyapunov

family L3, and the family f ) as well as the dynamics
observed in their neighborhood (the tadpole motion,
the horseshoe motion, the quasi-satellite motion, and
the “satellized” retrograde satellite motion), and iden-
tify the limit of validity of the corresponding solutions
by applying Theorems 1 and 2 developed in Sect. 3.

First of all, we introduce the resonant variables and
apply the properties stated in Sect. 2.3 to the case of
the 1:1mean-motion resonance. The resonant degree of
freedom is described by the angle θ = λ − λ′ and the
action u = √

a − 1 that measures the distance to the

5 A solution of the averaged problem was considered outside
the exclusion zone, if the modulus of their fundamental frequen-
cies are lower than λ̇′/4 where λ̇′ = 1 denotes the frequency of
averaging.

exact mean-motion resonance given by the semima-
jor axis ã = 1. In the circular-planar case, the secular
variations of the orbits are provided by (x̃, x) for which
K = |x |2 is a first integral of the averaged problem. For
a fixed K , seen as a parameter, the reduced averaged
Hamiltonian, denoted as follows

H
K
(θ, u) = H(θ, u, x̃(K ), x(K )),

is integrable with one degree of freedom, and thus
allows to understand the co-orbital dynamics through
a phase portrait.

Instead of using K , we introduce the parameter e0
such as

K = 1 −
√
1 − e20.

Hence, e0 defines the eccentricity of a trajectory that
crosses the orbit of the planet, that is, at the exact mean-
motion resonance u = 0. Furthermore, since

e =
√
1 −

(
1 − K

(1 + u)

)2

= e0 (1 + O(u)) ,

e0 approximates the eccentricity of the trajectories that
belong to a given phase portrait. Notice that e0 is also
connected to the Jacobi constant through Eq. (7). More
precisely, Theorem 1 and Eq. (11) imply that inside the
domain of validity of the averaged problem, denoted
D1(Δ) in the previous section, the Jacobi constant
C (R, Ṙ) = c reads:

c = −2H + 2
√
1 − e20 + O

⎛
⎝
√

ε3

Δ5

⎞
⎠ .

Consequently, Eq. (10) and the estimates of Lemma 1
ensure the following relation between the two quanti-
ties:

c = 1 + 2
√
1 − e20 + O

( ε

Δ

)

Before going further, we will see in the next sec-
tion how a trajectory of a given phase portrait is related
to the solutions of the averaged problem. Besides, in
order to bridge a gap between the classical and the per-
turbative approaches, we will detail how a solution of
the averaged problem describes the motion of a par-
ticle in the synodic reference frame. These correspon-
dences were described in [28], but the relationship with
the synodic reference frame needed to understand the
dynamics were lacking.
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4.1 Reading a phase portrait

For a given value of e0 ≥ 0 and a given initial condition
(θi , ui ), a trajectory that belongs to the corresponding
phase portrait is generally6 a periodic solution but can

also be an equilibrium of H
K (e0). If we denote its fre-

quency ν, a periodic trajectory can be written as

θ(t) = θi + F1(νt),

u(t) = ui + F2(νt),

where the functions Fj are 2π -periodic such that
Fj (0) = 0.

The dynamics of the angle 
 = arg(x) is required
in order to relate this trajectory to the solutions of the
averaged problem. Since


̇ (t) = − ∂

∂K
H

K (e0)
(θ(t), u(t))

is 2π/ν-periodic, there exists F3, a 2π -periodic func-
tion with mean zero and F3(0) = 0, such that for all

i ∈ T,


(t) = 
i + gt + F3(νt),

where

g = − ν

2π

∫ 2π/ν

0

∂

∂K
H

K (e0)
(θ(t), u(t))dt

is the secular precession frequency of 
 . In other
words, a solution of the averaged problem that starts
in (θi , ui , x̃i , xi ) with

e0 =
√
1 − (1 − |xi |2

)2
, 
i = arg(xi )

can generally be written as

θ(t) = θi + F1(νt),

u(t) = ui + F2(νt),

x(t) = xi exp i(gt + F3(νt)),

x̃(t) = x̃i/ exp i(gt + F3(νt)),
(12)

and a periodic trajectory of a given phase portrait gen-
erally corresponds to a set of quasi-periodic solutions
parametrized by 
i ∈ T, whose fundamental fre-
quencies are given by ν and g. The same reasoning

applies for an equilibrium of H
K (e0): it corresponds

to a set of periodic solutions of the averaged problem,
parametrized by 
i ∈ T, and that can be written as

θ(t) = θi ,

u(t) = ui ,

x(t) = xi exp i(gt),

x̃(t) = x̃i/ exp i(gt).
(13)

6 In these paragraph, the expression “generally” characterizes a
solution which is a torus of maximal dimension in the considered
phase space.

Nevertheless, 
 being ignorable when the osculat-
ing ellipses are circles (e0 = 0), the solutions have the
same features in the averaged problem as in the phase

portrait of H
K=0

.
Theorem 2 ensures that a given solution of the aver-

aged problem that lies outside the Hill’s sphere of the
planet, approximates for a finite time the motion of a
particle that starts at the same initial condition. Hence,
in the Poincaré complex variables, the motion of a
particle that crosses (λi ,Λi , x̃i , xi ) with λi = θi and
Λi = 1+ ui at t = 0, can be approximated for a finite
time by Eq. (12) or Eq. (13) such that

(λ(t),Λ(t), x̃(t), x(t))

with

λ(t) = t + θ(t), Λ(t) = 1 + u(t).

