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Abstract. AbC is a process calculus designed for describing collective
adaptive systems, whose distinguishing feature is the communication
mechanism relying on predicates over attributes exposed by components.
A novel approach to the analysis of concurrent systems modelled as AbC
terms is presented that relies on the UMC model checker, a tool based
on modelling concurrent systems as communicating UML-like state ma-
chines. A structural translation from AbC specifications to the UMC in-
ternal format is provided and used as the basis for the analysis. Three dif-
ferent algorithmic solutions of the well studied stable marriage problem
are described in AbC and their translations are analysed with UMC. It is
shown how the proposed approach can be exploited to identify emerging
properties of systems and unwanted behaviour.

1 Introduction

In the eighties much work was devoted to formalisms for the specification and
verification of concurrent systems. It was already clear that this class of systems
was going to become more and more important even if the Internet, as we know
it today, was not yet available4. In that period in Twente University there was
a group of researchers working on the theory of concurrent systems. That the-
ory was based on the explicit synchronization and message passing primitives
proposed by Milner [25] and Hoare [19], and the researchers wanted to improve
its usability. Indeed, they gave a great contribution to the development of the
language LOTOS that in [8] is introduced as “a specification language that has
been specifically developed for the formal description of the OSI (Open systems
Interconnection) architecture, although it is applicable to distributed, concur-
rent systems in general. In LOTOS a system is seen as a set of processes which
interact and exchange data with each other and with their environment.”

4 Just consider that the email address(es) of the friend to whom this vol-
ume is dedicated were something like uucp: mcvax!utinu1!infed and earn:

hiddink@hentht5.



The main actor behind the effort was Ed Brinskma, who contributed to both
the definition of the language and to the proof techniques to verify conformance
of communication network protocols implementations with their abstract speci-
fications [15,9].

Since then, communication networks have dramatically changed our world
and we are now working with autonomous agents that roam over the Internet,
adapt to changing situations and environments, interact with other agents or
humans and control essential components of our daily life. It is more and more
common that such autonomous agents interact anonymously and form groups of
peers dynamically according to specific features, or attributes, that the different
peers expose. For instance, members of a social network interested in language
exchange activities can use their own location and favourite languages to find
suitable people nearby.

Thus, the old formalisms and especially their communication primitives,
based on broadcast or direct one-to-one, communication are not appropriate
anymore for selecting partners and programming so called collective adaptive sys-
tems. New formalisms based on alternative communication paradigms and sup-
ported by new proof techniques are on demand for dealing with them. Prompted
by the needs outlined above, we have defined AbC [4] a novel process calculus
that relies on attribute-based communication and formalises the above intuition
by combining actor-style concurrency with one-to-many message passing. Tra-
ditional linguistic approaches struggle in the presence of highly-dynamical en-
vironments often seen in real-world situations, from social networks to stock
exchanges. AbC can instead cope with these systems quite naturally, usually
keeping the specifications compact and intuitively easy to follow [11].

The effectiveness of this new formalism has so far been assessed mostly from a
programming standpoint, with prototype implementations of the proposed inter-
action mechanisms in Java [5] and Erlang [11]. However, the potential benefits of
AbC when reasoning about system properties have only been hinted at, through
proof-of-concept verification of simple properties of formal models manually built
from AbC specifications [10].

In this paper, we report our first attempt to the systematic analysis and
verification of attribute-based communication systems. The initial step in our
verification approach consists in mechanically translating the AbC specification
of a given system into a UML-like state machine. In AbC the supported com-
munications primitives require some kind of global view of the attributes of all
the components of a system. The most direct way to model this global status
is to see it as the internal status of a nondeterministic state machine, in which
the behaviour of a single process term is captured by one or more state machine
transitions. In this way, each process can have access to the values of the at-
tributes of the other processes to effectuate AbC-style communication. In order
to preserve the structure of the AbC process, we explicitly keep track of the exe-
cution point of each process and use to guard the transitions. Depending on the
properties of interest, relevant structural and behavioural aspects of the state
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machine can be made observable and accessible to the logical verification engine,
through the definition of specific abstractions rules.

For system analysis, our approach relies on the UMC verification frame-
work [20]. UMC is specifically oriented towards the early analysis of (likely
wrong) initial system designs, that trades the capacity of dealing with very large
systems with the capacity of helping users to easily understand the source of
design errors. This is achieved, among the other things, by providing interactive
explanations of the results of the evaluations and by allowing the user to observe
and reason on systems at a high level of abstraction without being distracted, if
not overwhelmed, by all the details of the specification.

We illustrate the impact of our approach by considering three variants of the
well studied stable marriage problem (SMP) [17] that can be naturally expressed
in terms of partners’ attributes. Solving the SMP problem amounts to finding
a stable matching between two equally sized sets of elements given an ordering
of preferences for each element. Thus, one has to find an algorithm for pairing
each element in one set to an element in the other set in such a way that there
are no two elements of different pairs which both would rather have each other
than their current partners. When no such pair of elements exists, the set of
pairs is deemed stable. The classical algorithm of [17] goes through a sequence
of proposals initiated by members of one group (the initiators) according to
their preferences. Members of the other group (the responders) after receiving a
proposal, do choose the best initiator between their current partner and the one
making advances. It can be proved that such an algorithm guarantees existence
of a unique stable matching.

Our variants of SMP allow initiators and responders to express their inter-
ests in potential partners by using their attributes rather than their identities
ordered by means of an explicit preference list. Member’s preferences are repre-
sented as predicates over the attributes of potential partners. For one variant,
we follow the classical algorithm where initiators first propose to the responder
they prefer most and then relax their expectations if no partner is willing to
accept their proposal. In the other variant, initiators start proposing with the
lowest requirements, to make sure to get a partner, and gradually increase their
expectations hoping to find better partners.

