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1   |   INTRODUCTION

6,7-Benzomorphans, originated from morphine struc-
ture simplification, have been investigated in medic-
inal chemistry for developing new drugs (Turnaturi 
et al.,  2018). In the interaction of opioid receptors with 
benzomorphan-based compounds, three different phar-
macophoric requirements were identified: the aromatic 

ring, the saturated segment, and the basic nitrogen. In 
fact, the basic nitrogen and phenolic group of Tyr1 of 
endogenous opioid peptides could be mimic by the rigid 
benzomorphan scaffold. The (−)-(2R,6R,11R) configura-
tion of the benzomorphan nucleus is preferred for opioid 
receptors interaction and is identical to the (−)-morphine 
configuration (Pathan & Williams, 2012). Moreover, this 
nucleus could be considered a versatile scaffold, and the 
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Abstract
6,7-Benzomorphans have been investigated in medicinal chemistry for develop-
ing new drugs. This nucleus could be considered a versatile scaffold. The phys-
icochemical properties of benzomorphan N-substituent are crucial in achieving a 
definite pharmacological profile at opioid receptors. Thus, the dual-target MOR/
DOR ligands LP1 and LP2 were obtained through N-substituent modifications. 
Specifically, LP2, bearing as N-substituent the (2R/S)-2-methoxy-2- phenylethyl 
group, is a dual-target MOR/DOR agonist and is successful in animal models of 
inflammatory and neuropathic pain. To obtain new opioid ligands, we focused on 
the design and synthesis of LP2 analogs. First, the 2-methoxyl group of LP2 was 
replaced by an ester or acid functional group. Then, spacers of different lengths 
were introduced at N-substituent. In-vitro, their affinity profile versus opioid 
receptors has been performed through competition binding assays. Molecular 
modeling studies were conducted to deeply analyze the binding mode and the 
interactions between the new ligands and all opioid receptors.
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modifications of the functional groups attached to basic 
nitrogen led to different opioid ligands. Thus, the physico-
chemical properties of benzomorphan N-substituent are 
crucial in achieving a definite pharmacological profile at 
MOR (mu opioid receptor), DOR (delta opioid receptor), 
and KOR (kappa opioid receptor).

To obtain different functional profiles, Pasquinucci 
et al. (Pasquinucci et al., 2021) designed and synthesized 
different benzomorphan-based compounds. The dual-
target MOR/DOR ligands LP1 and LP2 were discovered 
(Figure 1). LP1, bearing an N-phenylpropanamide substit-
uent (Pasquinucci et al., 2010), is a potent MOR agonist/
DOR antagonist able to counteract nociceptive pain and 
behavioral signs of persistent pain with low tolerance-
inducing capability (Parenti et al.,  2013; Pasquinucci 
et al., 2012). Moreover, LP2, with a flexible 2-methoxyethyl 
spacer at N-substituent, is a dual-target MOR/DOR agonist 
(Pasquinucci et al., 2017) that exhibited antinociceptive ef-
fect in nociceptive and persistent pain models (Pasquinucci 
et al., 2019; Vicario et al., 2019). Thus, LP1 and LP2 could 
represent helpful examples of the discovery process of new 
opioid ligands with a safer profile through N-substituent 
modification of the benzomorphan scaffold.

To improve the understanding of molecular interaction 
between the N-substituent and the opioid receptors, here 
we report the design and synthesis of LP2 analogs. First, 
the structure-affinity profile of new ligands was evaluated, 
and the 2-methoxyl group of LP2 was replaced by an ester 
or acid functional group. Then, spacers of different lengths 
were introduced at N-substituent (Figure 1). In all new LP2 
analogs the phenyl ring in the N-substituent of the benzo-
morphan scaffold was retained. In-vitro, their affinity pro-
file versus opioid receptors has been performed through 
competition binding assays. Molecular modeling was con-
ducted to deeply analyze the binding mode and the interac-
tions between the new ligands and MOR, DOR, and KOR.

2   |   RESULTS AND DISCUSSION

2.1  |  Chemistry

The new compounds 2, 3, and 10–13 were synthesized ac-
cording to Schemes 1 and 2, respectively. Compound 1 was 

prepared by primary alcohol sulfonylation with methane-
sulfonyl chloride and triethylamine in CH2Cl2. Target ester 
2 was obtained by alkylation of (−)-cis-N-normetazocine 
(Brine et al., 1990) with the mesylated alcohol 1, and the 
respective acid derivate 3 was obtained by the ester hy-
drolysis in basic condition.

Intermediate compounds 8 and 9 were synthesized 
as previously reported (Cheng et al.,  1990). Target com-
pounds 10 and 11 were synthesized by alkylation of 
(−)-cis-N-normetazocine with intermediate compounds 8 
and 9. The respective acids 12 and 13 were obtained by es-
ters hydrolysis in basic condition. New synthesized com-
pounds possess a chiral stereocenter at the N-substituent 
of (−)-cis-N-normetazocine scaffold and are a mixture of 
diastereoisomers, not separable in our purification pro-
cedures. They were characterized by 1H NMR, 13C NMR, 
and elemental analysis.