In terms of orbital elements, the approximation of
the variations reads
a(t) = 1 + 2ui + 2F1(νt) + O2(u(t)),
e(t) = e0 + e0O(u(t)),

(t) = 
i + gt + F3(νt)
M(t) = θi − 
i + (1 − g)t + [F1 − F3](νt)
Hence, the semimajor axis and the eccentricity experi-
ence a slow oscillation of frequency ν and of amplitude
of the order O(u), respectively, about 1 and e0. The
variations of the longitude of the periaster correspond
to the composition of a secular drift of frequency gwith
an oscillation of frequency ν. Finally, the motion of the
mean longitude is given by a fast drift of frequency
1 − g composed with a slow oscillation of frequency
ν.

We recall that the orbital elements are related to the
polar coordinates (φ, R) = (arg(R), ‖R‖) of the syn-
odic reference frame as follows:

φ = θ + v − M,

R = a(1 − e cos E)

v = M + G1(e, M), E = M + G2(e, M). (14)

The functions G j , that satisfy G j (e, M) = O(e),
derive from the Kepler equation M = E − e sin E and
the difference between the true and eccentric anomaly

tan(v/2) =
√

1+e
1−e tan(E/2).

In the synodic reference frame, the approximate
motion of the particle can be written as

φ(t) = θi + G1(e0, M(t)) + F1(νt)

+O2(u(t), e0)

R(t) = 1 + 2ui − e0 cos(M(t)) + 2F2(νt)

+O2(u(t), e0)
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with M(t) = θi − 
i + (1 − g)t + [F1 − F3](νt). As
a consequence, a periodic trajectory of a given phase
portrait generally provides a quasi-periodic approxima-
tion of the motion whose fundamental frequencies are
1 − g and ν. More precisely, the motion is character-
ized by R that oscillates about 1 with an amplitude of
the order O(e0) + O(u(t)), while φ is the sum of the
periodic oscillation generated by θ(t) with the quasi-
periodic oscillations generated byG1 whose amplitude
is of the order O(e0). The same reasoning applies for

an equilibrium of H
K (e0): it provides a set of periodic

trajectories of frequency 1 − g whose motion follows:

φ(t) = θi + G1 (e0, M(t)) + O2(ui , e0),
R(t) = 1 + 2ui − e0 cos(M(t)) + O2(ui , e0),

with M(t) = θi − 
i + (1 − g)t . Hence, the motion
is characterized by an oscillation of frequency 1 − g
around a guiding center located in (φ, R) = (θi , 1 +
O(ui )) and whose amplitude is of the order O(e0).
Finally, for e0 = 0, themotion of the particle is approx-
imated by

φ(t) = θi + F1(νt),
R(t) = 1 + 2ui + 2F2(νt) + O2(u(t)),

(15)

and a trajectory of the phase portrait provides an equi-
librium in the synodic reference frame or a periodic
trajectory of frequency ν characterized by R that oscil-
lates around 1with an amplitude of the orderO(u), that
is, much smaller than 1.

4.2 Phase portraits for a Sun–Jupiter-like system
(ε = 1/1000)

Figures 3 and 4 display the phase portraits of the

reduced averaged Hamiltonian H
K (e0) associated with

five values of e0. They are obtained for a Sun–Jupiter-
like system (ε = 1/1000) by implementing the algo-
rithm of
Nesvorný et al. [24]. They are equivalent to the
one showed in [22,24] and extensively described in
[28]. We will limit ourselves to present what will
be useful to understand the trajectories described in
Sect. 2.2.2 as well as to apply the Theorems stated in
Sect. 3. Notice that the phase portraits are invariant
by the symmetry with respect to the u-axis (θ, u) �→
(2π − θ, u).

In Fig. 3, e0 is equal to zero and particle’s motion
is quasi-circular. Let us mention that in this case the

reduced averaged Hamiltonian reads

H
0
(θ, u) = −1 − ε

2a
− u

+ε

(
cos θ − 1√

a2 + 1 − 2a cos θ

)

with a = (1 + u)2, which allows to recover some clas-
sical analytical properties (see, e.g., [12,23]) that will
be recalled in the following. Being the computations
similar to the ones given in [30], the details are not
given.

First of all, the black dot at θ = u = 0 embod-
ies the collision with the planet, where H

0
is not

defined. The phase portrait possesses five equilib-
ria that correspond to the Lagrange fixed points L j .
The two elliptic equilibria located in (θ j , u j ) =(
(−1) j × 60 ◦, 0

)
, stand for L4 and L5 while the hyper-

bolic ones in

(θ3, u3) =
(
180 ◦, 1 − 7

6
ε + O(ε2)

)
,

(θ j , u j ) =
(
0 ◦, (−1) j ×

(ε

6

)1/3 + O(ε2/3)

)

approximate, respectively, L3 and L j for j = 1, 2.
With respect to the synodic reference frame (see
Sect. 2.2.2), L4 are L5 are recovered at their exact loca-
tionwhile L3 is approximatedwithin an accuracyO(ε).
For j = 1, 2, L j are found within an accuracyO(ε1/3)

which highlights theweakness of the averaged problem
at the edge of the Hill’s sphere.

The phase portrait is characterized by six regions.
The beige domain centered at the singularity and
bounded by the separatrices originating from L1 and
L2 seems to be the prograde satellite-likemotion.How-
ever, since the domain belongs to the Hill’s sphere of
the planet, it lies inside the exclusion zone and its trajec-
tories fall outside the scope of the averaged problem.
Hence, the corresponding dynamics will not be ana-
lyzed in this work. The upper and lower grey domains,
that lay above the separatrices of L1 and L2, illus-
trate the non-resonant motion for which θ circulates
(clockwise in the upper region and anti-clockwise in
the lower one). Considering that the width along the
u-axis of the region located inside the separatrices is
of the order O(ε1/3), Theorem 1 implies that the non-
resonant regions escape from the domain of validity of
the averaged problem.