We experimented our verification methodology on the three above mentioned
algorithmic solutions to SMP by considering a number of properties of interest,
such as stability of the matching and its completeness, existence of a unique
solution, level of satisfaction of the components. These properties are first de-
scribed informally and then rendered as logical formulae to be formally checked
against the generated models. The outcome of our verification allows us to make
some considerations both on the different algorithms and on the used tools.

Indeed, the results of our experiments have shown that systems relying on
attribute-based communications can be particularly complex to design and anal-
yse. However, by exhaustively verifying a specification over all possible inputs,
despite the small problem size considered, we have experienced that many non-
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trivial emerging properties and potential problems can indeed be discovered by
following our methodology.

The rest of the paper is organised as follows. We briefly introduce the AbC
process calculus and the UMC model checker in Section 2. We describe our trans-
lation from AbC process terms into UMC textual description of UML-like state
machines in Section 3. In Section 4, we show how to specify in AbC solutions for
both classical SMP and its attribute-based variants, and then present fragments
of the result of our verification and discuss their outcomes. Finally, Section 5
contains some concluding remarks.

2 Background

The AbC calculus. AbC [4] is a process calculus centered on the attribute-
based communication paradigm. Its core syntax is reported in Figure 1. An AbC
system consists of independent components (C). A component can be either
a process (P ) and an attribute environment (Γ ) or a parallel composition of
components C1 ‖ C2. The behaviour of a component is modeled by process P

(Components) C ::= Γ : P | C1 ‖ C2

(Processes) P ::= 0 | (E)@Π.P | Π(x).P | [a := E]P | 〈Π〉P
| P1 + P2 | P1|P2 | K | Π?P1 P2

(Expressions) E ::= v | x | a | this.a
(Predicates) Π ::= tt | E1 ./ E2 | Π1 ∧ Π2 | ¬Π

Fig. 1. AbC syntax

executing actions in the style of process algebra, while its attributes are used to
encode some domain aspects (e.g. battery level, component role, identity, . . .) and
are stored in the component’s environment Γ which is a partial mapping from
attribute names to their values. Since attributes play a key role in interactions,
AbC assumes that their names are agreed in advance among components [4].

A process P can be either an inactive process 0, a prefixing process α.P , an
update process [a := E]P , an awareness process 〈Π〉P , a choice process P1 +P2,
a parallel process P1|P2, or a process call K (under the assumption that each
process has a unique definition K , P ).

We often omit the inactive process for convenience. The prefixing process
executes the action α and continues as P . The update process sets the attribute
a to the value of expression E and behaves like P . The awareness process blocks
the execution of process P until predicate Π becomes true. The choice process
can behave either like P1 or P2. The parallel process interleaves the executions
of P1 and P2. For modelling communication AbC relies on two prefixing actions:

(E)@Π is the attribute-based output that is used to send the value of expression
E to those components whose attributes satisfy predicate Π;
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Π(x) is the attribute-based input that binds to the variable x the message re-
ceived from any component whose attributes, and possibly the communi-
cated values, satisfy the receiving predicate Π.

The semantics of output actions are asynchronous and non-blocking while that of
input actions are blocking. The receiving predicates can also be specified over the
message content, in addition to the attributes of sending components. Parallel
components communicate using these two primitives, while parallel processes
within a component simply interleave their executions. An update operation is
performed atomically with the following action, given that the component under
the updated environment can perform that action. In some cases, to model an
update operation alone [a:=E], we exploit an empty send action ()@(ff) to obtain
[a := E]()@(ff).

An expression E may be a constant value v, a variable x, an attribute name a,
or a reference this.a to attribute a in the local environment. Predicate Π can be
either tt, a comparison between two expressions E1 ./ E2, a logical conjunction
of two predicates Π1 ∧Π2 or a negation of a predicate ¬Π. We write Γ |= Π to
state that predicate Π holds in environment Γ .

All the above mentioned constructs have already been introduced in [4], and
we refer the interested reader to this paper for the definition of the operational
semantics of the full calculus.

There is however a new operator that we introduce for the first time in this
paper and is very important to support processes in taking decisions depending
on the conditions of the context they are operating in. We have called the new
operator, the awareness operator :

Π?P1 P2

relies on a sort of global awareness and allows the executing system to proceed as
P1 if the environment contains at least one component whose attributes satisfy
predicate Π, and as P2 otherwise. Its operational semantics is modelled by the
followng inference rules:

∃ C : Γ (C) |= Π P1
α−→ P ′

1

Π?P1 P2
α−→ P ′

1

@ C : Γ (C) |= Π P2
α−→ P ′

2

Π?P1 P2
α−→ P ′

2

The main difference between the local awareness operator and the global one is
that the predicate appearing in the latter can refer to the attributes of external
components.

In fact, the attribute-based communication primitives have been introduced
while abstracting from the selection mechanism of communication partners, e.g.,
ignoring how predicates are evaluated and how components address each other.
When it comes to practical settings, both for programming and verifying AbC
systems, one has to take into consideration those issues which in turn raise the
problem of designing a communication infrastructure. Existing implementations
of AbC paradigm [5,10] do rest on a centralized component which plays the role
of a global registration and a message forwarder. This component has global
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knowledge of the system while other components are not aware of each other and
only interact with this centralized one. In this paper, we also assume that there
is a such global component in an AbC system. While this assumption guides
our translation strategy which will be presented in Section 3, one important
benefit is that it allows implementing operators like Π?P1 P2, needing global
awareness.

