DYNAMIC PERFECT PLASTICITY AS CONVEX MINIMIZATION
ELISA DAVOLI AND ULISSE STEFANELLI

ABSTRACT. We present a novel variational approach to dynamic perfect plasticity. This is based on min-
imizing over entire trajectories parameter-dependent convex functionals of Weighted-Inertia-Dissipation-
Energy (WIDE) type. Solutions to the system of dynamic perfect plasticity are recovered as limit of
minimizing trajectories are the parameter goes to zero. The crucial compactness is achieved by means
of a time-discretization and a variational convergence argument.

1. INTRODUCTION

Plasticity is the macroscopic, inelastic behavior of a solid resulting from the accumulation of slip
defects at its microscopic, crystalline level. As a result of these dislocations, the behavior of the material
remains purely elastic (and hence reversible) as far as the magnitude of the stress remains small, and
becomes irreversible as soon as a given stress-threshold is reached. When that happens, a plastic flow is
developed such that, after unloading, the material remains permanently plastically deformed [24].

Referring to [21, 32] for an overview on plasticity models, we focus here on dynamic perfect plasticity
in the form of the classical Prandtl-Reuss model [15]

pii—V.0=0, (1.1)
o =C(Eu — p), (1.2)
0H(p) 2 0p (1.3)
describing the basics of plastic behavior in metals [20]. Here u(t) : Q — R3 denotes the (time-dependent)

displacement of a body with reference configuration @ C R?® and density p > 0, and o(t) : Q — Mg’;rg is
its stress. In particular, relation (1.1) expresses the conservation of momenta. The constitutive relation
(1.2) relates the stress o(t) to the linearized strain Eu(t) = (Vu(t)+Vu'(t))/2 : Q@ — M2X3 and the
plastic strain p(t) : Q@ — M%XB (deviatoric tensors) via the fourth-order elasticity tensor C. Finally, (1.3)
expresses the plastic-flow rule: H : M%X?’ — [0, 4+00) is a positively 1-homogeneous, convex dissipation
function, op stands for the deviatoric part of the stress, and the symbol d is the subdifferential in
the sense of Convex Analysis [9]. The system will be driven by imposing a nonhomogeneous boundary

displacement. Details on notation and modeling are given in Section 2.

The focus of this paper is to recover weak solutions to the dynamic perfect plasticity system (1.1)-(1.3)
by minimizing parameter-dependent convex functionals over entire trajectories, and by passing to the
parameter limit. In particular, we consider the Weighted-Inertia-Dissipation-Energy (WIDE) functional
of the form

I(u,p) = /OT/Q exp (—z) <p§2|u|2 +eH () + 5 (Bu-p) (C(Eu—p)> da dt, (1.4)

to be defined on suitable admissible classes of entire trajectories ¢ € [0,T] = (u(t), p(t)) : Q@ — R3 x M3?
fulfilling given boundary-displacement and initial conditions (on u and p, respectively). The functional
bears its name from resulting from the sum of the inertial term plii|? /2, the dissipative term H (p), and the
energy term (Fu—p) : C(Eu—p)/2, weighted by different powers of € as well as the function exp(—t/e).
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For all € > 0 one can prove that (a suitable relaxation of) the convex functional I. admits minimizers
(ue, pe) which indeed approximate solutions to the dynamic perfect plasticity system (1.1)-(1.3). In
particular, by computing the corresponding Euler-Lagrange equations one finds that the minimizers
(ue, pe) weakly solve the elliptic-in-time approximating relations

EQP'U'.E - 2€2p'ﬁa +piie =V -0 =0, (1.5)
o = C(Bue — pe), (1.6)
—e(0H (p:))" + 0H(pe) 2 op, (1.7)

along with Neumann conditions at the final time 7.

The dynamic perfect plasticity system (1.1)-(1.3) is formally recovered by taking ¢ — 0 in system
(1.5)-(1.7). The main result of this paper consists in making this intuition rigorous, resulting in a new
approximation theory for dynamic perfect plasticity.

The interest in this variational-approximation approach is threefold. First, the differential problem
(1.1)-(1.3) is reformulated on purely variational grounds. This opens the possibility of applying the
powerful tools of the Calculus of Variations to the problem, from the Direct Method, to relaxation, and
I-convergence [14].

Secondly, by addressing a time-discrete analogue of this approach we contribute a novel numerical strat-
egy in order to approximate dynamic perfect plasticity by means of space-time optimization methods. We
believe that this might be of potential interest in combination with global constraints or non-cylindrical
domains.

Eventually, The variational formulation via WIDE functionals is easily open to be generalized by
including more refined material effects, especially in terms of additional internal-variable descriptions.
This indeed has been one of the main motivations for advancing the WIDE method in the first place, see
in particular [10, 25] for applications in Materials Science. Having illustrated the details of the method
in the case of dynamic perfect plasticity could then serve as basis for developing complete theories.

As a by-product of our analysis, we obtain a new proof of existence of weak solutions to dynamic perfect
plasticity. Note that existence results for (1.1)-(1.3) are indeed quite classical. In the quasistatic case
p = 0 they date back to Suquet [49] and have been subsequently reformulated by Dal Maso, DeSimone,
and Mora [11] and Francfort and Giacomini [17] within the theory of rate-independent processes (see the
recent monograph [38]). In the dynamic case p > 0 both the first existence results due to Anzellotti and
Luckhaus [6, 33] and their recent revisiting by Babadjian and Mora [7] are based on viscosity techniques.
Dimension reduction has been tackled both in the quasistatic and the dynamic case, in [12, 26, 27] and
[34], respectively. Finally, in [35] convergence of solutions of the dynamic problem to solutions of the
quasistatic problem as the density p tends to 0 has been shown. With respect to the available existence
theories our approach is new, for it does not rely on viscous approximation but rather on a global
variational method.