The three remaining regions are the ones of the co-
orbital dynamics, for which θ oscillates about a given
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Fig. 3 Phase portrait of a particle in quasi-circular motion
(e0 = 0) for a Sun–Jupiter-like system (ε = 1/1000). The
black dot denotes the singularity associated with the collision
with Jupiter, while the brown circle, orange circle, red circle and
the two blue diamonds correspond, respectively, to L1, L2, L3
and L j for j = 4, 5. The separatrices that originate from L1,
L2 and L3, represented, respectively, by brown, orange and red
thick curves, divide the phase portrait in six regions. Although
they are very close to each other, the separatrices of L1 do not
coincide with those that originate from L2. The beige domain,
centered on the singularity, embodies the Hill’s sphere of the

planet, inside which the averaged Hamiltonian does not reflect
properly the dynamics of the restricted three-body problem. The
upper and lower grey domains lay outside the co-orbital reso-
nance (θ circulates). The blue and red trajectories are level curves
associated with tadpole-shaped and horseshoe-shaped periodic
orbits, respectively. More precisely, the blue level curves belong
to the families L l

4 and L l
5 . Finally, the green curves exhibit the

elements associated with a minimal mutual distance Δ = N RH,
while the grey lines depict {|u| = ε1/3/

√
N }. For a given N , they

bound the domain D1(Δ) inside which Theorem 2 is applied .
(Color figure online)

value. These regions are divided by the separatrix that
originates from L3. The solutions that librate around
L4 and L5 are tadpole-shaped characterized by |θ | that
oscillates about 60 ◦ such that Θ0 < |θ | < 180 ◦ with

Θ0 = 2 arcsin((
√
2 − 1)/2) + O(ε) � 23.9 ◦,

and u that oscillates around zero with an amplitude that
can reachO(

√
ε). According to Sect. 4.1, these trajec-

tories are periodic and possess the same features as the
ones of the long-periodic familiesL l

4 andL
l
5 . Outside

the separatrix, the trajectories encompass L3, L4 and
L5, i.e., they are characterized by θ and u that oscillate,
respectively, about 180 ◦ and 0, with large amplitudes.
More precisely, θ and u undergo large variations such
that θ ∈ [Θ1, 2π − Θ1] with
0 < O(ε1/3) < Θ1 < Θ0

and |u| ≤ U1 with O(
√

ε) < U1 < O(ε1/3). These
solutions approximate periodic horseshoe-shaped tra-
jectories (see, e.g., the study of Barrabés and Ollé [3]
that focuses on these solutions).

With respect to Fig. 3, the phase portraits of Fig. 4a–
d, respectively, associated with e0 = 0.15, 0.5, 0.75,
0.925, enlarge the area bounded by |u| = √

ε � 0.31.

For e0 > 0, the location of the singularities evolves:
the origin becomes a regular point surrounded by a
set of singular points that describes a curve. For small
e0 (e.g., Fig. 4a), a new domain of co-orbital motion
appears inside the collision curve. It is centered on
an elliptic equilibrium point located close to the ori-
gin. According to Sect. 2.2.2 and Sect. 4.1, the ellip-
tic equilibrium point approximates a periodic orbit
of the family f . Hence, the periodic trajectories that
librate around, provide quasi-periodic approximations
of quasi-satellite orbits. Outside the collision curve,
the topology does not change with respect to the one
depicted in Fig. 3 outside the Hill’s sphere: two elliptic
equilibria close to L4’s and L5’s locations and a sep-
aratrix emerging from a hyperbolic equilibrium close
to L3 that divides the regions of tadpole and horse-
shoe motions. According to Sect. 4.1, the equilibria
of the phase portraits approximate periodic trajectories
whose guiding center are located, respectively, close to
L3, L4 and L5. Hence, the elliptic equilibria belong to
L s

4 andL s
5 while the hyperbolic one corresponds to a

trajectory ofL3.

123



Revisiting the averaged problem in the case of mean-motion resonances 977

a b

dc

Fig. 4 Phase portraits of the reduced Hamiltonian H
K (e0) for

a Sun–Jupiter-like system (ε = 1/1000). They enlarge the area
bounded by {|u| = √

ε} in Fig. 4. For a, b, c and d, e0 is equal
to 0.15, 0.5, 0.75 and 0.925, respectively. The black curves rep-
resent collision with the planet. The blue, sky blue and red tra-
jectories are level curves associated with tadpole, quasi-satellite
and horseshoe motion, respectively. The red circles, sky blue
and blue diamonds are equilibria. More precisely, they corre-

spond, respectively, to orbits of the families of periodic orbits
L3, f and L s

j for j = 4, 5. From each hyperbolic equilibrium
emerges a separatrix (red thick curve) that divides tadpolemotion
and horseshoe motion. For d, the red diamond denotes an orbit
that belong to the stable part of L3. Finally, the green curves
exhibit the elements associated with a minimal mutual distance
Δ = N RH, and bound the domainD1(Δ) inside which Theorem
2 is applied. (Color figure online)

For higher values of e0 (e.g., Fig. 4b–c), the size of
the quasi-satellite domain increases while one of the
tadpole domains shrinks when the two elliptic equilib-
ria are getting closer to the hyperbolic one.

The evolution of the two elliptic equilibria illustrates
the shift of the guiding center of L s

4 and L s
5 toward

L3 described in Sect. 2.2.2.
Finally, for very high e0 (e.g. Fig. 4d), the tadpole

domains vanished and remains a domain characterized
by trajectories that librate around an elliptic equilib-
rium that belongs toL3. This bifurcation ofL3 occurs
for e0 � 0.917, when the short-periodic families L s

j
merge withL3.

