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A B S T R A C T   

Background and Objective: A new direction in the study of motor control was opened about two decades ago with 
the introduction of a model for the generation of motor commands as combination of muscle synergies. Muscle 
synergies provide a simple yet quantitative framework for analyzing the hierarchical and modular architecture of 
the human motor system. However, to gain insights on the functional role of muscle synergies, they should be 
related to the task space. The recently introduced mixed-matrix factorization (MMF) algorithm extends the 
standard approach for synergy extraction based on non-negative matrix factorization (NMF) allowing to factorize 
data constituted by a mixture of non-negative variables (e.g. EMGs) and unconstrained variables (e.g. kinematics, 
naturally including both positive and negative values). The kinematic-muscular synergies identified by MMF 
provide a direct link between muscle synergies and the task space. In this contribution, we support the adoption 
of MMF through a Matlab toolbox for the extraction of kinematic-muscular synergies and a set of practical 
guidelines to allow biomedical researchers and clinicians to exploit the potential of this novel approach. 
Methods: MMF is implemented in the SynergyAnalyzer toolbox using an object-oriented approach. In addition to 
the MMF algorithm, the toolbox includes standard methods for synergy extraction (NMF and PCA), as well as 
methods for pre-processing EMG and kinematic data, and for plotting data and synergies. 
Results: As an example of MMF application, kinematic-muscular synergies were extracted from EMG and kine
matic data collected during reaching movements towards 8 targets on the sagittal plane. Instructions and 
command lines to achieve such results are illustrated in detail. The toolbox has been released as an open-source 
software on GitHub under the GNU General Public License. 
Conclusions: Thanks to its ease of use and adaptability to a variety of datasets, SynergyAnalyzer will facilitate the 
adoption of MMF to extract kinematic-muscular synergies from mixed EMG and kinematic data, a useful 
approach in biomedical research to better understand and characterize the functional role of muscle synergies.   

1. Introduction 

To control body movements, the central nervous system (CNS) must 
coordinate a vast number of variables due to the redundant degrees of 
freedom of the musculoskeletal system [1]. About two decades ago, it 
has been proposed that the CNS might simplify motor control by 
generating motor commands through a linear combination of muscle 

synergies, each composed by a group of muscles that are activated 
together. Muscle synergies can be considered as an efficient and parsi
monious way to generate spatiotemporal patterns of muscle activation 
by reducing the number of control variables required for motor coor
dination [2–8]. 

Muscle synergies opened a new direction in the study of motor 
control, by providing a simple yet quantitative framework for analyzing 
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the hierarchical and modular structure of the motor system, based on 
neurophysiological evidences [3,5,6,9,10]. In particular, the initial 
approach consisted in using NMF [11] to identify muscle synergies from 
electromyographic (EMG) signals recorded from multiple muscles [3,5]. 
NMF allows to decompose the EMG signals, according to a spatial model, 
into spatial synergies and temporal coefficients, or, according to the dual 
temporal model, into temporal synergies and spatial loads [12]. Addi
tional models and decomposition algorithms, such as spatiotemporal [6] 
and space-by-time [13], have also been introduced. 

While muscle synergy analysis provides a parsimonious character
ization of the organization of motor commands, synergies extracted 
from EMGs should be related to the task space variables to gain insights 
on how motor commands relate to task performance [14,15]. This 
problem has emerged both in the study of the physiological role of 
synergies [16] and in the evaluation of pathological synergistic patterns, 
which are characterized by specific changes in the synergies or temporal 
coefficients [17–21]. For all these scenarios, it is natural to investigate 
the intimate relationship that connects muscle synergies to their effect 
on task space variables. Thus, it comes naturally to extend the concept of 
muscle synergies to hybrid (or functional) synergies that include both 
muscle activities and task space variables into synergy weights. 

The recently introduced mixed-matrix factorization (MMF, [22]) 
algorithm extends the standard approach to synergy identification using 
NMF by allowing to factorize a configurable number of unconstrained 
input data (i.e., potentially also including negative values), such as ki
nematic data, providing a direct link between muscle synergies and the 
task space. The MMF algorithm has been presented in detail in a pre
vious contribution [22], where its performance was assessed on simu
lated data and shown to be superior to that of a state-of-the-art 
algorithm for factorizing non-constrained inputs [23]. 