Before moving on, let us review here the available literature on WIDE variational methods. At the level
of Euler-Lagrange equations, elliptic regularization techniques are classical and have to be traced back to
Lions [30, 31] and Oleinik [42]. Their variational version via global functionals is already mentioned in
the classical textbook by Evans [16, Problem 3, p. 487] and has been used by Ilmanen [22], in the context
of Brakke mean-curvature flow of varifolds, and by Hirano [19] in connection with periodic solutions to
gradient flows.

The formalism has been then applied in the context of rate-independent systems (p = 0) by Mielke and
Ortiz [37], see also the follow-up [39]. Viscous dynamics have been considered in many different settings,
including gradient flows [40], curves of maximal slopes in metric spaces [43, 44], mean curvature flow
[47], doubly-nonlinear equations [1, 2, 3, 4, 5], reaction-diffusion systems [36], and quasilinear parabolic
equations [8].

The dynamic case p > 0 has been the object of a long-standing conjecture by De Giorgi on semilinear
waves [13]. The conjecture was solved in the positive in [48] for finite-time intervals and then by Serra
and Tilli in [45] for the whole time semiline, that is in its original formulation. De Giorgi himself pointed
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out in [13] the interest of extending the method to other dynamic problems. The task has been then
taken up in [29] for mixed hyperbolic-parabolic equations, in [28] for Lagrangian Mechanics, and in [46]
for other hyperbolic problems. The present paper delivers the first realization of De Giorgi’s suggestion
in the context of Continuum Mechanics.

The paper is organized as follows. We introduce notation and state our main result, namely Theorem
2.3 in Section 2. Then, we discuss in Section 3 the existence of minimizers of the WIDE functionals. In
Section 4 a time discretization of the minimization problem is addressed. Its time-continuous limit is
discussed in Section 5 by means of variational convergence arguments. A parameter-dependent energy
inequality is derived in Section 6 and finally used in Section 7 in order to pass to the limit as € — 0 and
prove Theorem 2.3.

2. STATEMENT OF THE MAIN RESULT

We devote this section to the specification of the material model and its mathematical setting. Some
notions from measure theory need to be recalled and we introduce the notation and assumptions to
be used throughout the article. The specific form of the WIDE functionals is eventually introduced in
Subsection 2.8 and we conclude by stating our main result, namely Theorem 2.3.

2.1. Tensors. In what follows, for any map f : [0, T]xR? — R we will denote by f its time derivative, and
by Vf its spatial gradient. The set of 3 x 3 real matrices will be denoted by M3*3. Given M, N € M3*3,
we will denote their scalar product by M : N := tr(M " N) where tr denotes the trace and the superscript
stands for transposition, and we will adopt the notation Mp to identify the deviatoric part of M, namely
Mp = M — tr(M)Id/3 where Id is the identity matrix. The symbol M2X3 will stand for the set of

sym
symmetric 3 X 3 matrices, whereas M?’DX3 will be the subset of M3X3 given by symmetric matrices having

sym
null trace.

2.2. Measures. Given a Borel set B C RY the symbol M, (B;R™) denotes the space of all bounded
Borel measures on B with values in R™ (m € N). When m = 1 we will simply write M;(B). We will
endow My (B;R™) with the norm |u|ar, = |p|(B), where |u| € My(B) is the total variation of the
measure f.

If the relative topology of B is locally compact, by the Riesz representation Theorem the space
My (B;R™) can be identified with the dual of Cy(B;R™), which is the space of all continuous func-
tions ¢ : B — R™ such that the set {|¢| > ¢} is compact for every § > 0. The weak* topology on
My(B;R™) is defined using this duality.

2.3. Functions with bounded deformation. Let U be an open set of R3. The space BD(U) of
functions with bounded deformation is the space of all functions u € L'(U;R?) whose symmetric gradient
Eu := sym Du := (Du+ Du")/2 (in the sense of distributions) belongs to M, (U; M2%3). Tt is easy to
see that BD(U) is a Banach space endowed with the norm ‘

lull Ly msxsy + (1 Ewl| v, 0z

sym )’

A sequence {u*} is said to converge to u weakly* in BD(U) if u¥ — u weakly in L' (U;R?) and Eu* — Eu
weakly™ in M, (U; ngxrg) Every bounded sequence in BD(U) has a weakly* converging subsequence.
If U is bounded and has a Lipschitz boundary, BD(U) can be embedded into L3/?(U;R?) and every
function u € BD(U) has a trace, still denoted by u, which belongs to L*(dU;R3). If T' is a nonempty
open subset of QU in the relative topology of OU, there exists a constant C' > 0, depending on U and T,

such that
||UHL1(U;]R3) < CHUHLI(F;RS) + C||Eu||Mb(U;M3X3 . (2.1)

Sym)

(see [50, Chapter II, Proposition 2.4 and Remark 2.5]). For the general properties of the space BD(U)
we refer to [50].
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2.4. The elasticity tensor. Let C be the elasticity tensor, considered as a symmetric positive-definite
linear operator C : M2 — M2%3, and let Q : M2%3 — [0,400) be the quadratic form associated with
C, given by

Q&) :==1CE: ¢ for every ¢ € MZ)3

sym*

Let the two constants ac¢ and B¢, with 0 < a¢ < B¢, be such that

aclé® < Q(€) < Beléf® for every & € MEX3, (2.2)
and
CE| < 2Bc|¢|  for every & € MEX3. (2.3)