The UMC model checker. UMC [20] is one of the model checkers belonging
to the KandISTI [6] formal verification framework used for analyzing functional
properties of concurrent systems. In UMC, a system is represented as a set of
communicating UML-like state machines, each associated with an active object
in the system. UMC adopts doubly-labelled transition systems (L2TS) [14] as
semantic model of the system behaviour. A L2TS is essentially a directed graph
in which nodes and edges are labelled with sets of predicates and of events,
respectively. The model checker allows to interactively explore this graph and
to verify behavioral properties specified in the state-event based UCTL [16]
logics. UCTL allows to express state predicates over (the labelling of) system
states, event predicates over (the labelling of) single-step system evolutions, and
combine these with temporal and boolean operators in the style of CTL and
ACTL. A UML-like state machine is described in UMC in the form of a class
declaration structured as below:

class Name is

Signals:

-- asynchronous signals accepted by this class

Vars:

-- local variables of this object

Transitions:

-- transitions that determine the behaviour of the class

end Name

where a list of Signals summarises the set of events to which an active object
may react5. A signal denotes an asynchronous event that may trigger the transi-
tions of an object. An object can send signals to itself by executing self.signal name.
The Vars section contains the private, non statically-typed, local variables of the
class and optionally their initial value. Values can denote object names, boolean
values, integer values or, recursively, (dynamically sized) sequences of values.
The Transitions section declares a set of transition rules which describe the
behaviour of the class and have the following general form:

source -> target {trigger [guard] / actions}

to denote a state transition from state source to state target. The transition
is triggered by a suitable trigger event trigger (which is a signal name) and
if the guard expression is satisfied, all actions inside the transition body are
executed. The execution of actions may in turn change the state of the object or

5 UMC also supports an Operations section for the definition of synchronous events,
which is however not relevant in our study
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trigger other transitions. In fact, UMC supports a fairly rich language to specify
actions and guards. For more details we refer to the UMC website [2] and the
documentation therein.

While the structure of the semantic in terms of L2TS of an UMC specification
is directly defined by the system behaviour, the labels associated to nodes and
edges of the graph are specified by abstraction rules that allow the designer to
define the relevant internal aspects of the system. These rules are defined inside
the Abstractions section:

Abstractions {

Action: <internal event> -> <edge label>

...

State: <internal system state> -> <node label>

...

}

The possibility of obtaining an L2TS which focuses only the aspects of the
system that are considered relevant is particularly useful in many cases. For ex-
ample one can visualize a compact summary of the computation trees, factorized
via appropriate behavioural equivalence notions. Or he can model check abstract
L2TS (without any knowledge of the underlying UMC), and reason on systems
without a detailed knowledge of the underlying concrete implementation.

3 Transforming AbC models into UMC models

In this section we describe a mechanical translation from AbC specifications
into to UML-like state machines. The main effort in this part lays in the care-
ful modelling of the attributes and of their visibility, which implicitly require
some sort of global view of the the system. In fact, since our target modelling
language has no concept of global data, a simple solution would require at least
implementing shared states and appropriate synchronisation. We avoid that by
gathering all the processes in the initial system along with their attributes into
a unique object in the translated model, where the behaviour described by a
single process term is captured by one or more transitions. This successfully
provides a direct access to attributes to every process. However, some ingenuity
is required to respect the process structure of the input system and its precise
semantics. We thus introduce an explicit tracking mechanism for the execution
points of the processes. This amounts to dynamically labelling new terms while
visiting the process structure, and to introducing appropriate guards for the
transitions, to guarantee that at any point of the evolution of the system only
feasible transitions are allowed. Labels and guards can be combined to model
sequentialisation, non-deterministic choice, and parallel composition.

We now describe the translation in detail. Our input system is a collection of
AbC components, where the specification for the i-th component, denoted with

Ci ::= Γi : 〈Di, Piniti〉
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includes an attribute environment Γi, a set Di of process declarations, and an
initial behaviour Piniti which refers to the processes defined in Di. We adopt the
following notational conventions. Expressions can be vectors with relevant oper-
ators in the UMC style [3], e.g., given a vector v, we can write v.head, v.tail, v[i]
for the first element, the rest and the ith element of v, respectively. Predicates
can contain tests of membership relation between an element and a vector (de-
noted by ∈, /∈). We further assume that the specified system consists of a fixed
number of components, and that the parallel operator does not occur inside a
recursive definition. The only allowed exception is the definition of a process of
the form P := Q|P , where | is replaced by its bounded version |m, i.e. the num-
ber of parallel instances to be created. For example: P := Q |2 P is interpreted
as three processes P := Q1 | Q2 | Q3.

The output of our translation is a UMC class whose general structure is
depicted in Fig. 2. It includes fixed code snippets such as the necessary signals
and data structures to model AbC input and output actions. It also contains
vectors to model attribute environments, one for each attribute.

1 Class AbCSystem is

2 Signals: allowsend(i:int),

3 bcast(tgt,msg,j:int);

4 Vars:

5 RANDOMQUEUE;

6 receiving:bool := false;

7 pc:int[];

8 bound:obj[];

9 /* Attributes vectors */

10 att1:int[]; att2:int[]; . . .
11 State Top Defers allowsend(i)

12 Transitions:

13 /* Initial movement of the system */

14 init -> SYS {- /

15 for i in 0..pc.length-1 {

16 self.allowsend(i);

17 }}

18 /* Transitions of all components */

19 SJ〈D1, Pinit1〉K
20 SJ〈D2, Pinit2〉K
21 . . .
22 end AbCSystem

Fig. 2. Translation of AbC specifications.

