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Abstract— The paper introduces computer vision methods for automating the detection, recognition, 

and classification of Nephrops norvegicus burrows in underwater videos. This approach aims to 

https://orcid.org/0000-0003-2069-5068
https://orcid.org/0009-0009-7996-1691
https://orcid.org/0000-0002-8052-7544
https://orcid.org/0000-0003-1231-2346
https://orcid.org/0000-0001-5068-2861
https://orcid.org/0000-0002-4872-9541
https://orcid.org/0000-0003-3179-7473


improve accuracy, reduce human errors, and standardize the current manual video analysis process. 

By using machine learning techniques, the system can automatically process video streams and detect 

N. norvegicus burrow openings on the seabed. The work also explores the use of data augmentation 

algorithms to extend the annotated data set, enhancing the performance of the automated system 

compared to the original manual annotations. 
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INTRODUCTION 

Nephrops norvegicus (Norway lobster) is a benthic burrowing decapod crustacean that typically lives 

at depths between 50 and 800 m on the continental shelf of the northeastern Atlantic Ocean and the 

Mediterranean Sea [3]. This species greatly contributes to the total fish landings in Europe, with an 

average of 3700 tonnes per year just in the Mediterranean Sea, even though landings have seen a 

significant decrease since 2010 [7]. 

Underwater Television (UWTV) surveys are carried out to evaluate N. norvegicus stocks [2, 6]. 

These consists of the examination of underwater (UW) video footage of the sea floor to count the 

number of N. norvegicus burrows, distinguishing them from other species’ burrows and other objects. 

This gives an estimate of the N. norvegicus population under the assumption of “1 burrow = 1 animal” 

[17], which is generally considered reliable among experts despite being currently under discussion 

[1]. Still, the careful visual analysis of hours of UW footage to count burrows is a highly demanding 

and time-consuming task, often susceptible to errors and influenced by the judgment of the human 

scientists who perform it. Several workshops have been organized by the International Council for 

the Exploration of the Sea (ICES) with the purpose of defining standard procedures for video reading 

[5, 8–10], and a Working Group on Nephrops Surveys (WGNEPS) has been established within ICES 

to coordinate the activities regarding UWTV surveys [12]. For example, a training program has been 

developed for readers to learn to recognize N. norvegicus burrows using reference material and 

videos. 



In this context, an automatic system that detects (and potentially counts) N. norvegicus burrows 

would be an invaluable tool to ease the workload of marine biologists and potentially reduce the 

amount of error and human subjectivity. Such a system should at first identify the openings in the 

seabed relative to N. norvegicus burrows, discarding other objects that could be mistaken for them 

(e.g. other species’ burrows, rocks, sand clouds, shadows, visual artifacts), then identify the burrow 

itself, which is a system of two or more entrances connected via underground tunnels. 

This paper focuses on the first of the two mentioned steps: it investigates how effective machine 

learning (ML) techniques―and in particular deep learning algorithms―are in recognizing entrances 

of N. norvegicus burrows in UWTV footage. Some recent works already show promising results [4, 

16]. The use of deep neural networks has risen considerably in the last few years in the field of 

computer vision, with the most diverse applications. In case of UW images and videos, there are a 

few intrinsic issues to be taken into consideration: the underwater environment alters the optical 

features of the images (e.g. turbidity and strong light absorption cause a shift of the hue towards the 

green/blue spectrum and an overall contrast reduction), often producing low-quality images that are 

not suitable to be fed to a ML algorithm; moreover, the typical depths at which UWTV footage is 

recorded during surveys require necessarily the use of artificial illumination systems, that may result 

in unbalanced images in terms of brightness and contrast. Given such conditions, the care and effort 

spent to create datasets that will be used in ML algorithms become of utter importance; on the other 

hand, the manual annotation of frames to obtain a high number of samples, as demanded by most 

algorithms, suffers from the same flaws as the burrows counting task: it takes a lot of time, and it is 

prone to errors. 

This works describes the first results of the training of a state-of-the-art deep neural network, 

developed for the object detection on a set of UW images, to get some models able to recognize the 

entrances of N. norvegicus burrows. First, two training datasets are described in detail: one of them 

consists of a set of video frames manually annotated by experts, the other has been automatically 

generated by “extending” these annotations to the other frames of the video. Then, the employed 

neural network architecture and the related training configurations are illustrated and examined. The 



paper continues with a discussion about the predictive performance of the trained models and 

concludes with some final remarks and perspectives on future work. 

 

EXPERIMENTAL SETUP 

Dataset. An annotated dataset of N. norvegicus burrows images has been prepared starting from UW 

video footage recorded during a series of campaigns carried out jointly by the Institute for Marine 

Biological Resources and Biotechnology of CNR (Italy) and the Institute of Oceanography and 

Fisheries (Croatia) in the Pomo/Jabuka Pits area in the central Adriatic Sea [11, 14]. 