For a given minimal mutual distance Δ = N RH

with 1 ≤ N ≤ ε−1/3 and RH = ( ε
3

)1/3 that denotes the

Hill’s radius of the planet, we recall that the domain
D1(Δ) introduces in Sect. 3.3 is defined by the res-
onant variables for which the distance between the
planet and the particle is larger than N RH, and |u|
which is bounded by a quantity ρ =• ε1/3√

N
. The grey

lines and green curves that lay over the phase por-
traits approximate the boundaries ofD1(Δ) for several
value of N = 1, 3, 5, 10. The grey lines correspond to
{|u| = ε1/3√

N
}while the green curves exhibit the elements

(θ, u, e(e0, u)) for which the minimal mutual distance
is equal toΔ = N RH. They are computed by resolving
the following equation:

min
M∈T(R

2 + 1 − 2R cosφ)(θ,u,e(e0,u),M) = N 2R2
H.

with the help of Eq. (14).
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In Figs. 3 and 4, the exclusion zone of the aver-
aged problem is depicted by the small areas centered
on the collision curves and bounded by the continu-
ous green curves associated with the minimal mutual
distance Δ = RH. They show that, contrarily to the
tadpole motion, some solutions in quasi-satellite and
horsehoe motion intersects the Hill’s sphere and fall
outside the scope of the averaged Hamiltonian. More
generally, the phase portraits also show that, for a given
minimal mutual distance Δ = N RH, a co-orbital solu-
tion which starts inside the area {|u| ≤ ε1/3√

N
} can cross

the sphere defined by Δ = N RH and thus escape from
the domainD1(Δ) inside which Theorems 1 and 2 are
applied. However, a co-orbital solution which starts in
the neighborhood of the section {u = 0} at a givenmin-
imal mutual distance Δ, does not experience closest
encounters with the Jupiter and remains insideD1(Δ).
As a consequence, the section {u = 0} provides a con-
venient way to discuss about the validity and the time
of stability of the solutions of the averaged problem
without caring about times of escape fromD1(Δ). This
study is realized in the following section.

4.3 A “map” of the co-orbital motion in the
circular-planar case

First of all, we summarize the situation. Six families
of periodic orbits ( f ,L3,L s

j andL
l
j ) and three types

of trajectories (tadpole, horseshoe and quasi-satellite
motion) described in Sect. 2.2.2 have been recovered
in the averaged problemclose to the exactmean-motion
resonance u = 0.Notice that the domain of “satellized”
retrograde satellite mentioned in Sect. 2.2.2 is missing
since it is located in the neighborhood of the family
f that belongs to the Hill’s sphere (see [28] for more
details).

Each domain of co-orbital motion extends quasi-
symmetrically with respect to the exact mean-motion
resonance u = 0 and is neatly defined by the colli-
sion curves or the separatrices that originate from the
hyperbolic equilibria associated with L3. In this sec-
tion, we construct a “map” of the co-orbital motion in
the circular-case, that is, a representation of the section
{u = 0} which can be used in order to discuss about
the stability of the solutions as well as to compute co-
orbital trajectories in the synodic reference frame. Two
parameters are required to identify a solution of the
averaged problem that belongs to the section {u = 0}:

Fig. 5 “Map” of the co-orbital motion defined by the section
{u = 0}. The black and red thick curves stand, respectively, for
the singularity of collision and the crossing of the separatrices
that originate fromL3 (red curve). They divide the map in three
regions. The sky blue and blue regions correspond to the quasi-
satellite and the tadpole motion. They are centered, respectively,
on the family f (sky blue curve) and the short periodic families
L s

j (blue curves). The horseshoe region is represented in red. The
dashed line is associated with the quasi-circular motion (ei =
0) for which the tadpole and horseshoe solution correspond to
periodic trajectories in the synodic reference frame. (Color figure
online)

the resonant angle θi and the eccentricity of the orbit ei ,
(we recall that ei = e0 when u = 0). Hence, we com-
pute the evolution of the cross sections of the bound-
aries of each domain (separatrix and collision curves)
by varying the eccentricity ei . To that end, we con-
sider the following reduction of the reduced averaged
Hamiltonian:

H
K (e0)
0 (θ, u) = −3

2
u2 + HP (θ, 0, x̃(K ), x(K ))

which is derived from the Taylor expansions of HP and
HK, respectively, at zero and second order in u = 0.
This reduction is reliable in the vicinity of the section
{u = 0} and has the advantage to be independent of ε,
under the following rescaling: ε−1H0(

√
εu, θ, x̃, x).

Hence, a “map” of the section {u = 0} computed

through H
K (e0)
0 , is invariant under the variation of ε.

Figure 5 displays the map of the co-orbital motion
in the circular-planar case. The black thick curves illus-
trate the collision with the planet. They can be approx-
imated by |θi | = 2ei × 180 ◦/π up to high eccen-
tricities. They bound the sky blue region associated
with the quasi-satellite motion. The red thick curves
depict the crossings of the separatrices that originate
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Fig. 6 (Left panel) Same figure as Fig. 5. The dashed green
curves correspond to the element (θi , ei ) for which the mini-
mal mutual distance Δ is equal to NεRH where RH denotes the
Hill’s radius. The grey lines correspond to the initial condition

for which the trajectory crosses the orbit of Mars and Saturn.
(Right panel) Enlargement in the neighborhood of the collision
curve

fromL3. It divides the blue and red regions of tadpole
and horseshoe motion. Let us mention that for ei = 0,
only two domains of co-orbital motion exist: L4, L5

and the long-periodic families L l
4 and L l

5 form the
tadpole region while the other one corresponds to the
periodic horseshoe-shaped trajectories. The left panel
of Fig. 6 displays the map of the co-orbital motion with
the elements (θi , ei ) for which the minimal mutual dis-
tanceΔ is equal to N RH, for a Sun–Jupiter-like system
(ε = 1/1000). The two additional grey lines represent
the elements (θi , ei ) for which the particle crosses the
orbit of Mars and Saturn. Hence, they suggest the max-
imal value of eccentricity for which the solutions of
the restricted three-body problem are reliable in order
to describe the real motion in the Solar System. The
right panel of Fig. 6 is an enlargement of the map on
the region that surround the collision curve.