The system state is a UML parallel state (SYS), where each component is
modelled by its own region (Ck). Attribute input and output semantics are mod-
elled with the help of unique events. The bcast(tgt,msg,j) event,which triggers
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all the receive actions in all components and contains the actual set tgt of com-
ponents allowed to receive the message, the actual message msg, and the index j

of the sending component. The allowsend(i) event, where i denotes a compo-
nent index used to schedule the components through interleaving when sending
messages. According to the semantics of AbC, receive actions are blocking and
executed together, and send actions of all the components should be handled in
an interleaved way. To accommodate this, we use the event queue of the state
machine to store a set of allowsend(i) signals, one for each AbC component i.
These signals are declared in the top state of the system as Defers, to prevent
them from being removed from the events queue when they do not trigger any
transition. Moreover, the queue is defined as random so that the relative ordering
of signals is not considered relevant. In this way, at each step in which an AbC
send operation has to be performed, a single allowsend signal is nondetermin-
istically selected from the queue, allowing a single component to proceed.

The Transitions section collects all the transitions generated from the pro-
cess terms while visiting the process structure. Transitions have the following
form:

SYS.Ck.s0 -> Ck.s0 {Trigger[... & pc[k][p]=CNT]/

-- transition body

pc[k][p]:=CNT + 1;

}

where CNT is a program counter initially set to 1 and incremented as new transi-
tions are produced. This provides a unique label associated with the transition,
its entry point. Additionally, pc[k][p] is the execution point of process p in com-
ponent k. The guard on the transitions makes sure that its entry point matches
the execution point of the corresponding component and process. At the end of
a transition, pc[k][p] is assigned a new value, referred to as its exit point, in
order to correctly enable the next set of feasible transitions. The values of k,
p, CNT, and the full guards are worked out according to the structural mapping
procedure described below.

Structural Mapping. Let us denote with SJP Kk,p,vρ the function that maps a
process term P into a set of UMC transitions, where k is the component index, p
the process index, and v the entry value. At the beginning, P is the init behaviour
of the component and p, v are both initialised with 1. The information carried
while traversing the process structure is stored in ρ. Fig. 3 presents our transla-
tion rules from AbC process terms to UMC transitions, while Fig. 4(b)-(d) gives
an idea of how transitions are glued together according to the process struc-
ture. The translation maintains two variables: the current number of processes
procs and a program counter cnt[p] for a process with index p, both calculated
dynamically while visiting the input.

Inaction. An inaction process is translated into nothing.
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SJnilKk,p,vρ = ∅

SJ[a := E]P Kk,p,vρ = SJP Kk,p,vρ′

where ρ′ = ρ{upd 7→ ρ(upd) ∪ [a := E]}

SJ〈Π〉P Kk,p,vρ = SJP Kk,p,vρ′

where ρ′ = ρ{aware 7→ ρ(aware) ∪Π}

SJP1 + P2Kk,p,vρ = SJP1Kk,p,vρ ;SJP2Kk,p,vρ

SJP1|P2Kk,p,vρ = SJP1Kk,p1,1ρ′ ;SJP2Kk,p2,1ρ′

where p1 = procs, p2 = procs+ 1,

ρ′ = ρ{parent 7→ ρ(parent) ∪ (p, v)},
procs = procs+ 2, cnt[p1] = 1, cnt[p2] = 1

SJKKk,p,vρ =

{
BJ∅Kk,p,exitρ if ρ(Kvisit) = true

SJP Kk,p,vρ′ otherwise

where exit = ρ(Kentry), P = Dk(K),

ρ′ = ρ{Kvisit 7→ true,Kentry 7→ v}

SJ(E)@(Π).P Kk,p,vρ = BJ(E)@(Π)Kk,p,vρ ;SJP Kk,p,v
′

ρ′

where v′ = cnt[p] + 2, cnt[p] = cnt[p] + 2

ρ′ = ρ{upd 7→ ∅, aware 7→ ∅, parent 7→ ∅}

SJΠ(x).P Kk,p,vρ = BJΠ(x)Kk,p,vρ ;SJP Kk,p,v
′

ρ′

where v′ = cnt[p] + 1, cnt[p] = cnt[p] + 1

ρ′ = ρ{upd 7→ ∅, aware 7→ ∅, parent 7→ ∅}

Fig. 3. Structural translation of processes: semicolon (; ) denotes the completion of a
left translation before starting a new one, ρ(x) is the value of variable x in ρ
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body

[CNT] CNT+1

entry exit

(a)

α P

[CNT] [CNT+1]

.

(b)

P2

P1

+

[CNT]

[CNT]

(c)

P2

P1

|

[CNT ∧ CNT1]

[CNT ∧ CNT2]

(d)

Fig. 4. Structural mapping to combine generated UMC transitions: (a) graphical rep-
resentation of a transition; (b) an action prefixing process α.P has the entry point of
α as CNT, and the entry point of P as CNT + 1; (c) a choice process P1 + P2 has the
same entry point on both sub-processes P1, P2; (d) the entry points of sub-processes
P1, P2 in a parallel process P1|P2 contain also the exit point of P1|P2

Update. The translation of [a := E]P accumulates the update expression [a :=
E] into variable upd of ρ and returns the translation of P under the new envi-
ronment.

Awareness. The translation of 〈Π〉P accumulates predicate Π into variable
aware of ρ and returns the translation of P under the new environment.

Nondeterministic choice. The translation of P1+P2 is a sequence of two transla-
tions of sub-processes with the same set of parameters and the same environment.

Parallel composition. The translation of P1|P2 is a sequence of two translations
of the sub-processes. It generates two new processes indices p1 and p2 which are
calculated from the current number of processes procs, and initialises two new
global counters cnt[p1], cnt[p2]. In the case of parallel composition, the entry
points of sub-processes P1, P2 does contain not only their own counters but also
the counter of the spawning process P1|P2. Therefore, the translations of P1, P2

store the exit point of the parent process (p, v) in variable parent which will be
used as an additional guard for prefixing actions of P1 and of P2.