2.5. The dissipation potential. Let K be a closed convex set of M%XB such that there exist two
constants rx and Ry, with 0 < rg < R, satisfying

{eeMP?®: g <rx}Cc K c{&eMy®: [¢ < Rk}

The boundary of K is interpreted as the yield surface. The plastic dissipation potential is given by the

support function H : M?]DX?’ — [0, 400) of K, defined as

H(¢):=supo:&.
ceK

Note that K = 0H(0) is the subdifferential of H at 0 (see e.g. [9, Section 1.4]). The function H is convex
and positively 1-homogeneous, with

ril€] < H(€) < Rilé| for every € € M. (24)
In particular, H satisfies the triangle inequality
H(E+C) < H(E)+H(C) for every & ¢ € MY, (2.5)

For every p € My(QUTo; M%) let du/d|p| be the Radon-Nikodym derivative of p with respect to its
variation |u|.

According to the theory of convex functions of measures [18], we introduce the nonnegative Radon
measure H(u) € Mp(Q2UTy) defined by

H(p)(A) = /A H(%) dlul

for every Borel set A € QUT,. We also consider the functional H : M;(Q U To; M53) — [0, +00)

defined by
dp
H(—)d
o ) 4

for every pu € My(Q U To; M3?). Notice that H is lower semicontinuous on My(Q U To; M) with
respect to weak® convergence. The following lemma is a consequence of [18, Theorem 4] and [50, Chapter
II, Lemma 5.2] (see also [11, Subsection 2.2]).

H(u) = H(u)(QUTy) = /Q

Lemma 2.1. Setting Kp(Q) := {17 € L>(Q;M%®) : 7(2) € K for a.e. x € Q}, there holds
H(u) = sup{(r, u) : 7 € Co(QUTo; M5®) N Kp(2)}

for every pn € My(QUTo; ML),
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2.6. The H-dissipation. Let s1,s2 € [0,7] with s; < s3. For every function ¢ — pu(t) of bounded
variation from [0, 7] into M, (Q U To; M53), we define the H-dissipation of t +— u(t) in [s1, s2] as

Dy (p; 81, 82) := sup { ZH(M(tj) —p(tj—1)): s1=tg<t1 <---<t, =82, n€E N}. (2.6)

Jj=1

Denoting by Vio the pointwise variation of ¢ — u(t), that is,

n
Viot (14; 51, 82) 1= sup { Z lu(ty) — p(tj—1)|: s1=to <+ <tp =89, n € N}7
j=1
by (2.4) there holds

i Veot (115 81, 82) < Dyy(p; 51, 82) < R Viot(ps 51, 52). (2.7)
As in [37, Section 4.2] for every non-increasing and positive a € C([0,T]) we define the a-weighted
H-dissipation of t — u(t) in [s1, s2] as

a(t;)H(u(t;) — u(tj-1)) : to,tn € [s1,52],

Dy (a; ps 51, 52) 1= Sup{
j

n

togtlgmgtn,neN}, (2.8)
and for every b € C([0,T]) we introduce the b-weighted H-dissipation of t — u(t) in [s1, s2] as

Dyy(b; i 51, 82) = ;lg(l){ sup [Zb(tj)ﬂ(ﬂ(tj) — p(tj-1)) : to,tn € [s1,52],
j=1

1=1,...,n

t0§t1§~-~§tn,n€N,_max (tl—t11)<5‘|} (29)

Note that if b is non-increasing and positive, then
Dyy(b; s 51, 52) = Dg(bs pus 51, 52).-

2.7. The equations of dynamic perfect plasticity. Let  be a bounded open set in R? with C?
boundary. Let I’y be a connected open subset of 992 (in the relative topology of 92). On T'y for every
t € [0,T] we prescribe a boundary datum w(t) € W1H1/2(Iy; R3).

The set of admissible displacements and strains for the boundary datum w(t) is denoted by

o (w(t)) :={(u e,p) € BD(Q) x LA MES3) x Mp(QUTos ME?) ;

sym
Fu=e+pinQ, p=(w(t)—u)®vH?on Fo}, (2.10)

where © stands for the symmetrized tensor product, namely

a®b:=(a®@b+b®a)/2 Va,beR

v is the outer unit normal to 99, and H?2 is the two-dimensional Hausdorff measure. The function u
represents the displacement of the body, while e and p are called the elastic and plastic strain, respectively.
A solution to the equations of dynamic perfect plasticity is a function ¢t — (u(t), e(t), p(t)) from [0, T
into (L2(Q;R3) N BD(Q))xL(Q; M2%3)x My (Q U To; M5®) such that for every ¢ € [0,7] there holds

Sym

(u(t),e(t),p(t)) € o (w(t)), and the following conditions are satisfied:
(c1) equilibrium: pii(t) —divo(t) = 0in Q and o(t)r = 0 on 9N\ Ty, where o(t) := Ce(t) is the stress
tensor, and p > 0 is the constant density;
(c2) stress constraint: op(t) € K;

(e3) flow rule: p(t) = 0 if op(t) € int K, while p(¢) belongs to the normal cone to K at op(t) if
oD (t) € 0K.
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Under suitable assumptions, when (c1) and (c2) are satisfied, condition (c3) can be equivalently refor-
mulated as the following energy inequality

(c3) /Q ) de + 2 /|u |2dx—|—/7-[ )dtS/QQ(e(O))dx
/\u |2dx+// s)dx + pii(s) - w(s) dx ds.

A detailed analysis of the equivalence between (c1)—(c3), and (c1),(c2) complemented by (c3’) has been
performed in [11, Section 6]. An adaptation of the argument yields the analogous statements in the
dynamic setting.