2.2  |  Radioligand binding assays

Target compounds 2, 3, and 10–13 were assayed on opi-
oid receptors, as previously described (Rita Turnaturi 
et al.,  2022). Inhibition constant (Ki) values (Table  1) 
were calculated using nonlinear regression analysis 
(GraphPad Prism, version 6.0, GraphPad Software In.). 
(Figures S1–S3).

Compared to LP2, Ki values versus MOR, DOR, and 
KOR are higher for all newly synthesized compounds. 
However, regarding their affinity to opioid receptors, 
the new molecules behaved differently based on N-
substituents. LP2 has the phenyl ring in the N-substituent 
of the benzomorphan scaffold linked to an ethyl spacer 
bearing a methoxyl group at carbon 2. In compound 2, the 
2-methoxyl group of LP2 was replaced by an ethyl ester 
functional group. This substitution is well tolerated, and 
compound 2 confirmed a MOR profile with the Ki values 
of 38.2 nM. Instead, a reduction of DOR and KOR affin-
ity in comparison to LP2 was observed. Compounds 10 
and 11 also retained an ethyl ester functionality in N-
substituent, but the distance with respect to basic nitro-
gen of the benzomorphan nucleus was incremented by 1 
and 2 methylene units, respectively. The nanomolar MOR 
affinity, exhibited by compounds 10 and 11 (Ki = 10 nM 

F I G U R E  1   Chemical structures of 
LP1, LP2 and the newly synthesized 
compounds.
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and Ki = 53.7 nM, respectively), confirmed that in MOR 
interaction, the ethyl ester in N-substituent was tolerated 
highlighting an optimal two methylene units spacer. In 
compounds 10 and 11, the affinity at DOR (14- and 50-
fold, respectively) and KOR (2- and 6-fold) was higher 
with respect to compound 2, with a significative incre-
mental of KOR affinity in compound 11 (Ki  =  32.1 ± 4), 
showing a selectivity ratio of Ki

DOR/Ki
MOR  =  2.31 and 

Ki
KOR/Ki

MOR = 0.6.
An acid functional group characterizes the compounds 

3, 12, and 13. Compound 12 showed a nanomolar Ki value 
at MOR comparable to its ester analog 10. Instead, the acid 
functional group in compounds 3 and 13 led to a detri-
mental effect on all opioid receptors compared to com-
pounds 2 and 11. Thus, replacing the ester group with the 
corresponding acid group seems not tolerated depending 
on chain lengths.

2.3  |  Molecular modeling

2.3.1  |  Docking studies

In silico studies were performed using AutoDock imple-
mented in the YASARA software. The docking studies 
were performed on all the protonation states of the com-
pounds at pH 7.4, previously calculated using the Marvin 
software (Rescifina et al., 2014; Szczepańska et al., 2021; 
Varrica et al., 2018).

All compounds at pH 7.4 possess positively charged ni-
trogen, forming a nitrogen stereocenter for each molecule 
in addition to the one already present. To avoid docking 
studies on four stereoisomers for each compound, we first 
docked the four stereoisomers of compound LP2, using 
it as a reference (Figure 2). Then, regarding the nitrogen 
stereocenter, the chosen stereoisomer had the calculated 
Ki value closest to the experimental one, in our case (R)-
N. Based on this assumption, we kept the stereocenter on 
nitrogen fixed (R) for all other compounds and performed 
docking studies on the two isomers of each compound for 
the three receptors.

In Table 2, we have only listed the ΔG and Ki values of 
the isomers whose calculated Ki value is closest to the ex-
perimental one; in almost all compounds, however, there 
is not much difference in inhibitory activity between the 
two isomers.

Focusing on the MOR, we carefully analyzed the poses 
within the receptor site of compounds 10 and 12, which 
possess a ΔG (kcal/moL) of −9.91 and −9.67, respectively.

In Figure  3, we show the 3D and 2D poses of com-
pounds 10, 12, and LP2 within the MOR, where we can 
see that the presence of the two groups, ester, and carbox-
ylic acid, alters the pose within the site but still retains 
excellent inhibitory activity. Compound 10 (Figure 3a), in 
addition to hydrophobic interactions with residues Ile296 
and 322, in common with compound 12, possesses a salt 

S C H E M E  1   Synthesis of target compounds 2 and 3. Reagents 
and conditions: (a) MsCl, TEA, anhydrous DCM, rt, 3 h; (b) 
NaHCO3, KI, DMF, 55 °C, 24 h; (c) NaOH 1 N, 110 °C, 5 h.
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S C H E M E  2   Synthesis of target 
compounds 10–13. Reagents and 
conditions: (a) t-BuOK, anhydrous DMF, 
rt, 0.5 h; (b) 1-bromo-2-chloroethane 
(n = 1) or 1-chloro-3-iodopropane (n = 2), 
rt, 24 h; (c) K2CO3, MeOH, rt, 3 h; (d) HCl 
1 N; (e) HCl/EtOH 1:1, rt, 24 h; (f) (−)-cis-
N-normetazocine, NaHCO3, KI, DMF, 
55 °C, 24 h; (h) NaOH 1 N, 110 °C, 5 h.
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bridge with residue Asp147, a typical interaction for the 
MOR; it also establishes hydrogen bonds with residues 
Gln124 and Asn127. The presence of the carboxyl group 
in compound 12, on the other hand, allows the formation 
of a hydrogen bond with His297 and prevents the forma-
tion of the salt bridge with Asp147, with which electro-
static interactions are formed (Ricarte et al., 2021; Zádor 
et al., 2022) (Figure 3b).