The definition and extraction of synergies have been approached in 
various ways, incorporating different algorithms such as principal 
component analysis (PCA), non-negative matrix factorization (NMF 
[11]), and independent component analysis (ICA) applied to kinematic 
and EMG data [24–26]. Recently, Santuz introduced an R-based toolbox 
designed for extracting muscle synergies using NMF [27]. Notably, such 
toolbox also allows for synergy classification after extraction. On the 
other hand, Chiovetto and colleagues proposed a novel comprehensive 
framework based on the Fourier-based Anechoic Demixing Algorithm 
(FADA) and compared it with established model-specific algorithms to 
extract synergies. The relative Matlab toolbox (FADA-T) is shared 
implementing multiple synergy models [26,28]. However, a standard
ized approach and a toolbox that allows for extraction with different 
methods, is still missing. Moreover, a toolbox specifically designed for 
extracting functional synergies, such as the kinematic-muscular syn
ergies identified using the MMF algorithm is not available. The MMF 
approach recently proved to be superior than previous attempts to 
extract synergies with positive and negative channels [22,23]. Given 
that, with the aim of supporting the adoption and standardization of 
kinematic-muscular synergies, we distribute a Matlab toolbox for syn
ergy extraction (SynergyAnalyzer) that includes an implementation of 
MMF, together with standard methods for the extraction of kinematic 
and muscle synergies, separately. In addition, the toolbox allow for a 
standardized approach for processing EMG and kinematic data. The 
toolbox is available on GitHub with accompanying demonstrations. It is 
accessible to users with basic Matlab proficiency, and it is designed to 
adapt to a variety of algorithms and datasets. 

Our toolbox adopts an object-oriented programming approach, 
which allows a clear definition of a few classes incorporating data 
structures and data processing methods commonly used in muscle syn
ergy analysis, empowering users to easily extend and customize them to 
meet specific data analysis needs. This design approach reduces code 
redundancy and encapsulates the complexity of the underlying code, 
making it accessible to a wider audience, including biomedical re
searchers and clinicians without extensive programming experience. 

To provide a comprehensive and stand-along tool for synergy 

extraction, the SynergyAnalyzer toolbox can handle various types of 
data (such as EMGs, kinematics, or a combination of both types), in
cludes data preprocessing and visualization methods, and allows for 
synergy extraction using NMF [11] and principal component analysis 
(PCA) [29] in addition to the recently introduced MMF [22]. Filtering 
and averaging of EMG and kinematic data can be easily customized to 
match the requirements of specific datasets with minimal effort. Here, 
we use an example of extraction of kinematic-muscular synergies from 
combined kinematic and EMG data collected during reaching move
ments to provide a set of practical guidelines. In this way we hope to 
make MMF available to the biomedical community to foster research on 
synergistic models, which we foresee can expand already available ap
plications in the field of rehabilitation [19], robot-assisted therapies 
[30], and understanding human-robot interaction [31]. 

2. Methods 

SynergyAnalyzer includes all the functionalities for performing syn
ergy analysis on different types of data. It is implemented as a MATLAB 
(Natick, USA; version required 7.6+) toolbox as MATLAB is commonly 
used by neuroscientists and biomedical engineers working on motor 
control. The toolbox incorporates functions for all the analysis steps, 
which include signal preprocessing (alignment and filtering), normali
zation, removal of tonic EMG components, and different methods for 
synergy extraction. It also provides data visualization methods. In this 
section, we first describe the organization and general functionalities of 
the toolbox and we then focus on the novel MMF synergy extraction 
algorithm. The toolbox is freely available on GitHub at this link under 
the GNU General Public License version 3. 

2.1. Toolbox organization 

A general overview of the toolbox is shown in Fig. 1. Following an 
object-oriented programming approach, the toolbox consists of a top- 
level SynergyAnalyzer class, three data-related classes customized for 
specific types of data (EmgData for EMG data, KinData for kinematic 
data, and EmgKinData for combined EMG and kinematic data), and a 
Syn class for synergy extraction. Each data class includes methods to 
filter, align, normalize, and average the data in the preprocessing phase. 
The SynergyAnalyzer class uses the data-related classes to pre-process 
that data in data-specific manner and the Syn class to extract the 
synergies. 