Process call. The translation of a process call K looks up its definition P in the
process declarations Dk and returns a translation of P . If process K is already
translated, function B generates a dummy transition whose exit point is equal to
the entry point of K. Otherwise, it remembers K is visited and stores this fact
together with the entry point value of K into ρ for (possibly) later recursions.

Action-prefixing. The translation of α.P is a behavioural translation of α and a
translation of the continuation process P . The translation of α is done by the
function B, as it will be presented shortly. The translation of P is parameterised
with a new environment where the previous accumulated information is reset,
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and a new entry value v′, calculated from the value of program counter cnt[p],
is added. In fact, we need two UMC transitions for an output action, thus the
value of cnt[p] is increased by two.

Accumulated information. In the above generated transitions, guards may in-
clude the accumulated awareness predicates and the transition body may include
accumulated update commands. We omit the details for conciseness.

Global Awareness. Finally, the global awareness construct Π?P1 P2 is treated
as a process whose structure is β.(P1+P2) where the transition of β simply eval-
uates the global predicate Π to enable transitions of P1 and P2 (via additional
guards) appropriately.

Behavioural mapping. We now describe the function BJαKk,p,vρ which gener-
ates the actual UMC code for a specific action α according to the information
accumulated in the environment ρ and the parameter set.

We model the output action in two steps that are forced to occur in a strict
sequence: the sending to self of the bcast event that dispatches to all the parallel
components and the discarding of this very message, as illustrated by the code
snippet below. Variable receiving works as a lock, to guarantee the correct
ordering of the two transitions. Here the (main) transition is guarded by con-
ditions on the execution point of the action and by awareness predicates, while
the transition body includes update commands, the computation of potential
receivers and a sending operation.

BJ(E)@ΠKk,p,vρ =

SYS.Ck.s0 -> Ck.s0 {
allowsend(i)[i=k & receiving=false & pc[k][p]=v & Jρ(parent)K] & Jρ(aware)K]/
Jρ(update)K;
for j in 0..pc.length-1 {

if (JΠK) then {tgt[j]:=1;} else {tgt[j]:=0;}
};
receiving:=true;
self.bcast(tgt,JEK,k);
pc[k][p] = v + 1;

}
SYS.Ck.s0 -> Ck.s0 {

bcast(tgt,msg,j)[pc[k][p] = v + 1]/
receiving:=false;
self.allowsend(k);
pc[k][p] = v + 2;

}

An input action is translated into the following transition, triggered by signal
bcast(tgt,msg,j) from some sender. It is enabled, for a component k, if the
message is for it, the receiving predicate Π and, possibly, the preceding aware-
ness predicates are satisfied. Variable binding is done by assigning the received
message msg to vector bound. Similarly to the output action, the transition guard
might contain awareness predicates; the transition body might contain update
commands.

BJΠ(x)Kk,p,vρ =

SYS.Ck.s0 -> Ck.s0 {
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bcast(tgt,msg,j)[tgt[k]=1 & pc[k][p]=v & Jρ(parent)K] & Jρ(aware)K & JΠK]/
Jρ(update)K;
bound[k][p] = msg;
pc[k][p] = v + 1;

}

4 A Case Study

The Stable Marriage Problem (SMP) [17] is a well studied problem that has
applications in a variety of real-world situations, such as assigning students to
colleges or appointing graduating medical students to their first hospital. SMP
that has been initially formulated in terms of peers that make offer to potential
partners by taking into account a preference list is easily adaptable to a context
in which partners are selected according to their attributes. Indeed, due to its
simple formulation and its intrinsically concurrent nature, SMP has been already
used to show the advantages of AbC as a very high-level formalism to describe
complex systems [10,11]. In this section, we use it to show how our framework
can be used to reason about properties of attribute based systems.

We apply our verification methodology to three possible algorithmic solutions
of stable marriage in order to check a selection of properties of interest. For
each solution, we provide a short informal description along with the resulting
formal specifications in AbC. Similarly, we present a number of properties first
informally and then as a precise logical property of the state machines generated
(see Sect. 3) from the formal specifications. We show how to instrument these
state machines for property checking. As we go along, we also consider a few
additional program-specific properties that we used as a guidance to refine the
formal specifications themselves.

The idea of stable marriage is to find a stable matching between two equally
sized sets of elements (men and women in the original formulation, whence the
word marriage) given an ordering of preferences for each element. Providing a so-
lution to SMP amounts to devising an algorithm for pairing each element in one
set to an element in the other set in such a way that there are no two elements
of different pairs which both would rather have each other than their current
partners. When no such pair of elements exists, the set of pairs is deemed stable.
The classical algorithm of [17] goes through a sequence of proposals initiated by
members of one group (the initiators) according to their preference lists. Mem-
bers of the other group (the responders) after receiving a proposal, do choose
the best initiator between their current partner and the one making advances.
Our first algorithm implements the classical solution, where preferences are rep-
resented as complete ordered lists of identifiers. Initiators and responders are
programmed as individual processes that interact using their local preference
lists in a point-to-point fashion using their identity. The other two programs
adapt the classical solution to the context of attribute-based communication,
where partners are selected by considering predicates over the attributes of the
potential partners. The two new solutions differ for the way initiators choose their
potential partners. They can start by either making proposals to the responder
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they prefer most and then relax their expectations or making proposals with the
lowest requirements, to make sure to get a partner, and gradually increase their
expectations.

4.1 Specifications

Classical Stable Marriage. In the classical solution to stable marriage, each
initiator actively proposes himself to the most favourite responder according to
its preference list. In case it gets a refusal or is dropped, it tries again with the
next element in the list. A responder waits for incoming proposals, accepting
any proposal when single, or choosing between its current partner and the new
proposer according to its preferences. The algorithm terminates when there is
no more activity.