The following existence and uniqueness result holds true (see [34, Theorem 3.1 and Remark 3.2]).

Theorem 2.2 (Existence of the evolution). Let Q be a bounded open set in R with C* boundary. Let
Ty be a connected open subset of O (in the relative topology of OQ) such that Opalo is a connected,
one-dimensional, C? manifold.

Let w € W32(0,T; WH2(;R?)), and (u°,€°, p°) € o (w(0)) be such that divCe® = 0 a.e. in Q,
(Ce®v =0 a.e. on 9N\ Ty, and (Ce®)p € K a.e. in Q. Eventually, let (u',e',0) € o7 (1(0)).

Then there exist unique u € W>(0,T; L*(Q;R3)) N Lip(0, T; BD(Q)), e € W1>°(0,T; L2(; R?)),
and p € Lip(0, T; My(Q UTo; M%) solving (c1), (c2) and (¢3") with (u(0),e(0),p(0)) = (u°, e, p°) and
(0) = ul.

2.8. The WIDE functional. Let the boundary datum w € W32([0,T]; W2(Q;R?)) be given. By re-
formulating the expression in (1.4) for the triple (u, e, p) one would be tempted to introduce the functional

(u,e,p) +—>/ exp - - 6p/|u|2d9:+67-[ /Q dx

to be defined on the set V, given by
V= {(u,e,p) € WH2(0,T; L*(;R*)) N L*(0,T; BD(Q))
x L2((0,T) x Q;M2X3) x BV ([0, T]; Mp(Q U To; M)
(

(u(t),e(t),p(t)) € & (w(t)) for every te€0,T7,
u(0) = u”, @(0) = u', e(0) = ¢”, p(0) = p°}, (2.11)

where (u?,€”,p%) € &/ (w(0)), and u' € BD() is such that there exists a pair (e!,p') € L*(Q;M2%3) x
My(QUTo; ME®) satisfying (u', !, pt) € o (i(0)).
On the other hand, one readily sees that the term

/OT exp ( — g)?—l(p) dt

is not well defined in case p is not absolutely continuous with respect to time (see [11, Theorem 7.1]).
We hence need to relax the form of the WIDE functional as

I.(u,e,p) := /OT exp ( - é) (627'0 /Q |it]? dx + /QQ(e) dx) dt + eDy(exp(— - /€);p;0,T), (2.12)

for every (u,e,p) € V. We point out that an adaptation of [11, Theorem 7.1] yields

Dulexp(=- /e)0.7) = | “e (= Ly a

whenever p is absolutely continuous with respect to time.
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2.9. Main result. We are now ready to state the main result of the paper.

Theorem 2.3 (Dynamic perfect plasticity as convex minimization). Let © be a bounded open set in R?
with C? boundary. Let Ty be a connected open subset of O (in the relative topology of 0S)) such that
9alg is a connected, one-dimensional, C* manifold. Let w € W32(0,T; WH2(;R?)), and (u, e, p°) €
o (w(0)) be such that divCe® = 0 a.e. in Q, (Ce®)v =0 a.e. on N\ Ty, and (Ce®)p € K a.e. in Q.
Eventually, let (u',et,0) € o7 (1(0)).

For every € > 0 there exists {(u, e, p%)} CV solving

I.(u®, e, p%) = (urenzi)glevlg(u,e,p). (2.13)

For e — 0, and for all t € [0,T] there holds

u® —u  weakly in W52(0,T; L*(; R?)),

ef — e weakly in L*(0,T; L2(Q;M§’yxn?j)),

u®(t) = u(t) weakly* in BD(Q),

e (t) — e(t) weakly in LQ(Q;ngXrE’),

pe(t) =% p(t)  weakly* in My(QUTo; ML)
where w € W?2(0,T; L2(;R?)) N Whe(0,T; BD(Q)), e € Wh(0,T;L*(;R3)), and p €
W2 (0, T; My(Q U FO;M%XS)) is the unique solution to the dynamic perfect plasticity problem (cl),
(c2) and (c3’) with (u(0),e(0),p(0)) = (u°, €%, p®) and (0) = u.

The rest of the paper is devoted to the proof of Theorem 2.3. Our argument runs as follows: we prove
that minimizers {(u®,e,p%)} of Problem (2.13) exist in Section 3. Then, we devise an e-independent
a-priori estimate on {(u®, e, p°)} first in a discrete and then in a continuous setting (Section 4) by means
of a I'-convergence argument (Section 5). Then, we derive an energy inequality at level € > 0 (Section 6)
which allows discussing the limit € — 0 in Section 7.

We point out that the C? regularity of 99 is needed in Theorem 2.3 in order to introduce a duality
between stresses and plastic strains, along the footsteps of [23, Proposition 2.5]. Due to technical reasons
it is not possible to use here the results in [17] and consider the case of a Lipschitz 9§2. We refer to
Remark 4.5 for some discussion of this point.

3. MINIMIZERS OF THE WIDE FUNCTIONAL

We start by focusing here on Problem (2.13) and show that the functional I, admits a minimizer in V.