Another aspect being emphasized is the different affinity 
that 10 and 12 have compared to the other ligands studied; 
this is to be found in the spacer chain. The presence of an 
alkyl chain of two carbon atoms allows ligands 10 and 12 to 
accommodate themselves within the receptor site in such a 
way as to maximize interactions and strengthen anchoring.

2.3.2  |  Molecular dynamics

To study better the formation of the ligand@protein com-
plex, 100 ns molecular dynamics of ligands 10 and 12 were 

performed within the receptor pocket of the MOR pro-
tein. From the graphs of the total energy and RMSD (root-
mean-square deviation) of the complexes (Figure 4), it is 
clear that both ligands form a very stable complex with 
the MOR; this is due to the dense network of interactions, 
previously commented, that keep the ligands anchored 
within the receptor pocket (Gentile et al., 2022).

3   |   CONCLUSION

Novel LP2 analogs with a benzomorphan scaffold were 
designed and synthesized. Based on in vitro competition 
binding assays and molecular modeling studies, com-
pounds 10 and 12 showed a high affinity for MOR. Both 
molecules are appropriately located in the binding pocket 
of MOR, and maintain a similar docking pose. An alkyl 
chain of two methylene units maximizes their interactions 
with MOR, highlighting the critical role of the distance 
between the basic nitrogen of the benzomorphan scaffold 

T A B L E  1   Opioid receptors binding affinity and selectivity of compounds 2, 3, and 10–13.

Compound N-substituent Ki (nM) ± SDa

MOR DOR KOR Ki
DOR/Ki

MOR Ki
KOR/Ki

MOR

2 38.2 ± 4 6,170 ± 70 211.0 ± 10 161.5 5.5

3 980.6 ± 8 2,769.0 ± 50 715.0 ± 4 2.8 0.7

10 10.8 ± 2 440.0 ± 22 130.0 ± 15 40.7 12.0

11 53.7 ± 7 124.0 ± 8 32.1 ± 4 2.3 0.6

12 11.8 ± 2 275.0 ± 11 3,216.0 ± 60 23.3 252.7

13 477.0 ± 27 852.0 ± 10 2,716.0 ± 20 1.8 4.6

2R/S-LP2b 1.1 ± 0.1 6.6 ± 0.6 15.2 ± 0.8 6.1 14.0

DAMGO 1.2 ± 0.1 — — — —

Naltrindole — 1.1 ± 0.1 — — —

U69,593 — — 0.3 ± 0.1 — —
aEach value is the mean ± SD of at least two experiments performed in duplicate. Reference compounds were tested with the same membrane homogenates.
bReference (Pasquinucci et al., 2017).
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1386  |      COSTANZO et al.

and the ester or acid functional groups. Thus, the combina-
tion of different functional groups and the spacing carbon 
chain length appeared to determine the affinity profile of 
compounds. In this study, we confirmed that N-substituent 
nature modulates the nature of interactions towards the 
opioid receptors.

4   |   EXPERIMENTAL SECTION

4.1  |  General remarks

Reagent-grade chemicals were purchased from Merck 
(Darmstadt, Germany) and (±)-cis-N-normetazocine was 
obtained from Fabbrica Italiana Sintetici. All new com-
pounds were purified by flash column chromatography 
on Merck silica gel 60 (230–400 mesh). Melting points 
were determined in open capillary tubes with a Büchi 530 
apparatus and are uncorrected. Optical rotations were de-
termined in EtOH solution with a Perkin-Elmer 241 po-
larimeter. 1H and 13C NMR spectra were recorded at 200 
and 500 MHz on Varian Inova spectrometers in CDCl3, 
CD3OD or DMSO-d6. Elemental analyses (C, H, N) were 
performed on a Carlo Erba 1106 analyzer, and the results 
were within ±0.4% of the theoretical values.