AbC Specification. Our first AbC program is based on the idea presented in [5].
Initiators and responders are AbC components whose attributes are the identi-
fier id, the preference list prefs, and the current partner. The behaviour of an
individual initiator is specified by process M. It updates attribute partner to the
first element of prefs, and then sends a propose message to components whose
id equals to partner. The continuation process Wait waits for a no message to
reset the partner, before restarting with M:

M , [this.partner := this.prefs.head, this.prefs := this.prefs.tail]

(propose, this.id)@(id = this.partner).Wait

Wait , [this.partner := 0]($msg = no)($msg).M

The behaviour of a responder is specified by process W. In process Handle a
responder waits for incoming proposals, and behaves either like A if the responder
finds the new initiator is better or like R otherwise. W is composed in parallel
with n instances (where n is the problem size) so that it can receive new messages
while processing the current one. Notice that both R and A use a reversed form
of preference lists to compare the current partner with a new initiator:

W , Handle |n W

Handle ,($msg = propose)($msg, $id).(A($id) + R($id))

A(id) ,〈this.prefs[this.partner] < this.prefs[$id]〉
[$ex := this.partner, this.partner := $id](no)@(id = $ex)

R(id) ,〈this.prefs[this.partner] > this.prefs[$id]〉(no)@(id = $id)

Top-down Stable Marriage. In this case preferences are expressed as pred-
icates over the attributes of partners rather than as lists of people. For exam-
ple, a person might be interested in finding a partner from a specific country
who speaks a specific language. A suitable communication predicate would be
country = this.favcountry ∧ language = this.favlanguage, where language
and country are two attributes of initiators and responders, and favcountry
and favlanguage are used to express preferences.
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Following the above idea, in the top-down solution to SMP the initiator starts
by making offers to responders that satisfy its highest requirements, i.e., have all
wanted attributes. In case nobody satisfy these requirements, the initiator retries
after weakening the predicate by eliminating one of the preferred attributes and
waits for a reaction. The system then evolves as follows.

A single initiator that receives a yes considers himself engaged and sends out
a confirm message; it keeps proposing if a no is received. An engaged initiator
that receives a yes notifies the interested responder that meanwhile another part-
ner has been found by sending a toolate message. An engaged initiator dropped
by its current partner with a bye message restarts immediately proposing.

An engaged responder reacts upon receiving a proposal by comparing the
new initiator with the current partner. If the new proposer is not better, it will
receive a no message. Otherwise, the responder sends a yes to notify the proposer
her availability, and waits for a reply. Upon receiving a confirm, the responder
changes partner and sends bye to the ex partner; in case a toolate message is
received the responder continues without changes.

AbC Specification. We model a scenario where each participant exposes two
characteristics besides their identifiers: {id, w, b} for proposers and {id, e, h} for
responders. Furthermore, participants have their own preferences on which are
modeled by {pe, ph} and {pw, pb}. The behaviour of a proposer is modeled as
process P, used to make proposals, composed in parallel with process MHandle

for handling replies.

M , P | MHandle

P , 〈this.partner = 0 ∧ this.proposed = 0〉[this.proposed := 1] P1

P1 , Π{¬bl,pe,ph}?(ṽ)@Π{¬bl,pe,ph}.P (Π{¬bl,pe}?(ṽ)@Π{¬bl,pe}.P (ṽ)@Π{¬bl}.P)

Process P, guarded by two conditions this.partner = 0 and this.proposed = 0,
becomes actives when a single proposer has not yet sent a proposal. After that,
it sets the flag proposed and continues as P1. To model the adaptive behaviour
of proposers needed to relax their preferences, we use the new global awareness
operator (see Sect. 2) in the definition of P1 where we use Π{¬a1,a2,a3} to denote
the predicate in the form id /∈ a1∧e = a2∧h = a3 and ṽ denotes the sent message,
i.e., {propose, this.id, this.w, this.b}. It is important to add an attribute bl which
is a list of responders that the proposer does not want to contact. The list is
updated when a proposer receives a no or a bye message. This allows them to
know when to relax their requirements.

A proposer may receive multiple replies; process MHandle takes care of this
according to the message type: Wait is used to handle bye and no messages while
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Yes handles yes messages.

MHandle , Yes |Wait Yes , Loop |n Yes Wait , Loop1 |n Wait

Loop , ($msg = yes)($msg, $id).Ans($id)

Ans(id) ,〈this.partner = 0〉[this.partner := $id, this.bl := this.bl + [$id]]

(confirm)@(id = this.partner).Loop

+ 〈this.partner 6= 0〉(toolate)@(id = $id).Loop

Loop1 , [this.partner := 0, this.proposed := 0]($msg = bye)($msg, $id).Loop1

+ ($msg = no)($msg, $id).

[this.proposed := 0, this.bl := this.bl + [$id]]()@(ff).Loop1

The behaviour of a responder is specified by WHandle. On receiving a proposal,
a responder can behave like A (accept), R (reject) or D (discard). The local at-
tribute bl is updated in A and R while D uses it to avoid unnecessary processing.
Acceptance and rejection of a proposal are dealt with similarly as in the classical
case, except that the extra message acknowledgement requires an attribute lock,
to process sequentially possibly parallel messages.

WHandle , ($msg = propose)($msg, $id, $w, $b).

(R($id, $w, $b) + A($id, $w, $b) + D($id))

R(id,w,b) , 〈$id /∈ this.bl ∧ (new init is not better)〉
[this.bl := this.bl + [$id]](no, this.id)@(id = $id).WHandle

A(id,w, b) , 〈$id /∈ this.bl ∧ this.lock = 0 ∧ (new init is better)〉
[this.lock := 1, this.bl := this.bl + [$id]]

(yes, this.id)@(id = $id).Wait($id, $w, $b)

Wait(id,w,b) , [this.ex := this.partner, this.partner := $id,

this.cw := $w, this.cb := $b]($msg = confirm)($msg).