A sample dataset and two scripts with step-by-step examples for the 
extraction of muscle synergies using standard NMF (demo_nmf_emg.m) 
and of kinematic-muscular synergies using MMF (demo_mmf_mix.m) are 
also provided. The dataset is a subset of the dataset presented in [22] 
and includes EMGs (14 channels, shoulder and elbow muscles) and joint 
angles (4 channels, 3 shoulder joint and elbow joint angles) recorded 
during 10 repetitions of reaching movements towards each of 8 targets 
in the sagittal plane from one participant. This subset of data is included 
in the toolbox and can be downloaded from the same repository. 

2.1.1. Data-related classes 
Two basic data-related classes are implemented to process EMG and 

kinematic data, with data-specific methods. For example, the EmgData 
class includes a method for the rectification of the EMG signals. On the 
other hand, the KinData class includes a method for computing a nu
merical derivative of the position signal to obtain speed or acceleration. 
A third data-related EmgKinData class is implemented by merging 
EmgData and KinData and it allows for the extraction of kinematic- 
muscular synergies. The EmgKinData class includes EmgData and Kin
Data objects as properties in order to re-use their methods. 

Details about the experimental conditions and key events of a spe
cific dataset that can be used to extract individual movement trials and 
to average over repeated trials in the same conditions must be provided 
using a user-defined function (getInfo). This function can be customized 
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to import a specific dataset into the data-related objects. In particular, 
the user can transform a set of data with any function, in order to get the 
data shaped as the inputs to the SynergyAnalyzer class constructor (see 
paragraph 3.1). More detailed information is available in the toolbox 
documentation and can be retrieved from the demo scripts provided. 

2.1.2. Preprocessing 
To extract synergies, raw EMG and kinematics data must be pre

processed, according to standard pipelines. For EMG signals, pre
processing includes rectification, filtering, subtraction of tonic activity 
(to extract phasic EMG components [32]), averaging, normalization, 
and resampling. For kinematic signals, pre-processing includes filtering, 
averaging, normalization, and resampling. For filtering, the toolbox 
provides three options: low-pass, high-pass, and band-stop (notch). For 
each filter, cut-off frequency, type of filter (e.g., finite impulse response 
or Butterworth) and filter-specific parameters (e.g. order) can be set by 
the user. Data can be time-shifted and aligned, according to specific 
events, before averaging. The maximum value of each channel or the 

maximum across all channels can be used for normalization. The 
outcome of pre-processing is a data matrix with channels as rows and 
samples for each condition as columns. 

2.1.3. Synergy extraction methods 
In addition to MMF (described in detail below), two standard 

methods for synergy extraction have been included in the toolbox: PCA 
and NMF. PCA is a standard linear technique for dimensionality 
reduction. The principal components are the eigenvectors of data 
covariance matrix. Such method has been previously used to extract 
kinematic synergies [29,33]. Given the inherent non-negativity of 
muscle activity, NMF has been widely used to identify muscle synergies 
[34]. An efficient iterative algorithm based on a multiplicative update 
rule has been introduced by Lee and Seung [11], and it allows to 
decompose a non-negative data matrix into the product of two 
non-negative matrices (synergies and coefficients). In summary, both 
methods allow to reconstruct a data matrix D with a matrix of synergies 
W multiplied by a matrix of coefficients C: 

Fig. 1. Toolbox overview. All the steps taken to extract kinematic-muscular synergies are displayed in this flowchart. Data preprocessing, with customable pa
rameters is the first step. Then, once the details for the extraction are set by the user, synergies can be extracted with MMF. The outputs are the quality of the 
reconstruction R2 for each set of synergies extracted, the set of synergies W and the corresponding coefficients c. 
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D ≈ WC (1)  

2.1.4. Visualization 
The toolbox includes several visualization methods that allow to 

examine the data throughout the entire analysis process. Raw data can 
be plotted, including EMG and kinematics data aligned to the same 
temporal event. In the extraction phase, plotting functions have been 
implemented to visualize reconstruction error, synergy vectors, and 
synergy combination coefficients. 