4.2  |  Preparation of the target 
compounds 2 and 3

4.2.1  |  Ethyl 3-((methylsulfonyl)oxy)-2-(R/S)-
phenylpropanoate (1)

Ethyl tropate (2.77 mmoL, 1 eq) was dissolved in CH2Cl2 
(6  mL), the solution was cooled at 0  °C under a nitro-
gen atmosphere, and triethylamine (5.54 mmoL, 2  eq) 
and methanesulfonyl chloride (3.33 mmoL, 1.2  eq) were 
added. The reaction mixture was stirred overnight at rt. 
After, the mixture was transferred to a separatory funnel 
and partitioned (CH2Cl2/H2O). The organic phase was 
washed with brine, dried over Na2SO4, and concentrated 
in vacuo to give an amber oil that, purified by flash chro-
matography (EtOAc/C6H12 1:9), gave a light-yellow oil. 
Yield: 42%; TLC EtOAc/C6H12 (2:8 v/v) Rf = 0.50; 1H NMR 

F I G U R E  2   Protonation states of LP2 and relative 
stereoisomers.
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T A B L E  2   Calculated free energies of binding, ΔG (kcal/moL), and constants of binding, Ki (nM), for the binding sites of MOR, DOR, 
and KOR for all compounds.

MOR DOR KOR

Compound Calcd ΔG Calcd Ki Expected Ki Calcd ΔG Calcd Ki Expected Ki Calcd ΔG Calcd Ki Expected Ki

2 −9.86 58.7 38.2 ± 4 −6.97 7733.4 6170.0 ± 70 −9.16 191.5 211.0 ± 10

3 −8.04 1269.6 980.6 ± 8 −7.58 2760.7 2769.0 ± 50 −8.34 765.0 715 ± 4

10 −9.91 54.0 10.8 ± 2 −8.59 501.5 440 ± 22 −9.32 146.2 130 ± 15

11 −9.78 67.2 53.7 ± 7 −8.78 363.9 124 ± 8 −9.89 55.8 32.1 ± 4

12 −9.67 81.0 11.8 ± 2 −8.96 268.5 275 ± 11 −7.57 2807.7 3216 ± 60

13 −8.69 423.6 477 ± 27 −8.20 969.0 852 ± 10 −7.74 2107.0 2716 ± 20

2R/S-LP2 −9.64 85.2 1.08 ± 0.10 −9.86 58.7 6.61 ± 0.60 −9.13 212.0 15.22 ± 0.80

DAMGO −11.83 2.1 1.16 ± 0.10 – –

Naltrindole – −9.68 79.6 1.13 ± 0.10 –

U69,593 – – −9.91 54.0 0.34 ± 0.10
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      |  1387COSTANZO et al.

(200 MHz, CDCl3): δ =  7.34–7.21 (m, 5H), 4.56–4.47 (m, 
1H), 4.21–4.06 (m, 1H), 3.73–3.68 (m, 3H), 2.97 (s, 3H), 
1.21 (t, 3H).

4.2.2  |  Ethyl 3-((2R,6R,11R)-8-hydroxy-
6,11-dimethyl-1,4,5,6-tetrahydro-2,6-
methanobenzo[d]azocin-3(2H)-yl)-2-(R/S)-
phenylpropanoate (2)

(−)-cis-N-normetazocine (0.92 mmol, 1  eq) was dis-
solved in DMF (5  mL) and ethyl 3-((methylsulfonyl)
oxy)-2-phenylpropanoate (0.92 mmol, 1  eq), NaHCO3 
(1.38 mmoL, 1.5  eq) and KI (catalytic quantity) were 
added. The reaction mixture was stirred overnight at 
55 °C. At the reaction mixture, 4 mL of H2O were added, 
and the aqueous phase was extracted with EtOAc; the 
organic phase was dried over Na2SO4 and concentrated 
in vacuo. The reaction crude was purified by flash chro-
matography (CH2Cl2/MeOH 95:5) to obtain a white 
solid. Yield: 96%; Mp: 178–181 °C; [α]25

D
 = −61.7° (c 1.005, 

EtOH); TLC CH2Cl2/MeOH (95:5 v/v) Rf = 0.49; 1H NMR 

(500 MHz, CDCl3): δ  =  7.40–7.25 (m, 5H), 6.87 (d, 1H, 
J = 8.3 Hz), 6.70 (d, 1H, J = 3.4 Hz), 6.60 (dd, 1H, J = 8.3, 
3.4 Hz), 5.90 (s, 1H), 4.25 (d, 2H, J = 7.2 Hz), 3.28 (d, 1H, 
J = 7.1 Hz), 2.99–2.79 (m, 4H), 2.70–2.59 (m, 4H), 1.84–
1.70 (m, 2H), 1.29 (s, 3H), 1.27 (t, 3H, J =  7.2  Hz), 0.80 
(d, 3H, J = 7.0). (Figure S4) 13C NMR (125 MHz, CDCl3): 
δ =  173.95, 154.46, 137.41, 18.98, 128.51, 128.26, 128.12, 
128.09, 128.00, 127.94, 127.33, 126.88, 113.89, 112.83, 
112.43, 112.23, 66.12, 57.18, 51.80, 51.31, 46.24, 45.75, 
42.20, 41.96, 41.46, 36.40, 25.55, 24.79, 14.17, 13.55. Anal 
(C25H31NO3) C, H, N (Table S1).

4.2.3  |  3–[(2R,6R,11R)–8-hydroxy-
6,11-dimethyl-1,4,5,6-tetrahydro-2,6-
methanobenzo[d]azocin-3(2H)-yl]-2(R/S)-
phenylpropanoic acid (3).