Proposition 3.1 (Existence of minimizers). For every € > 0 there exists a triple (u®,e®,p%) € V such
that

I.(u®,e®,p%) = inf I.(u,e,p). (3.1)
(u,e,p)€V

Proof. Fix e > 0, and let {(un,en,prn)} C V be a minimizing sequence for I.. We first observe that the
triple

t — (u° + tu' + w(t) — w(0) — ti(0), e + ter + Ew(t) — Bw(0) — tEw(0), po + tp1)
belongs to V. Hence,

T 2
t
lim Ie(uvuerupn) S/ €exXp (_7)(E p/ |w|2 d$+5H(p1)
0 € Q

n——+oo 2
+/ Q" + 16 + Bu(t) — Bw(0) — 1E(0)) de) dt < C.
Q
thus yielding the uniform bound

Sug{HiinHLz((o,T);LZ(Q;RS)) + Dy (exp(— - /€);pn;0,T)
ne
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+ ”enHLQ((O,T);L2(Q;M§;§§))} <C. (3-2)
Since (un, €n, pn) € V, there holds p,(0) = p® for every n € N. In view of (2.9) and (2.7),
ric exp(=T/e)Viot (pn; 0, T) < exp(=T/e) Dy (pn; 0, T) < Dy(exp(= - /€); pn; 0,T).

Therefore we are in a position of applying the variant of Helly’s theorem in [11, Lemma 7.2] and to deduce
the existence of a subsequence, still denoted by {p,} and a map p* € BV (0,T; M(2U T; M?j’jx‘g)), such
that

pu(t) =% p(t) weakly* in My(QUTo; M) for every ¢ € [0,T], (3.3)
and by the lower semicontinuity of the H-dissipation,
Dy (exp(— - /€);p%;0,T) < liminf Dy (exp(— - /€); pn; 0, T). (3.4)
n—-+oo
By (3.2), there exist e € L*(0,T; L*(Q;M3)3)) and u® € W22(0,T; L*(€;R?)) such that, up to the
extraction of a (non relabeled) subsequence,
en — € weakly in L*(0,T; L*(Q; M20)), (3.5)
and
u, — u  weakly in W%2(0,T; L*(; R?)). (3.6)
This implies that u®(0) = u® and 4°(0) = u!. By (3.3) and (3.6) it follows that
en(t) = €°(t) weakly in L*(Q; M252) (3.7)

for every t € [0,7], and hence e*(0) = €°. Finally, by (2.1), (3.3), and (3.7), up to subsequences there
holds
un(£) =* u(t) weakly* in BD(Q) for a.e. t € [0,T].
The fact that p® satisfies the boundary condition on I'y follows arguing as in [11, Lemma 2.1]. The
minimality of the limit triple (u®,e®,p®) is a direct consequence of the lower semicontinuity of I. with
respect to the convergences in (3.4), (3.5), and (3.6). O
We conclude this section with a conditional uniqueness result.

Proposition 3.2 (Uniqueness of minimizers given the plastic strain). Let (uq, €q,pq) and (up, ey, pp) be
two minimizers of I. in V. Then

evpllua = ullw22 012 ms)) + vVaclea = el 2o sy (3-8)
S SRV, RK‘/tot(pa — Db 07 T)

Proof. Arguing as in [11, Theorem 3.8], we set v = ug — up, f = €, — €y, and ¢ = p, — pp. Since
(v, f,q) € 27(0), it follows that (uq,€q,pa) + A(v, f,q) € V for every A € R. Thus,

I.(uq, €q,Pa) < Ic((ta,€a,pa) + A(v, f,q))

T 2
o _E E°p . .12
_/0 exp (1) (5 /Q|ua—|—)\v| dx+/QQ<ea+Af)dx)dt
+ eDu(exp(— - /€);pa + Ag; 0,T).

By the arbitrariness of A we deduce the inequality

~ <Dufexpl- - ()i :0.7) < & [

UV dx +/ Ceq : fdr < eDy(exp(—- /e);—¢;0,T). (3.9)
Q Q

Arguing analogously, the minimality of (uy, ey, py) yields

—eDy(exp(— - /e); —¢;0,T) < —62p/ tpvde — | Ceyp: fdr < eDylexp(—- /e);¢;0,T). (3.10)
Q Q

Summing (3.9) and (3.10) we obtain
— eDw(exp(= - /e);pa — pp; 0, T) — eDy(exp(= - /€);py — Pa; 0, T)
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< / o — iis]? da + / Qea — o) da
Q Q
< eDy(exp(— - /€);pa — pp; 0, T) + eDyy(exp(— - /€); oy — pa; 0,T).

The thesis follows now by (2.2), (2.7), and (2.9). O

Remark 3.3. Let us point out that the previous proposition can alternatively be read as a Lipschitz
regularity result for the solution operator associated to the reduced problem p — Argmin I.(-, -, p).

4. DISCRETE ENERGY ESTIMATE

With the aim of establishing an a-priori estimate on {(u¢, €%, p®)} independent of € we start by analyzing
a time-discrete version of the problem. Fix n € N, set 7 := T'/n, and consider the time partition

O=tg<ti1 <---<t,=T, t; == aT.

We define wq := w(0), wy := wo + 7w(0), and, for i = 2,... n, we set w; := w(t;). Our analysis will be
set in the space

U, ::{(uo,eo,po), ooy (U, enypn) € (BD(2) x L2 (4 M252) x My (Q UI‘O;M%X?’))"H :
(us,ei,pi) € & (w(t;)) fori=1,... ,n}.

We define the discrete energy functional I, : % — [0,+00) as

2 n n—2
e’p
IET((UO7 607P0)7 ey (uru en7pn)) ::7 Z TNr,i / |52ui|2 dz + Z TNr,i42 / Q(ez) dx
i=2 Q2 i=2 2
n
+er > nri H(0p:), (4.1)
i=1
where, given a vector v = (vy,...,v,), the operator é denotes its discrete derivative,
Gup = VUL 3*lu,; — 5k_1'Ui—1)
T T

for k € N, k > 1, and where the weights

)
13
A B ‘:O,...7 5
e <€+T) ! "

are a discretization of the map ¢ — exp ( —t/). Define the set

0

%‘(u07807p07u1) ::{(ane()va)?' .. ('U/n,en,pn) S %‘r cU=U, €0 = 607 Po :poa

Sup = u'l.
Arguing as in Proposition 3.1 we obtain the following result.