According to Theorems 1 and 2, for a given number
1 < N ≤ ε−1/3, and a given type of co-orbital dynam-
ics, we can define a set of elements (θi , ei ) which sat-
isfy a mutual distance greater than Δ = N RH, and for
which the time of stability of the solutions of the aver-

aged problem is at least
√
N

3
revolutions of Jupiter.

In the synodic reference frame, the couple (θi , ei ) pro-
vides a set of initial conditions, parametrizedby
i ∈ T

and that can be written as

φi = θi + G1(ei , θi − 
i )

Ri = 1 − ei cos
(
θi − 
i + G2(ei , θi − 
i )

)

Ṙi =
⎛
⎝Ri − 1√

1 − e2i

⎞
⎠
(

sin φi

− cosφi

)

+ ei√
1 − e2i

(
sin
i

− cos
i

)
(16)

Hence, Theorem 2 ensures that an initial condition,
given by Eq. (16), provides a co-orbital trajectory of the
same type, at least for a finite time. In other words, tran-
sitions to another co-orbital motion or escapes from the
1:1 mean-motion resonance cannot occur at least dur-
ing a time T = 2π

√
N 3. For instance, for N equal to

3, 5 and 10, it ensures a time of stability corresponding
approximately to 5, 10 and 30 revolutions of Jupiter,
that is, more than 50, 125 and 350 years.

As mentioned at the end of the previous section,
the quasi-satellite and the horseshoe domains inter-
sect the exclusion zone of the averaged problem. More
precisely, for high values of ei , the quasi-satellite
motion dominates the map and the size of the intersec-
tion between the quasi-satellite domain and the exclu-
sion zone is small relatively to the whole domain. By
decreasing ei , since the quasi-satellite domain shrinks
with the collision curve, the relative size of the inter-
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section increases until a critical value for which the
exclusion zone contains all the quasi-satellite orbits. In
the case of a Sun–Jupiter-like system, this critical value
occurs for ei � 0.07.

Notice that Pousse et al. [28] suggested, through
a frequency analysis of the family f , a critical value
of ei � 0.18 for the quasi-satellite orbits. This value
was given by an arbitrary criterion for which a solu-
tion of the averaged problem is considered outside the
exclusion zone, if the modulus of their fundamental
frequencies ν and g are lower than λ̇′/4, where λ̇′ = 1
denotes the frequency of averaging. Theorem 1 pro-
vides a lower value of eccentricity and thus a larger
domain of validity of the averaged Hamiltonian for the
quasi-satellite motion. However, based on the results in
[28], the quasi-satellite region that surround the Hill’s
sphere is probably overlaped by secondary resonances,
that is, the resonant structures generated by commen-
surabilities between frequencies ν, g and λ̇′ = 1, and
especially between ν and 1− g due to the D’Alembert
rules (see Sect. 2.3.2). In particular, it has been shown
in this area (see, e.g., [28]) that the neighborhood of the
family f is divided in three disjoint regions by two crit-
ical orbits of the family f associated with the commen-
surabilty 3ν = 1−g. As a consequence, a global study
of the frequencies in the averaged problem will proba-
bly reveal the resonant structures that destabilizes the
quasi-satellite region that surround the Hill’s sphere,
and may also highlight some islands of quasi-satellite
solutions for which the time of stability is larger than
the one given by Theorem 2.

The horseshoe motion exists outside the exclusion
zone for low and very high eccentricities. More pre-
cisely, by increasing ei , the size of the intersection
between the horseshoe domain and the exclusion zone
increases until a critical value ei � 0.4 for which
all the horseshoe-shaped trajectories cross the section
{u = 0} inside the Hill’s sphere. Furthermore, there
exists another critical value ei � 0.6 for which a part of
the horseshoe domain goes outside the exclusion zone.
Then, for increasing ei , the relative size of the intersec-
tion between the horseshoe domain and the exclusion
zone decreases.

Most of the solutions in horseshoe motion experi-
ences closed encounters with Jupiter (less than 5 Hill’s
radii), and thus have a relatively small time of stability
according to Theorem 2. Similarly to the quasi-satellite
region located at the edge of theHill’s sphere, the horse-
shoe region is probably overlaped by secondary res-

onances which destabilize the domain. A global fre-
quency analysis of the regionmay reveal these resonant
structures.

4.4 Conclusions

In this paper, we showed that the averaged problempro-
vides another approach in order to study some families
of periodic orbits of the restricted three-body problem.
More precisely, we proved that it is a valid approxima-
tion in a particular area of the phase space that focuses
on mean-motion resonances. Through a rigorous treat-
ment, we characterized the domain of validity of the
averaged problem (Theorem 1) and proved that it is a
reliable approximation as long as the considered tra-
jectories lay outside the Hill’s sphere of the planet. A
new result of stability over finite times has also been
proved (Theorem 2). As a consequence, we provided
a rigorous justification of the relevance of the aver-
aged problem to study some specific solutions of the
restricted three-body problem.