2.2. The MMF algorithm 

The MMF algorithm is an extension of NMF allowing to factorize a 
data matrix mixing non-negative and unconstrained signals. As the order 
of factorization (i.e., the number of extracted synergies, N) is a free 
parameter, the MMF algorithm is typically called multiple times within a 
loop that increases N from 1 to the number of rows of the data matrix D. 
For each order of factorization, synergies and coefficients are randomly 
initialized and updated iteratively with a gradient descent algorithm. 
Denoting with W the synergies and with C the temporal coefficients, the 
update rule derived from the gradient of a cost function including the 
reconstruction error (‖D − WC‖) and the norm of W is the following: 

W = W + 2μ
[
(D − WC)CT − λW

]
(2)  

C = C + 2μ
[
WT(D − WC)

]
(3)  

with a learning rate μ = μratio/||D|| and a regularization weight λ = λratio/ 
(N*sample) defined as in [22]. Nonnegativity is enforced by constraining 
some of the rows (e.g. those including EMG signals) to be positive or zero 
at each iteration of the optimization. The iterative updates stop when a 
convergence criterion is reached. The default criterion is 10 consecutive 
iterations for which the increase in reconstruction quality was smaller 
than the error convergence threshold. The reconstruction quality R2 is 
defined as: 

R2 = 1 −
SSE
SST

= 1 −
tr
[
(D − WC)(D − WC)T]

tr
[
(D − D)(D − D)T] (4)  

where tr is the trace of the matrix. To minimize the probability of finding 
local minima, for each N, we repeated the optimization 10 times and 
selected the solution with the best reconstruction quality. 

2.2.1. Description of the algorithm 
Below we provide a brief explanation of the main part of the algo

rithm and a pseudocode to explain more in detail each step. 

Input and initializations. First, we define the criteria for convergence 
(maximum error allowed to stop the algorithm, maximum number of 
iterations) and the variables μand λadapted to the characteristics of the 
dataset. We used the same values as in [22] with μratio = 0.1 and λratio =

50. Wini and Cini are randomly generated at each iteration. 

Gradient descent algorithm. The iterative optimization algorithm is 
repeated several times for each N. At each repetition, the algorithm 
updates W and C according to the gradient descent update rule 
described above. Non-negativity is constrained only on some rows of W, 
while other rows are free to be either positive or negative. All C co
efficients are non-negative as they represent synergy recruitment over 
time. 

Convergence and termination. The algorithm stops when it converges to a 
stable solution, which is determined according to two termination 
criteria: either reaching a given data reconstruction error threshold or 
reaching a given maximum number of iterations. Parameters like the 
required error threshold and the number of iterations can be set before 

the extraction with a line of command, as shown below (see paragraph 
3.2 for more details). 

Normalization and output. W and C are normalized and returned as 
outputs. Since in the present formulation the algorithm extracts spatial 
kinematic-muscular synergies, each column of W is normalized by its 
norm. This makes synergies comparable across subjects or sessions. Each 
row of C is multiplied by the same norm to preserve the reconstruction of 
the original EMG/kinematic data. 

Pseudocode. Input: 
- D: Data matrix with mixed variables (time samples of 

kinematic and muscular data) 

- N: Number of synergies to extract 

- k: Number of unconstrained components in D 

- μ: Learning rate for W and C updates 
- λ: Regularization parameter 
- MaxIterations: Maximum number of iterations 

- ErrorConvergenceThreshold: Error threshold for 

convergence 

Initialization: 

- Initialize matrix W to uniform random values in [0 1] 

with dimensions (k + m) x N 

- Initialize matric C to uniform random values in [0 1] 

with dimensions N x number_of_samples (S) 

- Normalize columns of W to unit norm vectors 

Iteration: 

for iteration in 1 to MaxIterations: 

Update W: 

W = W + 2μ
[
(D − WC)CT − λW

]

Update C: 

C = C+ 2μ
[
WT(D − WC)

]

Ensure non-negativity of non-negative rows of W 

and C by setting to zero negative values 

Normalize columns of W to unit vectors 

Calculate reconstruction quality to monitor 

convergence: 

R2 = 1 −
SSE
SST

= 1 −
tr
[
(D − WC)(D − WC)T]

tr
[
(D − D)(D − D)T]

If the increase of R2 is less than ErrorConver

genceThreshold for 10 subsequent iterations, break the 

loop. 
Output: 

- Extracted spatial synergies W 

- Time-varying combination coefficients C 

3. Results 

As a demonstration of the usage of the SynergyAnalyzer toolbox for 
the extraction of kinematic-muscular synergies using MMF, this section 
illustrates all the steps involved in the analysis of a sample dataset of 
kinematic and EMG data collected during reaching movements. 