[this.lock := 0](bye)@(id = this.ex).WHandle

+ [this.lock := 0, this.bl := this.bl − [$id]]

($msg = toolate)($msg).WHandle

D(id) , 〈$id ∈ this.bl〉()@(ff).WHandle

In the above specifications, the pair (cw,cb) denotes the characteristics of current
partner, which is used by the responder to compare him with a new proposer.
For example, predicate new init is better is encoded as:

(this.partner = 0) ∨ ($w = this.pw ∧ this.cw 6= this.pw) ∨
($w = this.cw ∧ $b = this.pb ∧ this.cb 6= this.pb)

Bottom-up Stable Marriage. We have also experimented with another ap-
proach to SMP, where proposers start looking for the less-liked partner and try
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to incrementally improve their level of satisfaction by continuously proposing
themselves even after finding a partner in the attempt to find someone they like
more then their current one. In this case both proposers and responders can be
dropped by their current partner if a more appreciated option pops up.

We have implemented this protocol in AbC using a slightly different ap-
proach. We used an extra process in components Proposer and Responder that
plays the role of a message queue manager. This process appends every incom-
ing messages to the tail of queue, while another process implementing the main
behaviour retrieves messages from the queue and processes them sequentially.

Due to space limit, we omit the presentation of this specification. The inter-
ested reader can refer to [1] for full specifications of case studies.

4.2 Formal Analysis

UMC models and annotations. We have developed a tool [1] to implement
the translation rules presented in Sect. 3. This tool has been used to translate
the three AbC solutions for SMP into UMC models. The number of UMC code
lines varies depending on specification and on the input instances. For example,
in the classical case, the number of UMC lines are the same for component M,
while it increases proportionally with the size of the problem for component W

due to the use of operator |n.
The actual UMC model used for the analysis is composed by two objects: an

object, triggered by a start(<inputdata>) event, modelling the behaviour of the
AbC specification with the given input data, and an object which generates all
the possible input data and activates the AbC model with them. For checking
the generic (i.e for all inputs) validity of a formula φ we in practice evaluate
the formula A[{not start} W {start} φ], which says that φ holds in the initial
state of any of the possible scenarios. The number of generated system states
reported in the rest of this section refers to the cumulative data over the whole
input domain.

In order to verify our properties of interests, we have annotated the generated
UMC models with abstraction rules to make observable labels on states and
actions.

Abstractions {

State id[0]=$1 and partner[0]=$2 -> haspartner($1,$2)

State id[1]=$1 and partner[1]=$2 -> haspartner($1,$2)

...

Action sending($1,$2) -> send($1,$2)

Action received($1,$2,$3) -> received($1,$2,$3)

-- Other instrument

Action m_decr -> m_decr

Action w_decr -> w_decr

}

Here rules starting with States expose labels haspartner($1, $2) in all system
states, where $1 is the identifier of a component (proposer or responder) and
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$2 is the matching partner. We assume that the identifiers of initiators and
responders are in the ranges [1 . . . n] and [n+ 1 . . . 2n] respectively, with n being
the problem size. Rules starting with Actions instead expose send and receive
labels on all transitions denoting attribute send and receive actions.

We have additionally instrumented the models with more involved annota-
tions. In particular, we store the current level of satisfaction of people, computed
when a component updates its partner. In classical SMP, the level of satisfaction
of initiators and responders is determined by the position of the current partner
in the preference list. In the attribute-based variant, this number is calculated
based on the similarity between one’s own preferences and the characteristics of
partners. The procedure issues a signal decr if the current computed satisfaction
level is smaller than the previous one.

Solution-independent properties. For all the three AbC specifications, we
are interested in checking the following properties:

F1 (convergence) The system converges to final states:
AF FINAL 6

F2a (completeness of matching) Everybody has a partner:
AF (FINAL implies not haspartner(*,0))

F2b (uniqueness of matching) There exists only one final matching:
AG (((EF(FINAL and haspartner(1,4))) implies AF (FINAL and haspartner(1,4)))

and ((EF(FINAL and haspartner(1,5))) implies AF(FINAL and haspartner(1,5)))

and ((EF(FINAL and haspartner(1,6))) implies AF(FINAL and haspartner(1,6))))

F2c (symmetry of matching) The matchings are symmetric:
AG (FINAL implies ((haspartner(1,4) implies haspartner(4,1))

and (haspartner(1,5) implies haspartner(5,1))

and (haspartner(1,6) implies haspartner(6,1)))

F3 (satisf. of responders) The level of satisfaction of responders always increases:
A[{not w decr} U FINAL]

F4 (satisf. of proposers) The level of satisfaction of proposers always increases:
A[{not m decr} U FINAL]

We performed the analysis for the three proposed solutions on the whole input
space using a machine with an Intel Core i5 2.6 GHz, 8GB RAM, running OS
X and UMC v4.4. For the classical case, we considered problems of 3 (i.e., three
proposers and three responders). For the attribute-based variants we considered
problems of size 2, where each person has four attributes (two for expressing their
preferences about partners, and two for modelling their features), each having
two possible values. The results of our verification are reported in Table 1. A
[X] means that the formula is satisfied by all possible inputs, while a [×] means
that the formula does not hold for at least one input.

By looking at these results we can attempt some considerations:

6 FINAL is a shortcut for “not EX {true} true”
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property F1 F2a F2b F2c F3 F4

Classical X X X X X ×
Top-down X X × X X ×
Bottom-up × × × X × ×

Table 1. Verification results of three algorithmic solutions

Classical. Formulae F1, F2a, F2b, F2c do hold, confirming that the classical algo-
rithm always returns a unique and complete matching. The fact that formula F3

holds while F4 does not hold further reflects that a responder keeps trading up
its partners for better ones, while proposers can be dropped at any time.