1 N NaOH solution (3.06 mmol, 9.27 eq) was added to ethyl 3-
((2R,6R,11R)-8-hydroxy-6,11-dimethyl-1,4,5,6-tetrahydro-
2,6-methanobenzo[d]azocin-3(2H)yl)-2-phenylpropanoate 
(0.33 mmoL, 1 eq). The resulting suspension was vigorously 

F I G U R E  3   3D and 2D poses of 
compounds 10 (a), 12 (b), and LP2 (c) 
within the MOR binding site.

 17470285, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cbdd.14220 by C

N
R

 G
R

O
U

P II Istituto di Scienza dell', W
iley O

nline L
ibrary on [05/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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stirred and refluxed at 110 °C for 5 h. After cooling, the re-
action mixture was partitioned (CHCl3/H2O). A 1 N solu-
tion of HCl was added to the aqueous phase to a pH of 5–6. 
The obtained yellow precipitate was crystallized by EtOH/
diethyl ether. Yield: 90%; Mp: 180–183 °C; [α]25

D
 = −57.2° (c 

1.03, EtOH); TLC CH2Cl2/MeOH (95:5 v/v): Rf = 0.30; 1H 
NMR (500 MHz, DMSO-d6): δ  =  9.12 (br, 1H), 7.31–7.28 
(m, 5H), 6.87–6.84 (m, 1H), 6.60–6.59 (m, 1H), 6.55–6.53 
(m, 1H), 4.11–3.98 (m, 1H), 3.30–3.19 (m, 4H), 3.01–2.74 
(m, 3H), 2.35–2.24 (m, 1H), 1.99–1.76 (m, 2H), 1.23 (s, 3H), 
0.72 (d, 3H). (Figure S5) 13C NMR (125 MHz, DMSO-d6): 
δ =  173.44, 155.95, 140.66, 137.81, 128.54, 128.48, 128.06, 
128.02, 127.94, 127.88, 127.22, 126.04, 113.50, 111.83, 92.52, 
56.26, 51.00, 46.74, 45.08, 35.17, 26.58, 25.39, 12.93. Anal 
(C23H27NO3) C, H, N (Table S1).

4.3  |  Preparation of the target 
compounds 10–13

4.3.1  |  Ethyl 4-chloro-2-(R/S)-cyano-2-
phenylbutanoate (4)

To a suspension of potassium t-butoxide (34 mmoL, 2 eq) 
in anhydrous DMF (18 mL), ethyl phenyl cyanoacetate 

(17 mmoL, 1 eq) was added dropwise, under argon. After 
30 min, 1-bromo-2-chloroethane (25.5 mmoL, 1.5 eq) was 
added dropwise. The reaction mixture was stirred at rt 
for 24 h. Then, the DMF is removed under vacuum. To 
the reaction mixture, an aqueous solution of NH4Cl was 
added. The mixture was transferred to a separatory fun-
nel and partitioned with diethyl ether. The crude obtained 
was purified by flash chromatography on silica gel (C6H12/
EtOAc, 9:1–8:2) to give a yellow oil. Yield: 63.25%. TLC 
C6H12/EtOAc (8:2  v/v): Rf  =  0.33; 1H NMR (200 MHz, 
CDCl3): δ = 7.56–7.40 (m, 5H), 4.28 (q, 1H, J = 7.2 Hz), 
4.21 (q, 1H, J = 7.2 Hz), 3.71–3.45 (m, 2H), 2.96–2.81 (m, 
1H), 2.68–2.53 (m, 1H), 1.25 (t, 3H, J = 7.2 Hz).

4.3.2  |  Ethyl 5-chloro-2-(R/S)-cyano-2-
phenylpentanoate (5)

To a suspension of potassium t-butoxide (42.28 mmoL, 
2  eq) in anhydrous DMF (18 mL), ethyl phenyl cyanoac-
etate (21.14 mmoL, 1 eq) was added dropwise, under argon. 
After 30 min, 1-chloro-3-iodopropane (41.10 mmoL, 1.5  eq) 
was added dropwise. The reaction mixture was stirred at rt 
for 24 h. Then, the DMF is removed under vacuum. To the 
reaction mixture, an aqueous solution of NH4Cl was added. 

F I G U R E  4   Total energy and RMSD of the ligand@protein complexes for compounds 10 (upper) and 12 (down) within the MOR.
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The mixture was transferred to a separatory funnel and par-
titioned with diethyl ether. The crude obtained was purified 
by flash chromatography on silica gel (C6H12/EtOAc, 9:1–8:2) 
to give a yellow oil. Yield: 54%; TLC C6H12/EtOAc (8:2 v/v): 
Rf = 0.45; 1H NMR (200 MHz, CDCl3): δ = 7.57–7.40 (m, 5H), 
4.27 (q, 1H, J = 7.2 Hz), 4.21 (q, 1H, J = 7.2 Hz), 3.57 (t, 2H), 
2.57–2.27 (m, 2H), 2.05–1.80 (m, 2H), 1.26 (t, 3H, J = 7.2 Hz).