Lemma 4.1. There exists a (n+1)-tuple of triples (u5, €%, p%) such that ((ug,eg,pg), R (ufl,efl,pi)) €
Hy(ul, el pP ut), and
Lr ((ugs €5, 95)s - - -+ (ugy, €5, 05)) (4.2)

= min IET((u07607p0)7---7(un76napn))'
(4010201, (s pn) ) € (w00 ,p0 ul)
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4.1. Discrete Euler-Lagrange equations. We first compute the discrete Euler-Lagrange equations

satisfied by a minimizing (n+1)-tuple (uj, €5, pg), - - -, (u5, €5, p5).
Proposition 4.2 (Discrete Euler-Lagrange equations). Let (u§,ef,pg), ..., (us,e5,p5) be a solution to
(4.2). Then
52p77m-/ 62u - 8%p da + 77m'+2/ Ce; : Epdr =0 (4.3)
Q Q

for every o € WH2(Q;R?) such that ¢ =0 H?-a.e. on Ty, i=2,...,n— 2. In addition,

- (ng)H(E)fH(fﬁ)g( )/QCef:deS’H(ﬁ)Jr( JH(-9). (4.4)

for every & € L2(O;MY3), i =2,...,n—2.

r
E+T

€
E+T

Proof. Let (vo, fo,40);-- - (Un, fn,qn) € H#:(0,0,0,0), and consider the (n+1)-tuple
(ug £ Avo, e £ Afo, 05 £ Aqo), - - - (ug, £ vy, e £ A, P, £ Adn)s
with A > 0. By the minimality of (u§, €g, p5), ..., (us, €5, pS ), there holds

n’

1
XIET((US + Mg, eg £ Afo, 05 £ Aqo)s - - -, (us, £ Avp, €5, £ A fn, 05 £ )\qn))
1
- XIET((uSa e(g)vpg)v ey (ufw efmpi)) Z 0.
Therefore by (2.5) and (4.1) we deduce the inequality

n n n—2
—eT Z Nrit1H(dg;) < 62p2 TNri /Q 82 - 6%v; dx + Z TNz i+2 /Q Ces : fidx
i=1 i=2 i=2

< ETZ’W-,—JJF{H(—(SC]Z'). (4.5)

i=1
For i =0,...,n, let p; € W 2(Q;R?) with ¢; = 0 H?-a.e. on Iy, and let & € L?(Q;M3®). Choosing
v = @i, fi = Ep;,and ¢; =0, for i = 1,...,n, by (4.5) we obtain

€2pz TNri / 82us - 6% da +
Q

=2

n—2

Z 7’7’]7—)1‘+2/ Cei : Ep;dx =0
Q

i=2
for every p1,..., 0, € WH2(Q;R3), ; = 0 H?-a.e. on Ty, i =0,...,n, and hence (4.3). Choosing v; = 0,
fi=¢&,and q; = =¢; for i = 1,...,n, estimate (4.5) yields

n n—2 n
—em Y Nt H(=06) < ZTUT,Hz/Q(CG? de<erd mri M%),
i=1 =2 i=1

for every &1, ...,&, € L2(QM53), and thus (4.4). O

We observe that it follows from (4.4) that (Ce5)p € L>®(Q; M%) for every i and ¢, although the
bound is not uniform with respect to 7 nor €. Indeed, for every B Borel subset of {2 and for every
M e M%X?’ we can choose £ = M xp in (4.4), where x g denotes the characteristic function of B. We have

() HO) — H=M) < (= ) Cei() : M < HOM) + (—— ) H(=M),

fori=2,...,n—2 and a.e. x € Q, which by (2.4) imply

-
) M<(7)<C? . M < 2R | M|,
M| < () Cei(@) - M < 2R M]
fori=2,...,n—2, and everyMeM‘gDX?’, for a.e. x € Q). Thus we get the estimate

e+ T
1(CeN)pllpm @uarsys) < 2( ) B (4.6)

fori=2,...,n—2.
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As a consequence of inequality (4.4), the discrete stresses of := Ce, i = 2,...,n — 2, belong to the

subdifferential in 0 of suitable convex and positively 1-homogeneous functions. Indeed, by (4.4) we have

S(z) € OF5(0), forae z€Q,i=2,...,n—2.
(E+T>OZ($) '5(0), for a.e. x i n

where Ff; : M5 — [0, +00) is defined as

€
E+T

Fi1) = ) + () -,

for every M € M%X?’. The convexity and positive one-homogeneity of Fj; follow directly by the corre-
sponding properties of H.

Equation (4.3) can be equivalently reformulated in the following useful form.

Proposition 4.3 (Discrete Euler-Lagrange equations 2). Let (u, €5, pg), - - -, (us, €5, p5) be a solution to
(4.2). Then
82us = 6%us = 0, (4.7)
/Q [p(e®0%us, , — 266%uS 4 + 6°uS) - o + CeS : Ep| dz =0 (4.8)

fori=2,...,n—2, and every ¢ € WH2(Q;R3) with ¢ = 0 H?-a.e. on Iy.

We omit the proof of this proposition as it follows arguing exactly as in [48, Subsection 2.3]. In view
of (4.8) there holds
{div Ces = p(e?0*us , — 2e0%us | + 0%us) a.e. in Q,

4.9
Ceiv =0 H? — a.e. on 00\ I, (4.9)

and hence, divCef € BD(Q) N L*(Q;R3), i =2,...,n — 2.