3.1. Data import and preprocessing 

The first step is the creation of SynergyAnalyzer object importing the 
data from the sample dataset included in the toolbox (“data.mat”). The 
SynergyAnalyzer class constructor requires as inputs 3 structures: data, 
par (parameters) and info. data is a structure with fields: emg (pos), 
emgtime (postime), which contains EMG (kinematics) data matrix and 
the corresponding time vector. 

Importing requires a dataset-specific function (getInfo) to provide 
information about experimental conditions, events, and data. Info will 
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be an input to the SynergyAnalyzer class constructor and requires the 
following fields: 

info(i).id % trial number 

info(i).type % could be a vector of n different 

types 

info(i).selected % indicates if the trial can be 

included in the analysis   

info(i).events.code = [13,14]; % codes for the time 

events 

info(i).events.time = [data(i).info.t_onset 

data(i).info.t_end]; % times at which the events 

occurred 

The getInfo function should be customized by the user to retrieve 
such information from any dataset. More detailed information is avail
able in the toolbox documentation in Matlab and in the GitHub 
repository. 

info = getInfo(data); 

par.type = ‘EmgKinData’; 
par.chlabels = [emgchannels(:)’, kinchannels(:)’]; 
par.order = 2; 

par.delay = -0.05; %50 ms -> KIN data were anticipated 

of 50 ms to account for an estimated electromechanical 

delay between EMG and KIN (Scano et al. 2022) 

sa = SynergyAnalyzer(data,info,par); 

Parameters are explicitly set in this example to illustrate how they 
can be provided to the SynergyAnalyzer object. The Matlab documen
tation of the toolbox includes further details on the different options. In 
particular, the type field allows to create a data object suitable for the 
MMF extraction, chlabels indicates the name of each channel, order de
termines the derivative order of the kinematic signals, delay sets the time 
shift between the EMG and the kinematic signals to account for the 
electromechanical delay between EMG signal and muscle force 
production. 

The next preprocessing step is filtering. In this example, the EMG 
signals, after rectification, are low-pass filtered using a finite-impulse 
response filter with a 20 Hz cutoff frequency and the kinematic signals 
are low-pass filtered with a 2nd order Butterworth filter with a 10 Hz 
cutoff frequency. EMG signals are also resampled every 10 ms. All these 
parameters can be modified using the filter.type and filter.par fields of the 
option structures (see the code below). The type of the filter and the 
cutoff frequency can be set depending on the sampling rate of the 
collected data. 

sa.opt.emgFilter.type = ‘fir1’; 
sa.opt.emgFilter.par = [50 20/(1000/2)]; %50 order 20 

Hz @ 1KHz EMG sampling rate 

sa.opt.emgFilter.resample = 1; 

sa.opt.emgFilter.resample_period = .01; % resampling 

period [s] 

sa.opt.kinFilter.type = ‘butter’; 
sa.opt.kinFilter.par = [2 10/(100/2)]; %2 order 10 Hz 

@ 100 Hz sampling rate 

saf = sa.dataFilter; 

Next, the tonic component is subtracted from the EMG signals to 
maintain only the phasic component, as in [32]. 

saf = saf.emgPhasic; 

Data are then averaged across reaching movement repetitions to
wards each of 8 targets (indicated by the ‘type3’ and [1:8] input pairs). 
To this end, data are first aligned to the movement onset time, and then 
the time interval from 300 ms before movement onset to 700 ms after it, 
as indicated by the trange parameter, is selected. 

saf.opt.average.gr = saf.groupTrials(’type3′, 
[1:8]’); % type3 is the target number 

saf.opt.average.trange = [-.3 .7]; % time interval in 

s before and after onset for averaging 

sav = saf.average; 