4.3.3  |  4-Chloro-2-(R/S)-phenylbutanenitrile 
(6)

Ethyl 4-chloro-2-(R/S)-cyano-2-phenylbutanoate (4.64 
mmoL, 1 eq) was dissolved in CH3OH (20 mL), and a sat-
urated aqueous solution of K2CO3 (4  mL) was added at 
0 °C. The reaction mixture was stirred at rt for 3 h, and 
HCl was added to pH 7. The mixture was partitioned with 
diethyl ether, the organic phase was washed with brine, 
dried over Na2SO4, and concentrated in vacuo to obtain a 
light-yellow oil. Yield: 75%; TLC C6H12/EtOAc (8:2  v/v): 
Rf = 0.36; 1H NMR (200 MHz, CDCl3): δ = 7.38–7.27 (m, 
5H), 4.14 (t, 1H), 3.72–3.48 (m, 1H), 2.45–2.22 (m, 1H), 
1.73–1.40 (m, 2H).

4.3.4  |  5-Chloro-2-(R/S)-pentanenitrile (7)

Ethyl 5-chloro-2-(R/S)-cyano-2-phenylpentanoate (11.51 
mmoL, 1 eq) was dissolved in CH3OH (40 mL), and a sat-
urated aqueous solution of K2CO3 (8  mL) was added at 
0 °C. The reaction mixture was stirred at rt for 3 h, and 
HCl was added to pH 7. The mixture was transferred to a 
separatory funnel and partitioned with diethyl ether. The 
organic phase was washed with brine, dried over Na2SO4, 
and concentrated in vacuo to obtain a light-yellow oil. 
Yield: 61%; TLC C6H12/EtOAc (8:2 v/v): Rf = 0.40; 1H NMR 
(200 MHz, CDCl3): δ = 7.40–7.33 (m, 5H), 3.82 (t, 1H), 3.57 
(t, 2H), 2.15–1.94 (m, 4H).

4.3.5  |  Ethyl 4-chloro-2-(R/S)-
phenylbutanoate (8)

4-Chloro-2(R/S)-phenylbutanonitrile (3.46 mmoL, 
1  eq) was added to a 1: 1 mixture of HCl (12 N) and 
CH3CH2OH, and the resulting suspension was stirred 
and refluxed for 24 h. After, the reaction mixture was 
concentrated under vacuum, transferred to a separatory 
funnel, and partitioned with CH2Cl2. The organic phase 
was washed with brine, dried on Na2SO4, and concen-
trated to obtain a colorless oil. Yield: 63%; TLC C6H12/

EtOAc (8:2 v/v): Rf = 0.48; 1H NMR (200 MHz, CDCl3): 
δ = 7.39–7.27 (m, 5H), 4.15 (q, 1H, J = 7.4 Hz), 4.09 (q, 
1H, J = 7.4 Hz), 3.87 (t, 1H), 3.57–3.43 (m, 1H), 2.59–2.42 
(m, 1H), 2.35–2.17 (m, 1H), 1.77–1.74 (m, 1H), 1.20 (t, 
3H, J = 7.4 Hz).

4.3.6  |  Ethyl 5-chloro-2-(R/S)-
phenylpentanoate (9)

5-Chloro-2-(R/S)-pentanenitrile (7.94 mmoL, 1  eq) was 
added to a 1:1 mixture of HCl (12 N) and CH3CH2OH, 
and the resulting suspension was stirred and refluxed for 
24 h. Afterward, the reaction mixture was concentrated 
under vacuum, transferred to a separatory funnel, and 
partitioned with CH2Cl2. The organic phase was washed 
with brine, dried on Na2SO4, and concentrated to obtain 
a transparent oil. Yield: 52%; TLC C6H12/EtOAc (8:2 v/v): 
Rf = 0.54; 1H NMR (200 MHz, CDCl3): δ = 7.38–7.27 (m, 
5H), 4.18 (q, 1H, J = 7.4 Hz), 4.05 (q, 1H, J = 7.4 Hz), 3.58–
3.51 (m, 3H), 2.30–2.19 (m, 1H), 2.00–1.93 (m, 1H), 1.79–
1.68 (m, 2H), 1.22 (t, 3H, J = 7.4 Hz).

