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ABSTRACT Robotic and multi-sensor technologies are increasingly being adopted in a number of
agricultural applications, including seeding, weeding, harvesting, fertilization, and crop monitoring and
analysis. However, the lack of interoperability and the predominance of manufacturer-specific closed
solutions demand a careful choice of devices, sensors and data processing platforms and hinder the
flexible adaption of these systems to the individual farmer’s needs and knowledge exchange. The
Horizon 2020 Agriculture Interoperability and Analysis System (ATLAS) project is aimed at overcoming
these issues through an open, flexible and distributed interoperability network, which enables the seamless
interconnection of sensor systems, machines, and data analysis tools. This paper presents the latest
achievements in the context of the ATLAS project, concerning the development of robotic services for
in-field crop monitoring and their integration into the ATLAS network.

INDEX TERMS Agricultural robotics, precision farming, robot-as-a-service, interoperability, plant-scale
crop monitoring.

I. INTRODUCTION
Agriculture is becoming more and more data-driven. The
adoption of sensor technologies, data acquisition services,
and advanced data processing and analysis capabilities
is critical to increase sustainability and productivity of
agricultural operations. The last decades have witnessed
a significant transfer of technological advances from the
robotics and Artificial Intelligence (AI) domain to the
agricultural field [1], [2].

Robots can contribute to the automation of agricultural
processes in several ways and promise to become the
ideal solution to drive precision agriculture. Currently,
many agricultural operations are performed autonomously by
robotic platforms. However, despite the potential benefits and
cutting-edge capabilities, purchasing automated robots may
represent a prohibitive cost and require hiring personnel with
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robotics expertise, which is not always feasible, especially for
small and medium-sized farms.

As a solution, the concept of Robotics as a Service
(RaaS) has gained attention in a vast range of application
contexts, including warehouses, logistics, industrial robots,
automotive, and agriculture. RaaS is a growing business
model whereby companies purchase a complete end-to-end
service rather than a good. RaaS lays at the foundation
of the so-called Internet of Robotic Things (IoRT) where
physical assets, cloud computing and networking are merged
to perform elaborated tasks, allowing robots to collect and
share different kinds of information among humans and
machines [3].

In this respect, the availability of open and interopera-
ble architectures for the interconnection of different data
acquisition and processing systems is a key issue, especially
in highly dynamic and varied contexts such as agricultural
settings. In the literature, various contributions can be found
aimed at overcoming interoperability and data integration
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FIGURE 1. High-level overview of the ATLAS interoperability network with its different components to
interconnect sensors, sensor platforms and machinery.

issues in agriculture. The proposed approaches address
technical and semantic interoperability, context information
management, and ecosystem aspects. In [4] Bonacin et al.
propose a set of ontology models to enhance agricultural
data integration using semantic web-based techniques, with
particular regard to the impact of agricultural activities
and climatic changes on water resources. An Internet-based
architecture for machine-to-machine communication and
computation to enhance bio-productivity in agriculture is
presented in [5]. The approach exploits an auxiliary language
to enable data interoperability in a synthetic computing
environment and to connect data and mathematical models.
In [6] an interoperable agro-meteorological observation and
analysis platform for precision agriculture is developed.
It includes sensors plug-n-play, remote monitoring, tools
for crop water requirement estimation, pest and disease
monitoring, and nutrient management functionalities, as well
as modeling techniques for addressing water management
problems in horticultural crops. An open-source modeling
framework for exchanging and reusing crop model compo-
nents between modeling platforms is proposed in [7], along
with a reverse engineering approach to extract and transform
meta-information and algorithms of existing cropmodels into
platform-independent components.

Several European projects and initiatives are underway.
A notable example is the Horizon 2020DEMETER (Building
an Interoperable, Data-Driven, Innovative and Sustainable
European Agri-Food Sector) project [8], which focuses
on using and extending a wide range of pre-existing
interoperability mechanisms to develop, validate, and then
deploy solutions for precision farming applications. The
EU-funded CYBELE (Fostering Precision Agriculture And
Livestock Farming Through Secure Access To Large-
Scale HPC-Enabled Virtual Industrial Experimentation

Environment Empowering Scalable Big Data Analytics)
project is aimed at developing large-scale high performance
computing (HPC)-enabled testbeds and a distributed Big
Data management architecture and strategy for Precision
Agriculture (PA) and Precision Livestock Farming (PLF)
[9]. The recently EU funded project IntNet (Interoperability
Network for the Energy Transition) [10] will be aimed at
establishing an open, cross-domain community to test and
deploy interoperable energy services in various domains.