The recording apparatus consists of a UW high-resolution color camera (Kongsberg Maritime oe14-

372) mounted on a sledge towed through a cable by the R/V G. Dallaporta at a constant speed of 

approximately 1 kn, thus collecting images of the seafloor with a fixed field of view of 80 cm. The 

captured footage was saved through an HD/SD digital video recorder (Datavideo HDR-60) with a 

resolution of 768×576 pixels and a frame rate of 25 FPS. The effective height was reduced to 432 

pixels due to the presence of an automatic overlaid timestamp in the upper part of the frame. For the 

purposes of this work, a segment of about 4 minutes and 12 seconds of length was selected and 

deinterlaced using the Neural Network Edge Directed Interpolation (NNEDI) filter, and a set of 505 

still frames, one every half second, was extracted and given to the annotators. 

The annotation process itself has been performed using Microsoft VoTT [15]. Two object labels were 

chosen: “Entrance”, to denote the single openings of a N. norvegicus burrow on the sea floor, and 

“Burrow”, to group together the entrances relative to the same system (see Figure 1). Please note that 

all the experiments described here involve the detection of single entrances: objects of the class 

“Burrow” will not be taken into consideration, but having that information available in the dataset 

will certainly prove useful for the future. In the end, only 156 frames contained at least one object, 

and the total number of “Entrance” boxes is 315. This dataset will be called D0. 



 

Figure 1. Example of annotated image in the dataset. The green boxes are “Entrance” objects; the 

dashed purple box is the “Burrow” object that groups them. 

In order to have an increased number of samples to be fed to the ML algorithms, an automatic 

“boosting” process has been carried out. The premise is that, given that the footage is acquired by a 

camera mounted on a sledge at a fixed angle and (ideally) moving linearly at constant speed, an 

entrance on the seabed persists for a certain number of frames, so a bounding box in a frame F of D0 

defines a template that can be found in the frames belonging to a temporal neighborhood of F through 

correlation-based techniques. By applying this boosting algorithm, a new “extended” dataset, which 

will be called D+, has been obtained; it contains 2406 images for a total of 4844 “Entrance” objects 

(see   

Figure 2). 

  

Figure 2. Concept of boosting algorithm. A burrow entrance in a frame of D0 is used as a template 

to find the same entrance in neighboring frames in D+. 



An image in the datasets is uniquely identified by its timestamp, i.e. the number of seconds passed 

since the beginning of the video. Given the frame rates in play, it was established that images of D0 

have a timestamp with a single digit after the decimal point, that can be either 0 or 5; images of D+ 

instead have two digits, which represent an integer divisible by 4. Some examples: 21.5 is a timestamp 

of an image in D0; 77.28 is a timestamp of an image in D+; the frame after 1 minute of the video has 

timestamp 60.0 as an image in D0 and timestamp 60.00 as an image in D+; 34.8 and 154.62 are not 

valid timestamps. Since 50 is not divisible by 4, there is a slight mismatch between timestamps of D0 

and D+, where the “half-second” images of D0 correspond to images in D+ whose timestamps end 

with 52. The last images in D0 and D+ have timestamps 251.5 and 251.52 respectively. 

 

Network Training. The datasets described above have been used to train several instances of the 

YOLOv8 network by Ultralytics [13], a state-of-the-art deep neural network designed for object 

detection and classification. More precisely, all the experiments have been conducted on a 

computational cluster equipped with a NVIDIA A100 40 GB PCIe GPU using the “small” variant 

YOLOv8s pre-trained on the COCO dataset. 

Both datasets D0 and D+ have been split into training and validation sets. In order to avoid similar 

frames appearing in the two sets, the division is not random, but a timestamp t0 has been chosen so 

that all frames with timestamp before or equal to t0 belong to the training set, and all frames with 

timestamp after t0 belong to the validation set. In the end, the value t0 = 191.64 has been selected (for 

both datasets): this way about 80 % of the boxes belong in the training segments. This gave a 

train/validation split of 125/31 images for D0 and 1892/514 images for D+. 

As is usual for object detection tasks, the average precision (AP) has been chosen to evaluate the 

performances of the model during training, with an Intersection over Union (IoU) threshold of 50 %. 

AP of the validation set is computed automatically after each epoch by the training algorithm. 

The following settings are common to all the experiments: 

• to comply with the network specifications and considering the available computational 

resources, the images have been resized to 416×416 pixels; 



• the training duration is set to 200 epochs, with a “patience” value of 100 epochs, meaning that 

training is stopped automatically if no significant improvement is measured for 100 

consecutive epochs; 

• all other parameters maintain their default values unless explicitly specified. 