4.3.7  |  Ethyl 4-((2R,6R,11R)-8-hydroxy-
6,11-dimethyl-1,4,5,6-tetrahydro-2,6-
methanobenzo[d]azocin-3(2H)-yl)-2-(R/S)-
phenylbutanoate (10)

(−)-cis-N-normetazocine (2.17 mmoL, 1 eq) was dissolved 
in DMF (6 mL), and ethyl 4-chloro-2(R/S)-phenylbutanoate 
(2.17 mmoL, 1 eq), NaHCO3 (3.25 mmoL, 1.5 eq) and KI 
(catalytic quantity) were added. The reaction mixture 
was stirred at 65 °C for 72 h. After, the mixture was trans-
ferred to a separatory funnel and partitioned (EtOAc/
H2O). The organic phase was washed with brine, dried on 
Na2SO4, and concentrated under vacuum. The reaction 
crude was purified by flash chromatography (CH2Cl2/
MeOH 95:5) to obtain an orange solid. Yield: 30%; Mp: 
157–160  °C; [α]25

D
  =  −56.6° (c 1.1, EtOH); TLC CH2Cl2/

MeOH (95:5 v/v) Rf = 0.35; 1H NMR (200 MHz, CDCl3): 
δ = 7.30–7.19 (m, 5H), 6.82 (d, 1H J = 8.0 Hz), 6.63 (d, 
1H J = 2.2 Hz), 6.53 (dd, 1H, J = 2.2, 8.0 Hz), 4.03 (q, 2H, 
J = 7.2 Hz), 3.56 (t, 1H, J = 7.1 Hz), 2.83–2.22 (m, 7H), 
2.11–1.72 (m, 4H), 1.61–1.46 (m, 1H), 1.23 (s, 3H) 1.12 
(t, 3H, J = 7.2 Hz), 0.75 (d, 3H, J = 7.0 Hz). (Figure S6) 
13C NMR (50 MHz, CDCl3): δ  =  173.87, 154.56, 142.79, 
138.85, 129.01, 128.59, 128.14, 128.02, 127.85, 127.20, 
113.24, 112.40, 60.84, 57.57, 52.54, 49.78, 45.87, 41.85, 
41.49, 41.38, 40.85, 36.19, 33.42, 25.23, 23.30, 14.05. Anal 
(C26H33NO3) C, H, N (Table S1).
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4.3.8  |  Ethyl 5-((2R,6R,11R)-8-hydroxy-6,11-
dimethyl-1,4,5,6-tetrahydro-2,6-methanobenzo[d]
azocin-3(2H)-yl)-2-(R/S)-phenylpentanoate (11)

(−)-cis-N-normetazocine (4.15 mmoL, 1 eq) was dissolved 
in DMF (6 mL) and ethyl 5-chloro-2(R/S)-phenylpentanoa
te (4.15 mmoL, 1 eq), NaHCO3 (6.23 mmoL, 1.5 eq) and KI 
(catalytic quantity) were added. The reaction mixture was 
stirred at 65 °C for 72 h. After, the mixture was transferred 
to a separatory funnel and partitioned (EtOAc/H2O). The 
organic phase was washed with brine, dried on Na2SO4, and 
concentrated in vacuum. The reaction crude was purified 
by flash chromatography (CH2Cl2/MeOH 95:5) to obtain 
an orange solid. Yield: 46%; Mp: 161–164 °C; [α]25

D
 = −54.2° 

(c 1.05, EtOH); TLC CH2Cl2/MeOH (95:5 v/v) Rf = 0.48; 1H 
NMR (500 MHz, CDCl3): δ = 7.56–7.54 (m, 2H), 7.41–7.36 
(m, 3H), 6.91 (d, 1H, J = 10.0 Hz), 6.69 (d, 1H, J = 5.0 Hz), 
6.59 (dd, 1H, J  =  5.0, 10.0  Hz), 4.13–4.12 (m, 1H), 2.64–
2.40 (m, 5H), 2.02–1.98 (m, 2H), 1.85–1.70 (m, 4H), 1.64–
1.56 (m, 4H), 1.32 (s, 3H), 1.27–1.24 (m, 3H), 0.81 (d, 3H). 
(Figure S7) 13C NMR (125 MHz, CDCl3): δ = 167.60, 167.47, 
155.91, 133.70, 133.30, 129.49, 129.44, 129.35, 129.33, 
128.53, 126.00, 118.02, 114.43, 112.67, 85.11, 83.62, 63.56, 
54.29, 54.25, 53.61, 53.47, 35.48, 35.09, 34.79, 29.73, 24.27, 
13.74. Anal (C27H35NO3) C, H, N (Table S1).

4.3.9  |  4–((2R,6R,11R)-8-hydroxy-
6,11-dimethyl-1,4,5,6-tetrahydro-2,6-
methanobenzo[d]azocin-3(2H)-yl)-2-(R/S)-
phenylbutanoic acid (12)

1 N NaOH solution (3.06 mmoL, 11.3  eq) was added to 
ethyl 4-((2R,6R,11R)-8-hydroxy-6,11-dimethyl-1,4,5,6-te
trahydro-2,6-methanobenzo[d]azocin-3(2H)-yl)-2-(R/S)-
phenylbutanoate (0.27 mmoL, 1 eq). The resulting suspen-
sion was vigorously stirred and refluxed at 110 °C for 5 h. 
After, the mixture was cooled at rt, transferred to a separa-
tory funnel, and partitioned (CHCl3/H2O). A 1 N solution 
of HCl was added to the aqueous phase until a pH range of 
5–6. The obtained yellow precipitate was separated from 
the aqueous phase by vacuum filtration. Yield: 43%, Mp: 
192 °C dec; [α]25