A novel concept of service-based architecture for the
interoperable integration of agriculture and livestock services
has been delivered by the Horizon 2020 ATLAS (Agricultural
Interoperability and Analysis System) project [11]. The
ATLAS platform enables digital data transfer through stan-
dardised services. The platform is based on a service archi-
tecture providing hardware- and software-interoperability
layers that enable the acquisition and sharing of data from
a multitude of sensors and the analysis of this data using
dedicated analysis approaches. Being an open network, any
existing company in the market offering agricultural services
and products can connect its existing solutions to an ATLAS
Service or implement an ATLAS Service which will then be
available within the network. A high-level overview of the
ATLAS network is shown in Figure 1.
This paper presents the results obtained from the

research activity within the ATLAS project concerning
the development of robotic and multi-sensor data collec-
tion and processing services for in-field crop monitoring
and decision support and their integration in the ATLAS
network. First, the main features and components of the
network and their development are described. Then, the
focus is given to an agricultural use case for continu-
ous proximal range monitoring of vineyards by a farmer
robot.
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FIGURE 2. Service description and specification available at the ATLAS
participant portal.

FIGURE 3. The Polibot farmer robot.

II. ATLAS INTEROPERABILITY NETWORK
The ATLAS Interoperability Network is a solution that
provides open interoperability infrastructure for data transfer
in digital agriculture. It promotes the interoperability of
robots, sensors, data services, and agricultural machinery,
enabling end-users to exchange and share data between
different digital agricultural systems provided by different

vendors, through standardised services. Any existing com-
pany in the market offering digital solutions for agriculture
can participate in the ATLAS interoperability network by
retro-fitting their systems to an ATLAS Service. ATLAS
provides the standards for services (the Service Templates)
which model agricultural processes from various areas, such
as livestock farming, fertilization, irrigation, crop monitoring
and many others.

A. STANDARDIZED SERVICES
ATLAS services are web-based APIs providing standardized
access to agricultural data and processes that conform to
formal specifications defined in associated ATLAS Service
Templates. The services are designed to be used as sort
of ‘‘functionality plugins’’ that can extend the functionality
of existing agricultural software systems, such as Farm
Management Information Systems (FMIS), or that can
be assembled by system integrators into fit-for-purpose
solutions for customers in the agricultural domain. In more
sophisticated scenarios, ATLAS Services may themselves be
consumers of other types of ATLAS Services, forming a
‘‘service mesh’’.

ATLAS Service Templates consist of two documents:
a technical API specifications document (in OpenAPI
format, when documenting REST APIs) and a general PDF
specifications document providing an introduction, context,
use cases, dynamic behaviour, etc.

B. SERVICE DISCOVERY
The ATLAS Registry is the key component of ATLAS Core
whose main purpose is to reinforce trust in the ATLAS
Network. It serves as a directory of ATLAS Participants and
of the ATLAS Services they offer. It provides all the neces-
sary information to enable secure communication between
ATLAS-enabled digital systems. ATLAS Participants are
activated in the ATLAS Registry after their identity and
reputability has been verified, at which point they obtain
credentials enabling their system(s) to access the ATLAS
Registry API, and they may start submitting requests to
register their ATLAS Services. Upon verification that the
ATLAS Service information is valid and that the service
complies with both the general ATLAS Service requirements
for pairing and its corresponding ATLAS Service Template
specifications, the ATLAS Service entry is activated and
becomes available to ATLAS-enabled Digital Information
Systems.

C. SERVICE TEMPLATE CASE: FIELD SURVEY
Among the ATLAS service templates, the field_survey is
described as the one used as a running case in this work. It is
intended for applications where discrete measurements are
required at specified zones within the field. The boundaries
and other field information can be retrieved using another
ATLAS service named field_data, which generates a digital
field twin. The field_survey service provides standardized
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FIGURE 4. Schematic of the robotic service data flow. Standardized ATLAS services are shown in orange boxes. The end
user retrieves field information from the digital field twin to plan a field survey. The survey plan is sent to the field survey
server and then translated to a robot-specific mission plan. The resulting measurements are read back from the robot and
translated to the standardized format. The results can than be retrieved from the FMIS and used to update the digital
field twin.

FIGURE 5. Example of mission plan.

REST-endpoints to plan a specific survey and retrieve the
survey results.

A survey plan is described in JSON and sent to the
service via a POST request. It contains the identifier for
the field (field URN) and a list of interest zones. A POST
request returns a unique survey ID that can be used by the
calling application to query the status of the survey (planned,
completed, or canceled).

Once a survey plan is received by the service, it can be
forwarded to the robot, which will then interpret the survey
plan and convert it to actual actions performed on the field.
The whole process of conducting a survey can happen offline;
a connection to the service is only needed to receive the
survey plan and deliver the collected data once the survey
is finalized. The survey results, encoded in JSON, can be
retrieved with the given survey ID through a GET request.