Next, data are normalized. Different normalization options are 
available, with normalization to the maximum absolute value of each 
channel as default. Since EMG and kinematic data have different ranges 
of values, in particular rectified EMGs are non-negative, while kinematic 
data may have both positive and negative values, to ensure that both 
types of data have the same normalized range, one option is to normalize 
the EMG signals to half of the maximum value so that the EMG data 
range is [0,2] and the kinematic data range is [− 1,1]. 

sav.opt.normalize.type = 32; 

sav.opt.normalize.nonnegch = sav.data(1).nonnegch; 

sav = sav.normalize; 

In Fig. 2 EMG and kinematic data after two pre-processing steps are 
shown, generated using the plot method of the EmgKinData class. 

3.2. Synergy extraction 

Once data have been pre-processed, synergies can be extracted by 
setting specific parameters. The toolbox provides multiple extraction 
algorithms; therefore, one must be specified: 

sav.opt.find.algo = ‘mmf’; 
Then, the range of number of synergies to extract (N) and the number 

of repetitions of synergy extractions for each number of synergies (nrep) 
must be set. 

sav.opt.find.N = [1:14]; 

sav.opt.find.nrep = 10; 

To allow the gradient descent algorithm to find the best solution for 
each iteration we used a convergence criterion of 10 consecutive itera
tions for which the increase in the data reconstruction quality was 
<10− 6. Also, the algorithm should run for at least 100 iterations and no 
more than 10,000. 

sav.opt.find.niter = [ 100, % number of minimum 

iterations 

10, % consecutive iterations below a threshold 

10^-6, % error threshold 

10,000]; % max number of iterations 

Finally, the entire set of extractions can be started calling the find 
method of the SynergyAnalyzer class. 

s1 = sav.find; 

Fig. 3A shows the reconstruction quality (R2) for different numbers 
of extracted synergies. This figure can be easily generated using the plot 
method of the SynergyAnalyzer class. 

s1.opt.plot.type = ‘rsq’; 
plot(s1) 

Based on the R2 curve, we select 6 synergies as the minimum number 
with R2 above the threshold of 0.8 These are the default options 
implemented in the numsel function. These synergies are displayed in 
Fig. 3B, which can be generated with the following commands. 

Nsel = numsel(s1.syn); 

s1.opt.plot.N = Nsel; 

s1.opt.plot.type = ‘W’; 
plot(s1) 

Alternatively, the user can choose the number of synergies N based 
on the detection of a “knee” (i.e. change in slope) in the curve of the R2 

[25,35]. To detect a change in slope in the R2 curve, for each N, we 
implemented a linear fit of the portion of the curve from N to the end and 
the user can select N for which the mean square error of the fit is smaller 
than a threshold (for example 10− 4). Please refer to the toolbox docu
mentation for further details. 

How the extracted spatial synergies and the associated temporal 
coefficients reconstruct the original signal is shown in Fig. 4. The thick 
black line indicates the reconstruction, the grey areas represent the 
original signals, as in previous figures. The coefficients at the bottom are 
colored coded as the corresponding synergy. To create Fig. 3 the com
mand is the following. 

s1.opt.plot.type = ‘rec’; 
s1.opt.plot.isect = [1:8]; 
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Fig. 2. A: EMG and kinematic data for one reaching movement for each of eight targets. EMG data are rectified and filtered, kinematic data are filtered and 
numerically differentiated to compute joint accelerations. B: EMG and kinematic data after averaging across repeated trials to the same target and normalization. 
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plot(s1) 

The synergies are similar to those previously extracted from the same 
dataset [22]. However, some slight differences may arise due to the 
different choices made for filtering and for the convergence criteria that 
have been updated in this toolbox. 

4. Discussion 

SynergyAnalyzer is a novel and comprehensive toolbox for synergy 
extraction from EMG and kinematic data. It includes standard synergy 
extraction methods for EMG data (NMF) and kinematic data (PCA) as 
well as the recently introduced MMF methods for combined EMG and 
kinematic data. The toolbox architecture is object-oriented, and it in
cludes preprocessing and visualization functions, allowing to perform all 
steps required for synergy analysis. Below, we provide some comments 
and guidelines for using the toolbox. 