D
 = −42.6° (c 1.02, EtOH); TLC CH2Cl2/

MeOH (95:5 v/v) Rf = 0.29; 1H NMR (500 MHz, DMSO-d6): 
δ = 8.49 (brs, 1H), 7.28–7.26 (m, 2H), 7.19–7.16 (m, 2H), 
7.09–7.07 (m, 1H), 6.99 (d, 1H, J = 10.0 Hz), 6.81–6.79 (d, 
1H, J = 10 Hz), 6.49–6.47 (dd, 1H, J = 10 Hz), 3.19–3.06 
(m, 2H), 2.74–2.68 (m, 2H), 2.44–2.28 (m, 4H), 1.86–1.83 
(m, 2H), 1.70–1.58 (m, 3H), 1.17–1.14 (m, 2H), 0.84–0.83 
(m, 1H), 0.68 (d, 3H, J  =  7.2  Hz). (Figure  S8) 13C NMR 
(125 MHz, DMSO-d6): δ = 177.13, 172.88, 156.00, 144.82, 
142.37, 128.08, 127.84, 127.70, 126.79, 125.62, 113.32, 

112.12, 86.24, 67.55, 56.63, 52.94, 45.00, 41.97, 36.41, 
33.00, 29.08, 25.47, 22.62, 13.64. Anal (C24H29NO3) C, H, 
N (Table S1).

4.3.10  |  5–((2R,6R,11R)-8-hydroxy-
6,11-dimethyl-1,4,5,6-tetrahydro-2,6-
methanobenzo[d]azocin-3(2H)-yl)-2-(R/S)-
phenylpentanoic acid (13)

1 N NaOH solution (10.53 mmoL, 11.3  eq) was added to 
ethyl 5-((2R, 6R, 11R)-8-hydroxy-6,11-dimethyl-1,4,5,6-
tetrahydro-2,6-methanobenzo[d]azocin-3(2H)-yl)-2-
(R/S)-phenylpentanoate (0.93 mmoL, 1 eq). The resulting 
suspension was vigorously stirred and refluxed at 110 °C 
for 5 h. After, the mixture was cooled at rt, transferred to 
a separatory funnel, and partitioned (CHCl3/H2O). A 1 N 
solution of HCl was added to the aqueous phase until a pH 
range of 5–6. The obtained yellow precipitate was sepa-
rated from the aqueous phase by vacuum filtration. Yield: 
52%; Mp: 195 °C dec; [α]25

D
 = −40.9° (c 1.08, EtOH); TLC 

CH2Cl2/MeOH (95:5  v/v) Rf  =  0.20; 1H NMR (200 MHz, 
CD3OD): δ = 7.47–7.22 (m, 5H), 7.05 (d, 1H, J = 10.0 Hz), 
6.80 (d, 1H, J = 5.0 Hz), 6.72 (dd, 1H, J = 5.0, 10.0 Hz), 4.28–
4.24 (m, 1H), 3.72–3.54 (m, 1H), 3.23–3.11 (m, 5H), 2.20–
2.00 (m, 4H), 1.82–1.59 (m, 4H), 1.46 (s, 3H), 0.98 (d, 3H). 
(Figure  S9) 13C NMR (125 MHz, DMSO-d6): δ  =  177.57, 
174.23, 161.29,155.83, 142.97, 139.52, 128.41,128.12, 
127.77,127.61, 127.30, 126.87, 113.48, 112.23, 94.66, 91.20, 
72.87, 57.00, 50.97, 44.83, 30.95, 28.82, 24.98, 19.45, 13.47. 
Anal (C25H31NO3) C, H, N (Table S1).

4.4  |  Radioligand binding assays

The radioligand binding assays and the data analysis 
were performed as previously reported (Rita Turnaturi 
et al., 2022).

4.5  |  Molecular modeling

4.5.1  |  Structures preparation and 
minimization

All the molecules used in this study were built using 
Marvin Sketch (18.24, ChemAxon Ltd.). The PM6-
D3H4 Hamiltonian, implemented in the MOPAC pack-
age (MOPAC2016 v. 18.151, Stewart Computational 
Chemistry, Colorado Springs), was then used to further 
optimize the 3D structures before the alignment for the 
docking calculations.
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4.5.2  |  Docking and molecular 
dynamics studies

Flexible ligands docking experiments were performed em-
ploying AutoDock implemented in YASARA, using the crys-
tal structure of MOR (PDB code: 5C1M) (Huang et al., 2015), 
the crystal structure of DOR (PDB code: 4EJ4) (Granier 
et al., 2012) and crystal structure of KOR (PDB ID: 4DJH) (Wu 
et al., 2012) retrieved from the PDB_REDO Data Bank. A pe-
riodic simulation cell with boundaries extending 5 Å (Duan 
et al., 2003) from the surface of the ligand was employed.

The molecular dynamics (MD) simulations of the 
complexes were performed with the YASARA structure 
package according to our previously reported procedures 
(Floresta et al., 2019; Patamia et al., 2023).
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