Our theoretical results allowed us to understand the
co-orbitalmotion (1:1mean-motion resonance), that is,
the quasi-satellite, the tadpole and the horseshoe orbits,
that comprise the family f , the short-periodic and long-
periodic families that originate from L4 and L5, and
the Lyapunov family associated with L3. In particular,
in the framework of the circular-planar case, we pro-
pose a method, illustrated by a “map” of the co-orbital
motion, that takes advantage of the averaged problem
in order to compute co-orbital trajectories in the syn-
odic reference frame. The results are presented in the
case of a Sun–Jupiter-like system, but the “map” of
the co-orbital motion, plotted in the Fig. 5, is indepen-
dent of the small parameter ε, that is, the mass ratio of
the planet over the total masses of the system. Hence,
only the elements for which the minimal mutual dis-
tance Δ is equal to N RH, must be computed in order
to apply the method to a different Sun–planet system
(or planet-moon system). For example, Fig. 7 displays
the map of the co-orbital motion for a Sun-Earth like
system (ε = 1/333333). However, we recall that, since
the accuracy of the averaged problem depends on ε, the
larger ε is, the less the map of Fig. 5 is reliable.

A practical application of our theoretical results
interests the design of space missions. Let us consider
a spacecraft affected by the gravitational forces of a
Sun-Earth like system. The selected orbits are usually
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remarkable solutions in the synodic reference frame
that is, the Lagrange fixed points and periodic or quasi-
periodic trajectories, as well as their associated hyper-
bolic manifolds (when existing). However, except for
the dynamics associated with L1 and L2, most of these
solutions are located at a remote distance from the
Earth, and thus the cost in terms of energy or time
to reach them is usually not affordable. For instance,
Fig. 7 shows that L3, L4, L5, the short-periodic and
long-periodic families and the Lyapunov family L3

lay at a distance larger than 40 Hill’s radii. Only the
family f provides periodic orbits available at a lower
distance, that is why it becomes an important topic for
mission design, mainly in the aim to orbit small moons
(e.g., the two Mars’s moons, Phobos and Deimos).

Our idea is the following: since the duration of a
mission is limited, it is not necessary to target an equi-
librium or a periodic solution in the synodic reference
frame. With the help of our method, which character-
izes the elliptic and hyperbolic dynamics of the co-
orbital motion through the averaged problem as well as
defines a time of stability of these solutions, it is easy
to select an initial condition on the map of Fig. 7, that
is located close enough to the Earth, and that satisfies a
given co-orbital dynamics for the whole duration of the
mission. For instance, for a 30-years mission, Theorem
2 ensures that a co-orbital solution, that is located out-
side 10 Hill’s radii of the Earth, will be stable at least
during the time of the mission. As a consequence, the
horseshoe, tadpole andquasi-satellite solutions become
possible target trajectories.

Notice that co-orbital solutions that experience clos-
est approaches with the Earth may also be stable for
the considered time of the mission. For instance, in the
case of planar and quasi-circular horseshoe orbits, Cors
and Hall [7] provided a practical stability estimate (the
order of magnitude of the time for which the trajectory
remains qualitatively the same) which is much greater
than the one given by Theorem 2. Hence, a comple-
mentary analyze could be a global numerical investi-
gation of the time of stability of the co-orbital orbits
that experience close approaches. A detailed study will
be addressed in a forthcoming work.

Finally, we point out that the application of the
averaged problem as presented here is not restricted
to the co-orbital motion in the circular-planar case: it
can also be applied to inclined co-orbital trajectories,
or, more generally, to solutions associated with other

Fig. 7 Map of the co-orbital motion for a Sun-Earth like system

mean-motion resonances. To this aim, a careful study
of the averaged phase space must be realized.
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A Proofs

A.1 Remainders

We recall that the Hamiltonian flow at a time t , gen-
erated by an auxiliary function h(X), satisfies the fol-
lowing property:

d

dt

(
g ◦ Φh

t

)
= Lhg ◦ Φh

t (17)

where g is an auxiliary function. Thus, we have the
following Taylor expansions:

g ◦ Φh
t = g +

∫ t

0
Lhg ◦ Φh

s ds, (18)

g ◦ Φh
t = g + Lhg +

∫ t

0
(1 − s)LhLhg ◦ Φh

s ds.

(19)

A.2 Proof of Lemma 1

For given ρ •≤ 1,Δ •≤ 1, ε •≤ 1 and κ > 0, the domain
Dκ has been designed in order to exclude the colli-
sion manifold and make the perturbation HP analytic.
Hence, HP is bounded on Dκ as well as its partial
derivatives with respect to θ , u, x̃ , x , ỹ or y for each
order k lower or equal to an arbitrarily fixed n ≥ 1.
Their estimates are deduced from the following rea-
sonings.

First of all, we recall the thresholds provided by the
definition of Dκ :

Δ̃/κ< ‖r ◦ Υ ‖κ ≤• 1, Δ/κ≤ ∥∥r ◦ Υ − r′∥∥
κ

≤• 1,
∥∥r′∥∥

κ
=• 1,

where Δ̃ = O(1) since it is an arbitrarily fixed quan-
tity that does not depend on ε, Δ and ρ. For all order
k ≤ n, the perturbation HP in heliocentric cartesian
coordinates, Eq. (4), yields the following estimates on
Dκ :

‖HP‖κ = ‖HP ◦ Υ ‖κ ≤•
ε

Δ
,

∥∥∥∥∂kHP

∂rk
◦ Υ

∥∥∥∥
κ

≤•
ε

Δk+1 .