4.1. Algorithms for synergy extraction 

Muscle activation patterns have been reconstructed as the 

combination of a small number of synergies. These synergies can be 
obtained using several decomposition techniques, such as PCA, factor 
analysis (FA), independent component analysis (ICA). However the vast 
majority of the studies in the field uses non-negative matrix factorization 
(NMF) [11]. Therefore, we have implemented NMF in the toolbox for 
muscle synergies extraction. Additionally, to allow for extracting kine
matic synergies, we also implemented PCA, which is a linear method 
that can be applied to unconstrained data, i.e. with both positive and 
negative values. However, PCA generates components that are orthog
onal to each other, which is not required for physiological synergies. 
MMF is a novel extension of NMF that allows to extract synergies with 
negative loads, needed when kinematics signals are combined with EMG 
signals as inputs. This approach can also be extended to phasic muscle 
synergies with negative components [36] and to any other multimodal 
approach. Therefore, we focused the present demonstration on MMF. 

In addition to the spatial synergy models, several other decomposi
tion have been considered in previous studies. By reformatting data 
matrix appropriately, it is possible to extract temporal synergies [12,29, 
37], spatiotemporal or time-varying synergies [38], space-by-time syn
ergies [13]. The object-oriented architecture of the toolbox allows to 

Fig. 3. A: R2 curve for kinematic-muscular synergies. B: extracted kinematic-muscular synergies.  
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easily extend it to include these additional extraction methods and 
future releases of the toolbox might implement them. 

4.2. Limitations 

The first limitation of the toolbox is the use of a commercial 
computing platform to implement the toolbox, i.e. Matlab. However, 
Matlab is commonly used in the motor control community and many 
universities have licenses for their students. Future releases of the 
toolbox will be tested and customized for use with GNU Octave, a free 
computing platform largely compatible with Matlab. In addition, while a 
Graphical User Interface (GUI) could enhance accessibility, adapting 
synergy extraction for diverse datasets or actions might necessitate 
custom code, potentially challenging to implement in a GUI. Nonethe
less, we offer comprehensive preprocessing and visualization functions, 
aiding less experienced users in familiarizing themselves with synergy 
extraction. Standardizing the extraction procedure and the entire pipe
line can be facilitated by employing consistent preprocessing methods, 
even for not experienced users. The toolbox is also missing a procedure 
to cluster synergies extracted from multiple datasets (e.g. different 
participants or experimental conditions). Nevertheless, the scope of the 
present contribution is to provide users with standardized methods for 
data processing and extraction, giving the freedom to interpret synergies 
according to each specific scenario. Finally, the toolbox implements the 
novel extraction method MMF, which already represents a novel 

contribution to the field and its implementation has never been shared. 
With this in mind, we aim at promoting the extraction of functional 
synergies as a significant and compact approach to investigate motor 
behavior. 

4.3. Tuning of MMF parameters 

In the MMF algorithm, the learning rate (μ) and regularization 
weight (λ) parameters must be tuned for each specific dataset. 
Increasing μ fastens the convergence of the algorithm but might prevent 
reaching the optimal solution. It is thus recommended to tune this 
parameter by keeping it at the highest possible value that in the specific 
dataset ensures obtaining a stable solution across multiple runs. λ avoids 
unplausible solutions (e.g., synergies that generate cancellations in the 
unconstrained channels; see [22] for details). The value of λ should be 
optimized trading off between high values useful to generate meaningful 
synergies and low values ensuring accurate reconstruction (high R2) of 
the original data. The algorithm already attempts to adapt μ and λ to the 
specific dataset size by normalizing them using the Frobenius norm of 
the data matrix. We have tested this normalization in few cases, but we 
recommend performing a calibration procedure to determine reasonable 
regions of use for μ and λ according to the properties of the specific 
dataset. 