In the following, the application of the field_survey service
is demonstrated for a farmer robot performing in-field crop
monitoring tasks.

III. ROBOT SERVICE
Proximity measurements can be of great value in obtaining
accurate data on zones of interest within a field. Conventional
methods based on hand-held devices or visual inspection
by experts are time-consuming and prone to human errors
and operator subjectivity. Recently, ground-based sensing
through Unmanned Ground Vehicles (UGVs) has been
proposed as a complementary technology to Unmanned
Aerial Vehicles (UAVs) and satellite-based remote sensing for
automated in-field close-range data acquisition [12].
In the context of ATLAS, a farmer robot equipped with 2D
and 3D sensing devices is used to collect data from the crop
and extract high-level information. Measured parameters
include vegetation indexes and plant morphological traits.
Estimates are performed by an RGB-D sensing device
mounted on-board the robot and georeferenced through
synchronization with the vehicle positioning system. Mea-
surements are provided at plant-scale level or as average
estimate along selected robot paths.
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FIGURE 6. Server interface: (a) server login interface; (b) server app
interface.

The system is integrated within the ATLAS ecosystem
as a service based on the field_survey service template
(see related section above). The robotic service is designed
with the idea to provide discrete measurements at specified
areas of interest. The service is available through the
ATLAS Participant Portal,1 reporting a description of the
service, the service provider website and the service template
specification as shown in Figure 2.

A. THE FARMER ROBOT
The robot used in this research is the Polibot, an all-terrain
rover completely custom-built at the Polytechnic University
of Bari [13], and shown in Figure 3. It is powered by
two 350 W and 24 VDC brushed motors, and adopts a skid-
steering system. The novelty of the farmer robot lies in an
articulated passive suspension for each side track that allows
the ground wheels to move independently with respect to
the vehicle body ensuring high mobility over uneven terrain.
With a maximum speed of 2 m/s, Polibot can survey one
vineyard hectare in about 40 minutes. The use of tracks
ensures a ground pressure of 7 kPa at maximum payload (=
50 kg) that is far below the agronomic damage threshold (=
40 kPa). Body vibrations induced by the terrain irregularity

1https://participants-portal.iais.fraunhofer.de/

are also significantly reduced by about 50% [14] with respect
to a standard tracked robot, that is beneficial for the onboard
sensor suite. An embedded industrial computer with Intel
i7 CPU, 16GBRAMDDR and 256GBSSD provides wireless
connectivity and Bluetooth interfaces. The main operating
system installed on the computer is Ubuntu and it is used
to run Robot Operating System (ROS) and to generate
locomotion commands over a RS232 serial port directly
connected to the motor controllers. The flat upper surface can
be used to place sensors such as LiDARS, IMUs, or cameras,
through a metal frame built with aluminum bars and plates
(see Figure 3). Among the sensors, an RGB-D camera,
namely an Intel RealSense D435 is used for close-range crop
survey. The camera can be mounted on the metal frame at
different heights and positions. Multiple cameras can also
be integrated to extend the overall field of view [15]. The
D435 combines a red/green/blue (RGB) color sensor, a left-
right infrared (IR) stereo pair and an IR projector. The stereo
system features a field of view of 87(H) × 58(V) deg,
maximum depth resolution of 1280 × 720 px, and frame rate
up to 90 fps, with an ideal perception range of 0.3 m up to
3 m. The IR stereo stream is spatially calibrated and time
synchronized with the color stream provided by a FullHD
(1920 × 1080) CMOS camera, with nominal field of view
of 69(H) × 42(V) deg and 30 fps at full resolution.
Finally, accurate geolocalization is obtained from a dual

GPS configuration that works in conjunction with three
low-cost inertial sensors within a Gaussian Sum Filter. The
interested reader is referred to [16] for more details.

B. INTEGRATED SYSTEM
The data flow of the robotic service is depicted in Figure 4.
Using a Farm Management Information System (FMIS), the
end user (e.g., the farmer) is enabled either to:

• plan a field survey mission;
• or request the inspection data for any completed survey.

In the planning phase, the user first retrieves field information
from the digital field twin to plan a field survey. The survey
plan is sent to the field survey server implemented in the Flask
framework and then translated to a robot-specific mission
plan; the robot can then start its mission, which is labelled
by an inspection ID to be used for successive data retrieval.
An example of mission planning is shown in Figure 5.

During inspection, crop images are acquired and processed
on-board the robot to extract crop status measurements.
Image processing is performed using a Python code under
the ROS framework as will be described in the next section.
The communication between the robot system and the service
provider is performed using the HTTP protocol. At the end of
the inspection, all measurements are loaded in the database
of the service provider and made available to the farmer or
to any other service or machine integrated in the ATLAS
framework. Measurements in the database can be accessed
by specifying the inspection ID through the server app
interface, as displayed in Figure 6. Survey results may be
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FIGURE 7. Example of canopy segmentation. From left to right: depth-aligned RGB image; plant
canopy in the RGB frame; plant canopy in the IR frame; NDVI image with greener points
denoting higher index values.