4.2. Stress-strain duality. In order to establish a uniform discrete energy estimate we need to prelim-
inary introduce a notion of duality for the discrete stresses of and the plastic strains ps.

We work along the footsteps of [23] and [11, Subsection 2.3]. Define the set
2(Q) = {o € L2(QME3) : op € L®(;M5?) and dive € BD(Q) N L*(Q; R?)}. (4.10)

Sym
By [23, Proposition 2.5] for every o € £(Q) there holds
o€ L5(Q;M3X3),

Sym
and
||tr0||L6(Q;M3><3) < C<||U||L1(Q;M§;§§') + ”O-DHLOC(Q;M‘;’JXB) + HdiVO’HLZ(Q;Ra)).

sym

In addition, we can introduce the trace [ov] € WH1/2(9Q; R3) (see e.g. [50, Theorem 1.2, Chapter I]) as

/ [ov] - o dH? ::/diva-z/)dx—l—/a:Ewdx
o0 Q Q
for every ¢ € WH2(Q; R?). Defining the normal and the tangential part of [ov] as

[ov], == ([ov] -v)v and [ov]} = [ov] — ([ov] - v)v,

by [23, Lemma 2.4] we have that [ov]} € L>(0Q;R?), and
1
vl o) < Z=loDlm ey

Let o € () and let u € BD(Q) N L3(;R3), with divu € L*(). We define the distribution [op : Epul]
on €1 as

1
([op : Epul, ¢) :z—/gpdivo’-udm—g/wtra-divudx—/a:(u@Vgp)dx (4.11)
Q Q o
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for every ¢ € C2°(Q2). By [23, Theorem 3.2] it follows that [op : Epu] is a bounded Radon measure on
), whose variation satisfies

|[UD : ED’LL]l S ||UD||LQO(Q;M3DX3)|EDU‘ in Q.

Let TIr, (Q) be the set of admissible plastic strains, namely the set of maps p € M;(QUTo; M35?) such
that there exist u € BD(Q) N L*(Q;R?), e € L*(Q;M2)3), and w € WH?(Q;R?) with (u,e,p) € o (w).
Note that the additive decomposition Eu = e + p implies that divu € L*(Q).

It is possible to define a duality between elements of 3(2) and I, (£2). To be precise, given p € I, (),
and o € 3(Q), we fix (u, e, w) such that (u,e,p) € o (w), with u € L2(2;R?), and we define the measure

[op : p] € My(QUTo; M3?) as

(oD @ p = {[0D3EDU] —op:ep in§)

[ov]E - (w — u)H? on Ty,

so that
/ pdlop : p] = / pdlop : Epu] — / Yop :ep dﬂH‘/ plovly - (w—u)dH?
QuUr, Q Q I

for every ¢ € C(Q). Arguing as in [11, Section 2] one ‘can prove that the definition of [op : p] is
independent of the choice of (u,e,w), and that if op € C(Q;M%XS) and ¢ € C(£2), then

/ @d[UD:p]=/ @op : dp.
QU QUTo

We finally rewrite [11, Proposition 2.2] in our framework.

Proposition 4.4. Let o € X(Q), w € WH2(Q;R?), and (u,e,p) € o (w), with u € L>(Q;R3). Then

[UDIP](QUFO)-F/U:(e—Ew)dm:—/

5 Qdiva-(u—w)d:v—l—/ [ov] - (u—w)dx.

DO\Ty

Remark 4.5. We point out that the C? regularity of 92 is needed here in order to apply [23, Proposition
2.5]. It is not possible to use here the results in [17] and extend the analysis to the case in which 02
is Lipschitz, as (4.9) only implies that div Ce$ € L?(£2;R?), whereas [17, Proposition 6.1] would require
divCes € L3(Q;R3).

4.3. Discrete energy estimate. We preliminary establish a lower bound on the mass of the measures
[(Ces)p : q], i = 2,...,n — 2, where ¢ € I, () is such that there exist v € BD(Q) N L?(;R3) and
fe LA(M253) satistying (v, f,q) € /(0).

A caveat on notation: in the following we use the symbol C to indicate a generic constant, possibly
depending on data and varying from line to line.

The following estimate holds true.

Proposition 4.6. Let ¢ € TIp, (), let v € BD(Q) N L*(GR?) and f € L*(ME3) be such that
(v, f,q) € (0). Then

T(Cel)p : qI(QUT ) + (e + T)H(6p5 — q) + eH(q) > (e + T)H(p5) (4.12)
foreveryi=2,...,n—2.
Proof. Let g be as in the statement of the proposition. By (4.6) and (4.9) it follows that Ces € (),

i=2,...,n—2. In view of the triangular inequality (2.5), since (u§, €5, p§), - - ., (us, €5, p5) is a solution
to (4.2) it also solves the implicit minimum problem

Lo ((ugs €55 05)s - - - (ugys €55 15,))

= 1 J “ e
oo (e D 00 0t o (w0, €0,P0); - - -+ (Un; €, 1))
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where

n
']ET((UO7€0apO)a (unaenapn = 7/) ZTT]T,j/ |52U]|2 dl‘
2 = Q

+ZT7]TJ+2/Q€J dx—i—gTZnTJ_H ( p] 1)_'_,}_[(}??_1;]?]1)]