Fig. 4. EMG and kinematic data reconstruction; top panel: EMG; middle panel: joint accelerations; lower panel: temporal coefficients of the kinematic- 
muscular synergies. 
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4.4. EMG and kinematic data normalization 

Normalization of EMG envelopes is needed to allow inter-subject and 
inter-session comparisons, and to account for muscles that intrinsically 
produce less EMG activity due to their properties. Normalization can be 
done according to several approaches. Torres-Oviedo and collaborators 
normalized EMG signals in order to have unit variance [23,39]. How
ever, the most frequent approach is to normalize all EMG samples with 
respect to the maximum EMG value found in all the dataset for each 
muscle. This approach has been commonly used in upper-limb studies 
[32], and is particularly effective when many trials in different condi
tions are available. Regarding kinematics, the same approach is rec
ommended, i.e., normalizing each joint angular acceleration by the 
maximum for that joint across all trials. For both EMGs and kinematics 
the toolbox implements different types of normalization, i.e. to the 
maximum of each channel or of all channels. With this approach EMG 
activity ranges between 0 and 1, and kinematic activity ranges between 
− 1 and +1. However, for MMF is desirable that the normalization 
guarantees a balance between kinematic and muscle contributions. 
Thus, one option is to rescale EMGs between 0 and 2, i.e. to have the 
same range as kinematics, and this normalization option has been 
implemented in the toolbox. Further works should specify what 
normalization is more suitable to link the two domains. 

4.5. Movements and data collection 

In the provided example, we derived synergies from a collection of 
reaching data. To optimize the algorithm’s effectiveness, it is crucial to 
format the data with certain precautions. The following suggestions are 
primarily tailored for comparable datasets. Data from different motor 
behaviors, e.g. walking, might require slightly different configurations. 
Nevertheless, the toolbox’s modular design empowers users to adapt the 
synergy analysis to the distinctive features of each dataset through the 
getInfo function. This flexibility enables the utilization of various pa
rameters to fine-tune the algorithm according to the provided data. 
Detailed specifications are indicated in the toolbox available on the 
GitHub repository. 

First, it is recommended that the data samples include a rest period 
prior to the movement to estimate baseline EMG. Thus, it is suggested to 
introduce pauses between movements. In fact, the toolbox removes tonic 
components from the whole EMG, as in [32,40] and the signal should be 
stationary in such time intervals. Moreover, the conditions for each 
movement trial (e.g., different targets and different planes where the 
targets are arranged) must be specified before synergy extraction, using 
the getInfo function. 

Data from trials in different reaching directions [41] where average 
and concatenated. This allowed to achieve higher SNR with respect to 
concatenating all individual trials without averaging. However, 
depending on the specific research question, different data structures 
can be chosen; synergy extraction will simply reflect such choices. The 
toolbox does not impose any constraint. 

As the EMG signal anticipates force output, due to the dynamics of 
muscle contraction, to capture EMG-kinematic causal relationship when 
extracting spatial synergies, one might choose to delay EMG data, or 
anticipate kinematic ones. Typical electromechanical delay values used 
in the literature range from 30 ms to 100 ms [42] and might be tuned 
depending on the application. Here we chose a delay of 50 ms as in [22]. 

MMF was conceived as an extension of NMF; most of the pipelines for 
applications are identical, even though MMF requires the tuning of some 
variables and few additional inputs parameters. Any kind of movement 
data can be factorized with MMF. We suggest gathering EMG data as it 
would be normally done with NMF for muscle input. For kinematics, we 
suggest using data from joint angular accelerations as they should be 
approximated reasonably well by a linear relationship between the EMG 
and the joint motion. However, muscle data can be virtually coupled 
with any kind of multimodal data, including joint displacement, 

velocity, cartesian 3D movement, or data from other domains. In the 
original formulation (EMG and acceleration data), we expected normal 
or fast movement to work better as acceleration profiles are more pro
nounced and visible. In our formulation, we also removed tonic activity 
[32,40,43] to better link motion only to the phasic EMG that generated 
it; fast motion helps such EMG patterns to be more visible. Tonic EMG 
removal is in any case recommended for upper-limb applications, even if 
it is not mandatory [43]. 

5. Conclusion 

In this work, we introduced a novel toolbox for synergy extraction, 
implementing standard factorization algorithms such as NMF and PCA 
but also the recently introduced MMF algorithm. We hope that this 
contribution will help researchers in the study of motor control and in 
various fields and settings, fostering novel research based on the evo
lution of muscle synergies to the concepts of functional and task-related 
synergies. This approach might provide a step forward to the under
standing of underlying mechanisms of motor control towards practical 
applications. 
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