FIGURE 8. GoogleEarth projection of the robot trajectory along a Malvasia row in Basso Monferrato Hills, Italy (a)-(b) and along a
Nagroamaro vineyard row in Southern Italy (c)-(d). In (a) and (c) greener points denote higher NDVI values as estimated by the on-board
camera; in (b) and (d) the estimated canopy height at each robot position is displayed using a jet colormap.

also deleted upon request. ATLAS APIs operate data transfer
using the HTTP protocol through POST, GET, and DELETE
requests. In addition, leveraging on ATLAS interoperability,
any FMIS or vendor can use the data. This requires a Pairing
procedure that pairs the field_survey service with other
services, like the field_data service, to retrieve field URNs
and retrieve/manage all assets. For instance, the pairing
with the field_data service is required to get the service
capabilities for a given field.

C. FIELD DATA PROCESSING
The core of the robotic service is made up of Python ROS
nodes running onboard, which acquire and process visual and
localization data during the field survey. In detail, the data
processing algorithm (Image Processing Node) consists of
the following steps:

1) image acquisition: the imaging sensor gathers RGB,
infrared (IR) and depth images of the framed crop
region. All images are spatially calibrated and timely

synchronized, therefore, color, IR and depth informa-
tion are simultaneously available. Each image is also
geo-referenced through association with robot position
information, given by the robot localization system
(GPS Node);

2) canopy segmentation: assuming that the vehicle is
moving approximately parallel to the crop row and that
the camera is mounted in a side-view configuration
to inspect the lateral side of the crop canopy, all
the points lying within a certain distance range from
the camera and featuring a non-negative Green-Red
Vegetation Index (GRVI) are extracted as pertaining to
the plant. An example of image segmentation is shown
in Figure 7;

3) measurement extraction: for the segmented canopy,
vegetation indexes are computed, such as the Nor-
malized Difference Vegetation Index (NDVI). It is
calculated by using the red channel of the RGB
image in combination with the co-located IR image.

VOLUME 12, 2024 47947



A. Milella et al.: Robot-as-a-Service as a New Paradigm in Precision Farming

In addition, the canopy height is computed as the height
of the bounding box of the reconstructed canopy point
cloud.

The output of the data processing consists of a set of
measurements and associated robot positions in the field.
Measurements can be additionally provided in aggregated
form in terms of mean and standard deviation along the entire
robot path.

D. FIELD DEMONSTRATION AND RESULTS
The service was tested in two vineyards, one located at the
CNR’s experimental farm Vezzolano in Basso Monferrato
Hills (AT), Italy and the other one in a commercial farm in
San Donaci (BR), Italy. Layer maps obtained from the service
for a test in a Malvasia vineyard row in the Basso Monferrato
Hills are reported in Figure 8 (a)-(b). Specifically, in
Figure 8 (a), the information collected in the field by
the farmer robot is presented to the user in the form
of a colored layer map. The greener the inspected spot,
the higher the NDVI value. The estimated canopy height
is displayed in Figure 8 (b) using a jet colour map.
Similarly, results of the service applied in a Negroamaro
vineyard row of the commercial farm in San Donaci are
shown in Figure 8 (c)-(d). A video showing the robotic
service at work in the Vezzolano field can be viewed at
https://www.youtube.com/watch?v=MxUPD866LQ4.

IV. CONCLUSION
Interoperability is a critical requirement for the widespread
adoption of multiple data acquisition and processing systems
in agriculture. The ATLAS project discloses a new infras-
tructure to enable interoperability of robots, sensors and data
processing algorithms provided by different vendors, through
the paradigm of standardised service. In this paper, focus has
been given on an ATLAS-integrated robotic service for prox-
imal range monitoring of vineyards at plant-scale level. First,
an innovative farmer robot equipped with consumer-grade
RGB-D and geolocalization sensors has been introduced.
Then, the software components of the service to measure
vegetation indexes and morphological parameters of the crop
based on color and depth data have been described. Finally,
the experimental validation of the service in two different
vineyards has been presented, showing its feasibility and
integration into the ATLAS network. The proposed system
has been designed to fulfill modularity and it can be easily
extended to multi-robot configurations or different precision
agricultural tasks, including fruit counting, selective fertilisa-
tion and harvesting. Furthermore, the technology developed
in ATLAS will make robotics accessible to traditional
farming environments, making farming more attractive for
the young and tech-affine generation, and thus counteracting
the emerging shortage of young, skilled workers.
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