Top-down. Since formula F2a does hold and F2b does not, we can conclude that
the top-down strategy will in general return multiple but complete matchings.
This is not surprising, since attribute-based stable marriage is a general case of
stable marriage with ties and incomplete list (SMTI) [11], and it is known that
one instance of SMTI may have multiple matchings [23]. When verifying F3 and
F4, we obtain the same results of the classical case.

Bottom-up. F1 does not hold indicating that this approach is not guaranteed to
converge. This happens in any configuration containing a cycle in the preferences
which makes partners chasing each other. Formula F2b does not hold because
there might be two proposers competing for one responder w.r.t. their lowest
requirements, thus one of the two remains single. We also verified that both
formulas F3, and F4 do not hold. This reflects that the satisfaction levels of
components may decrease because partners from both sides may drop them for
better ones at any moment.

Solution-dependent properties. In addition to previous properties, we also
considered a few protocol-related properties to increase to double check the cor-
rectness of the specifications derived from informal requirements.

In particular, we verified the following property of the classical solution:

F5. After a proposer receives a no, it will eventually send a new proposal7:
AG ([received($1,no,*)] AF {send(%1,propose)} true)

As expected, UMC answered true when verifying F5. This guarantees that the
proposer will send a proposal again, thus confirming that our specification in
that regard meets the informal requirements.

As we have specified a communication protocol for matching entities, the
following properties of the top-down solution are important to determine whether
the implementation conforms to the requirements:

7 $id and %id are used to match the identities of the sending and receiving components.
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F6. If a proposer receives a bye, it will always eventually send a new proposal:
AG([received($1, bye, ∗)] AF{send(%1, propose)} true)

F7. If a responder sends yes it will eventually receive a toolate or confirm:
AG[send($1, yes)] AF{received(%1, confirm, ∗) or received(%1, toolate, ∗)}

F8. After sending a proposal an initiator does not send further proposals until
it receives a no:
AG[send($1, propose)] A[{not send(%1, propose)}W{received(%1, no, ∗)}]

By verifying the above properties, we have found out that F7 holds, while
F6 and F8 do not. Formula F8 can be false, because, after sending a proposal,
an initiator may receive a yes, and then a bye message which forces it to send a
new proposal. F6 does not always hold because a initiator after receiving a bye
message from his partner, may immediately receive a yes message from another
responder. In this case, it can confirm the new responder without the needs of
sending new proposals.

Notice that the informal description of the top-down strategy is not quite
rigorous. We have two statements somewhat in contrast, one statement saying
that after a yes an initiator without a partner should send a confirm, and
another statement saying that after a bye an initiator should send a new proposal.
When a bye and a confirm arrive in sequence, the informal description is not
clear in describing the intended behaviour. The formalisation of this requirement
in terms of a logical formula, its verification w.r.t. the formal specification of the
system, and the observation of the generated counter-example has allowed us to
detect and understand this kind of ambiguities.

State Space. Among others, the top-down solution requires the largest number
of states with almost 18 millions in the worst case, compared with 0.5 and 4
millions states of the classical and of the bottom-up solution, respectively.

One of the main reasons for this is in the different size of the input space. The
attribute-based variant of stable marriage used four attributes with two possible
values for each, the space of problems of size 2 has 164 = 65536 configurations.
In the classical solution, each agent is characterised by its preference list and
thus the space of problems of size 3 only has 36 = 729 configurations.

The complexity of the top-down specification is also a reason for its state
explosion, which stems from the use of attribute-based send. In fact, initiators
and responders consist of parallel components performing more actions than
their classical counterparts: after sending a proposal message, a proposer needs
extra acknowledgment messages for selecting his partner. This greatly increases
the interleaving of actions by the sub-processes of the components and thus the
state space.

5 Concluding Remarks

We have presented a model-checking approach to the verification of attribute-
based communication systems. Starting from informal requirements, we have
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devised formal specifications in AbC. We have then shown how to systematically
translate these into verifiable models accepted by UMC. We have exploited the
approach for analysis of an algorithmic solution to the classical stable matching
problem, as well as for two variants that extend the problem by introducing
attribute-based communication among components. We have considered a set of
interesting properties for the above programs and described them first informally
and then as explicit properties of the generated models.

The results of our experiments have shown that systems relying on attribute-
based communications can be particularly complex to design and analyse. How-
ever, by exhaustively verifying a specification over all possible inputs, despite
the small size of the problem considered, we have experienced that many non-
trivial emerging properties and potential problems can indeed be discovered by
following our methodology. This confirms once more that concurrency bugs can
be detected by only considering a very small number of processes [22].

Experiments with different implementations of SMP in AErlang, an attribute-
based extension of Erlang, have been presented in [11]. Also in some previous
work [10], we modeled and verified an example instance of stable marriage using
attributes. However there the translation was done manually and the verification
considered only one configuration.

The analysis of concurrent systems modelled by process algebras has been
thoroughly investigated in [18] by relying on powerful abstractions techniques.
Other research groups [24,26,13] have taken an approach similar to ours and
perform verification by translating a specification formalism into a verifiable one
that could make use of existing model checkers.

Techniques for constructing a model for stable marriage and analyzing its
convergence has been presented in [7]. There, the authors encoded classical SMP
in a DTMC model and analyzed it with the tools provided by PRISM to study
different instances of stochastic matching markets.

There are interesting future directions for this work. An extensive experi-
mentation with additional case studies would certainly contribute to refine our
approach [21]. Extending AbC with new constructs to model the spatial and mo-
bility aspects of components would allow handling larger classes of systems [12].
Extending our verification approach to quantitative reasoning will improve use-
fulness, while investigating state reduction techniques will improve tractability.
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