(20)

Since the transformation Υ̂ , that introduces the
Poincaré complex variables, Eq. (5), is regular when

eccentricity and inclination tend to zero, it does not
have singularities. More precisely, it is an analytic
transformation on Dκ and, for all order k ≤ n, its
derivatives can be bounded by a constant that does
not depend on ε, ρ and Δ. Υ̌ , which introduces the
resonant variables, Eq. (5), is an affine transforma-
tion that fulfills the same properties. As a conse-
quence, Υ is analytic and, for each order k ≤ n and
(Wi )i≤k ∈ {θ, u, x̃, x, ỹ, y}, the following threshold is
satisfied:∥∥∥∥ ∂k(r ◦ Υ )

∂W1 . . . ∂Wk

∥∥∥∥
κ

≤• 1. (21)

Finally, for a given analytic function F(r, λ′) and
W ∈ {θ, u, x̃, x, ỹ, y}, we recall the chain rule:

∂F ◦ Υ

∂W
=
(

∂F
∂r

◦ Υ

)
•
∂(r ◦ Υ )

∂W
. (22)

The bounds on the partial derivatives of HP with
respect to θ , u, x̃ , x , ỹ and y, and for all order k ≤ n
are deduced from the combination of the chain rule,
Eq. (22), with the thresholds given by Eqs. (20) and
(21).

Since
∥∥HP

∥∥
κ

≤ ‖HP‖κ , the results on the averaged
perturbation is a direct consequence of the previous
development.

On the domainD2, HK is analytic, is different from
zero, and thus satisfies ‖HK‖2 =• 1 while, for each
order k lower or equal to an arbitrarily fixed n ≥ 1,
its derivatives are bounded. More precisely,

∣∣H ′
K

∣∣ = 3pq−1
√
ã∣∣∣√ã + u
∣∣∣3

|u|
∣∣∣∣1 + √

ãu + u2

3
√
ã

∣∣∣∣ ,
∣∣H ′′

K

∣∣ = −3∣∣∣√ã + u
∣∣∣4

imply that
∥∥H ′

K

∥∥
2 ≤• ρ and

∥∥H ′′
K

∥∥
2 ≤• 1.

A.3 Proof of Theorem 1

First of all, we recall some results about the construc-
tion of the transformation of averaging: Υ = ΦS

1 with
S that reads:

S(θ, u, x̃, x, ỹ, y, λ′)

= 1

2π

∫ 2π

0
s(HP − HP)(θ,u,x̃,x,ỹ,y,λ′+s)ds,

(23)
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in order to satisfy the following property:

LSΞ = − ∂S

∂λ′ = HP − HP. (24)

Under these conditions, the remainder of the averaging
process reads:

H∗ = (expLS − Id)(HK + HP)

+(expLS − LS − Id)Ξ. (25)

Most of the estimates required for the proof are com-
puted with the Taylor expansion at zero order, Eq. (18).
More precisely, if we assume that there exists κ < 2
such that Υ (Dκ) ⊂ D2, then for a given function g
that depends on the variables (θ, u, x̃, x, ỹ, y, λ′), the
following thresholds are ensured:

∥∥g ◦ Υ − g
∥∥

κ
≤•
∥∥∥∥ ∂S

∂W

∥∥∥∥
2

∥∥∥∥ ∂g

∂W

∥∥∥∥
2

for W ∈ {θ, u, x̃, x, ỹ, y}.
For each order k lower or equal to an arbitrarily fixed
n ≥ 1 and (Wi )i≤k ∈ {θ, u, x̃, x, ỹ, y}, we point out
that Eq. (23) and Lemma 1 provide the following
thresholds on the partial derivatives of S:∥∥∥∥ ∂k S

∂W1 . . . ∂Wk

∥∥∥∥
2

≤•
ε

Δk+1 . (26)

Hence, in Dκ and for W ∈ {θ, u, x̃, x, ỹ, y}, we have
the following:∥∥r ◦ Υ − r′∥∥

κ
≥ ∥∥r − r′∥∥

κ
− ‖LS(r ◦ Υ )‖2∥∥r ◦ Υ

∥∥
κ

≥ ‖r‖κ − ‖LS(r ◦ Υ )‖2∥∥W ◦ Υ
∥∥

κ
≤ ‖W‖κ + ‖LSW‖2

with

‖LS(r ◦ Υ )‖2 ≤•
ε

Δ2 , ‖LSW‖2 ≤•
ε

Δ2 .

As a consequence, for ε •≤ ρΔ2 and ε •≤ Δ3 with
ε, ρ and Δ small enough, we can choose κ = 3/2
such that the symplectic transformation of averaging
satisfies Υ (Dκ) ⊂ D2 and is close to identity such that

∥∥W ◦ Υ − W
∥∥
3/2 ≤•

ε

Δ2 ,

∥∥∥∥∥
∂Υ

∂W

∥∥∥∥∥
3/2

≤• 1 (27)

for W ∈ {θ, u, x̃, x, ỹ, y}.
It remains to prove the estimates on the remainder of

the averaging process. The Taylor expansions at zero
and first order, Eqs. (18–19), combined with the condi-
tion satisfied by S, Eq. (24), ensure that the remainder

H∗, Eq. (25), can be written as

H∗ =
∫ 1

0
LSHK ◦ ΦS

s ds +
∫ 1

0
sLSHP ◦ ΦS

s ds

+
∫ 1

0
(1 − s)LSHP ◦ ΦS

s ds.

As a consequence, the thresholds given by Eq. (26)
and Lemma 1 provide the following upper bound on
the remainder:

‖H∗‖3/2 ≤• (‖LSHK‖2 + ‖LSHP‖2)
with

‖LSHK‖2 ≤•
ερ

Δ2 , ‖LSHP‖2 ≤•
ε2

Δ4 .