Experiment 1. The default training algorithm of YOLOv8s automatically performs some standard 

data augmentation techniques to improve detection by artificially increasing the variability of the 

environmental conditions in which the images of a dataset are taken. Some of these techniques are 

listed in Table 1. In this experiment the network is trained on the dataset D0 and the data augmentation 

techniques of Table 1 are disabled, i.e. their values are all set to zero. 

Table 1. Some data augmentation techniques applied by default (table adapted from 

https://docs.ultralytics.com/modes/train/) 

Name Default value Effect 

hsv_h 0.015 Adjusts the hue of the image by a fraction of the color 

wheel, introducing color variability. 

 

hsv_s 0.7 Alters the saturation of the image by a fraction, affecting the 

intensity of colors. Useful for simulating different 

environmental conditions. 

 

hsv_v 0.4 Modifies the value (brightness) of the image by a fraction, 

helping the model to perform well under various lighting 

conditions. 

 

translate 0.1 Translates the image horizontally and vertically by a 

fraction of the image size, aiding in learning to detect 

partially visible objects. 

 

scale 0.5 Scales the image by a gain factor, simulating objects at 

different distances from the camera. 

 

fliprl 0.5 Flips the image left to right with the specified probability, 

useful for learning symmetrical objects and increasing 

dataset diversity. 

 

mosaic 1.0 Combines four training images into one, simulating different 

scene compositions and object interactions. 

 

erasing 0.4 Randomly erases a portion of the image during classification 

training, encouraging the model to focus on less obvious 

features for recognition. 

 

Experiment 2. The network is trained on the extended dataset D+; all the augmentation techniques 

of Table 1 are still disabled. 

https://docs.ultralytics.com/modes/train/


Experiment 3. The network is again trained on the dataset D+, but the augmentation techniques of 

Table 1 are applied (with their default values). 

 

RESULTS AND DISCUSSION 

Figure 3 shows the plots of the AP computed during the network training in the conditions of the 

three experiments. Recall that the AP is a rational number between 0 and 1, and that the higher the 

AP is, the better performances the model has. 

 

Figure 3. Plots of the AP computed on the validation set during the training phase. 

As it is clear from the plots, none of the three experimental settings gives rise to a model that performs 

exceptionally well on the validation set. There are several potential reasons of this behavior: 

• the datasets, especially D0, contain too few relevant images for the network to learn the 

discriminating features of N. norvegicus entrances; 



• the detection task is made more difficult by the nature of the images themselves, as they are 

extracted from a video recorded in an underwater environment with several drawbacks, such 

as bad lighting and turbidity; the images quality also is hindered by the technical aspects of 

the video (low resolution, deinterlacing); 

• as stated in the Introduction, detection of N. norvegicus entrances is intrinsically difficult even 

for trained human eyes―it is worth remembering that YOLO is a general-purpose object 

detector that behaves very well on “everyday” tasks, but it probably needs some tweaks to 

reach the same performances on highly specialized tasks such as the one described in this 

paper. 

By comparing experiments 1 and 2, one can notice that there is no improvement in the AP, despite 

the drastic increase in the number of training images. This is probably due to the fact that the new 

images of D+ are actually too similar to the ones already present in D0, so adding them does not in 

fact provide substantially “new” information that the model can learn―rather, it increases the risk of 

overfitting. 

On the other hand, the AP for experiment 3 is noticeably higher than the one for experiment 2, 

suggesting that data augmentation techniques of the kind described in Table 1 may be beneficial to 

the N. norvegicus burrows detection task. These and other data augmentation practices are currently 

being investigated. 

 

CONCLUSION 

This work describes the first steps to tackle the problem of detecting N. norvegicus burrows in UW 

video footage using ML techniques. Considering the extraordinary results achieved by deep neural 

networks in the object detection domain in recent years, it is natural to ask whether they can also be 

successfully applied in this very specific field. A positive answer will prove extremely useful in 

helping marine biologists who currently spend a large part of their work time in a tedious and error-

prone activity such as manually reviewing hours of video footage to count N. norvegicus burrows in 

it. 



The application of an already available general-purpose network, without further tweaking, to a 

peculiar setting such as images extracted from UW video footage did not obtain particularly good 

performances. This is not completely unexpected; nevertheless, these results establish a good starting 

point and give us the motivation to continue pursuing this path of research. As seen above, even a 

small adjustment like the inclusion of a data augmentation step can improve the overall performances 

of the model. 

Future work on the subject will encompass further attempts with different settings and more ground 

truth datasets, including the additional development of scripts that can generate large datasets starting 

from smaller, manually annotated ones. Also, a comparative analysis of the performances of other 

deep neural network architectures will be carried out, with the objective to eventually reach the best 

setup for an automatic system able to detect N. norvegicus burrow entrances. 
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