The upper bound on the derivative of H∗ with respect
to θ , u, x̃ , x , ỹ and y is deduced in the same way.
For W ∈ {θ, u, x̃, x, ỹ, y}, Lemma 1 and Eqs. (26–27)
provide the following estimates:∥∥∥∥∂H∗

∂W

∥∥∥∥
3/2

≤•
(∥∥∥∥∂LSHK

∂W

∥∥∥∥
2
+
∥∥∥∥∂LSHP

∂W

∥∥∥∥
2

)

with∥∥∥∥∂LSHP

∂W

∥∥∥∥
2

≤•
ε2

Δ5
,

∥∥∥∥∂LSHK

∂u

∥∥∥∥
2

≤•
ε

Δ2 , and
∥∥∥∥∂LSHK

∂W

∥∥∥∥
2

≤•
ερ

Δ3 for W ∈ {θ, x̃, x, ỹ, y}.

A.4 Proof of Theorem 2

The proof follows the classical strategy described in
[2]. The aim of the first part of the proof is to bound the
Hamiltonian vector field linked to H∗ over the domain
D3/2. The second part comes from the size of the trans-
formation of averaging Υ and the choice of a time
T > 0which gives terms of the same order in the upper
bound on the error of approximation.

For a given initial condition X0=(W0, λ
′
0, Ξ0)∈D1

and a time of escape T1 > 0, we assume that the solu-
tion X. (t) = (

X. i (t)
)
i∈{1,...,8} = (W. (t), λ′(t),Ξ. (t))

governed by Ξ + H , does not escape of D1 for all
|t | ≤ T1.

Hence, for given µ = (μi )i∈{1,...,8} that satisfies
0 < μi •≤Δ for i = 1, . . . , 8, and

0 < μ2 ≤•
ε

Δ2 , (28)

we can ensure that the neighborhood

Eµ(t) =
{∥∥Xi. (t) − Xi

∥∥
3/2 ≤ μi for i = 1, . . . , 8

}
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belongs toD3/2 for |t | ≤ T1.
For a given initial condition in X̃0 = (W̃0, λ

′
0, Ξ̃0) ∈

Eµ(0), X̃(t) = (W̃(t), λ′(t), Ξ̃(t)) denotes the solu-
tion at a time t generated by the flow of the original
HamiltonianΞ + H + H∗.We assume that there exists
a time T > 0 such that X̃(t) belongs to the neighbor-
hood Eµ(t) for |t | ≤ min(T , T1).

We denote

W∗(t) = (W∗,i (t)
)
i∈{1,...,6} = W̃(t) − W. (t)

the “error” at a time t on the approximation given by
the averaged problemwith respect to the solution of the
original one. The vector field of W∗(t), deduced from
Eq. (17), can be written as Ẇ∗(t) = F1(t) + F2(t) +
F3(t) with F j (t) = (F j,i (t))i∈{1,...,6} and

F1(t) = (LH∗W)(W̃(t), λ′(t)),
F2(t) = (LHP

W)(W̃(t)) − (LHP
W)(W. (t)),

F3(t) = (LHKW)(W̃(t)) − (LHKW)(W. (t)).

F1 corresponds to the vector field of the remainder H∗
whose upper bounds of each coordinates have been
computed in Theorem 1. F2 and F3 are derived from
the difference between the two consideredHamiltonian
flow. They have to be estimated. For that purpose, we
apply the Taylor expansion at first order, Eq. (19), to

F2(t) = G ◦ S1(t) − G ◦ S0(t)

where

G(W) = (LHP
W)(W), Ss(t) = W̃(t) − sW∗(t).

For i ∈ {1, . . . , 6}, this provides the following thresh-
old:∥∥F2,i (t)∥∥3/2 ≤

(
‖dG‖3/2 + μi

∥∥d2G∥∥3/2
) ∥∥W∗,i (t)

∥∥
3/2 .

We deduce the following upper bounds from Lemma 1
and the conditions on µ, Eq. (28),∥∥F2,i (t)∥∥3/2 ≤•

ε

Δ3

∥∥W∗,i (t)
∥∥
3/2 .

Finally, since HK only depends on u, the condition on
μ2, Eq. (28), provides the following upper bound:∥∥F3,1(t)∥∥3/2 ≤•

ε

Δ2 , F3,i (t) = 0 for i = 2, . . . , 6.

Hence, the upper bound on each coordinate of the vec-
tor field of W∗(t) can be written:∥∥Ẇ∗,i (t)

∥∥
3/2 ≤ a

∥∥W∗,i (t)
∥∥
3/2 + bi

with

a =•
ε

Δ3 , b1 =•
ε

Δ2 , bi =•
ε

Δ2

√
ε

Δ3 for i = 2, . . . , 6.

As a consequence, for a given d > 0 such that∥∥Ẇ∗,i (0)
∥∥
1 ≤ d < μi , and 0 < t < T ,

the error on the approximation are bounded by μi as

(d + bi t) exp(at) ≤ μi . (29)

From now on, we consider the initial condition
X0 ∈ D1 in the (non-averaged) resonant variables. The
properties on the transformation of averaging impose

that there exists a X̃0 ∈ D3/2 such that
∥∥∥W0 − W̃0

∥∥∥ ≤•

ε
Δ2 . Hence, it imposes d =• ε

Δ2 in order to get X̃0 in the
neighborhood of the initial condition X0 in the “aver-
aged” resonant variables. This choice on d fulfills the

condition of Eq. (28) We can choose T = 2π
√

ε
Δ3 in

order to deal with terms of the same order in Eq. (29)
which givesμi =• ε

Δ2 for i =2,…,6. Finally, this choice

implies μ1 =•
√

ε
Δ
which also fulfills Eq. (28).
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