Arguing as in Proposition 4.2 we compute the Fuler-Lagrange equations associated to the minimum
problem above, and we perform variations (u§ £ Avg, €5 £ Afo, p§ £ Aqo), - - . (uS, £ Aoy, €5, £ A [, 05 £ Aqn ),
with A > 0, and (vo, fo0,490),-- -, (Vn, fn,qn) € H#7(0,0,0,0). The convexity of H yields

n—2

5 pZTnT,]/(SQUE 52vjd$+27'7]7—]+2/(ce [jdx

Jj=2 Jj=2

—i—ETan»H [ (5pj CIT]) — H(épj) +’H( — qJT_l)] > 0.
i=1

By combining Proposition 4.4 with the Euler-Lagrange equation (4.9), and performing the discrete inte-
gration by parts in [48, Subsection 2.3], we have

n—2
= mrs2l(Cef)p ;) (AU TY)
j=2
+5727]T - <5p qﬂ) —H(5p€)+H(— qﬂ'—‘l) > 0.
J J J . <
The thesis follows choosmg qj = —7q for j =1, and ¢; = 0 otherwise. (]
Given a vector (wy, . .., w,) we denote by @, and w, its backward piecewise-constant and its piecewise-
affine interpolants on the partition, that is
0, (0) = w,(0) = wy, W(t) =w;, wr(t):=a-()w; + (1 —a(t))wi—1 (4.13)
for t € ((i — 1)7,47], i =1,...,n, where
t—(i—1
ar(t) = t=G=1r) fort € ((i — 1)ryi7], i=1,...,n.
T

In particular, ., (t) = dw,(t) for almost every t € (0,T). Analogously, we define the piecewise constant
maps
T-(t) ==, forte ((@—1rir], i=1,...,n

In addition, as in [48, Subsection 2.5.1] we denote by @, the piecewise quadratic interpolants, defined via

W, (t) :=w,(t) in [0, 7]

W (t) = o (t)wr(t) + (1 — o (O)iy(t —7)  in (7,T]. (4.14)
Notice that

We(t) = (t —7) + Ta - (t)w,(t) for ae. t € (1,T].

Theorem 4.7 (Discrete energy estimate). Let (uf, €5, p5), - - ., (u5, €5, 05), be a solution to (4.2). Assume
in addition that p' = 0. Let (uS,eS,pS) and (U, €5, pS) be the triples of associated piecewise affine and
piecewise quadratic interpolants, respectively. Then there exists a constant C (independent of € and T)

such that
T—-2T1 t . T—-21
Ep/ / /\ﬂi\gd;vdsdt—i—p/ /|1li|2dxdt
2T 217 JQ T Q

+/TT QT/QQ(ei)d:cdt+/TT277—[(;5i)dt§0(1+;>. (4.15)
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Proof. Take the map ¢ = 7(6u$ — u' — dw; +w(0)) as test function in (4.9). For k = 2,...,n — 2 we
obtain

k
EQpZT/Q §Mus o - (6uf —u' — dw; +w(0)) do
i=2
k
- 25/)27/9631@“ - (6us —ut — dw; + w(0)) dx
i=2
k
+ pZT/ 82us - (6uS — ut — dw; +w(0)) da
i=2 /O

k
- ZT/ div Ces - (6u5 — u — dw; + 1w (0)) dz = 0. (4.16)
i=2 70

Arguing as in [48, Subsection 2.4] we estimate the first three terms in the left-hand side of (4.16) from
below as

: 2
Epd o [ Sty (G0f —ut b+ i) do > 5 [ (s s
=2
’p | Pufys - (buf —u' =0 'odfsip 520 12d
et | 0k (uf —u! = dwy, +10(0)) dw — = Q| ug o |? d

9k
—&—%Z/ﬁ\égufﬂ —(52uf|2dx—52p/9\62w2|2dx+52p/962u2+162wk dx
i=2

2 k 2 k
_ 52p/ S2u§6%ws dr — 57[) ZT/ |6%uS|? do — €7p ZT/ |63w;|? da, (4.17)
Q2 =4 79 i=4 70

k k
- 2£p27/§;53uf+1 - (6u§ — ut — dw; +0(0)) do > —6,027’/9 |6%w;|? da
i=2 =2

k
— 2€p/ §uf - (Oug — u' — dwy, + w(0)) dx + €pZT/ |6%us|? de, (4.18)
Q i=3 78
and

k
pZT/52uf'(5uf—u1—5wi—|—u}(0))dx: g/ |6ug, — u' | dx
— Jo Q
k k
+ 52/ |Gus —5u§,1|2dx—pz/(5u§ —ous_,) - (dw; — w(0)) dx
=279 =279
p p k pk71
> o [ |0uf —u'Pde+ 5 /5?—5? Ydr— — /5¢2d

k—1
- g/ |7i)(0)|2dx—p/ dug dwy, dx—l—,o/ duowsy da:—4pZT/ |6%w; |* da. (4.19)
Q Q Q - Jo

Regarding the fourth term in the right-hand side of (4.16), by (4.6) and (4.9) there holds Ce € X(Q?) for
i=2,...,n—2 (see (4.10)). Therefore, in view of Proposition 4.4 and (4.9), we have

k
- ZT/ div Ces = (6us — ul — dw; + w(0)) da
=2 Q
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k
72 /(Ce 2 (665 — ! — BEdw; + Ew(0)) d:L'JrZ [(Ce)p : op51(QUTy)

=2

for k=2,...,n — 2. On the one hand
k 1k
ZT/ Cés : (—Edw; + B (0)) dx > —ZZT/ Qe
i=2 /9 i=2 /8
k
—427/ Q(Edsw; — Ew(0)) dx
i=2 /9

and

- k
;T/Q(Ce?:(éefel)de/QQ(ei)dx/S]Q(el)dng/QCGf:eldx.

By Proposition 4.6 we infer that

k k
Z T[(Cef)p : Ip5](QUTY) > Z (6p5).
1=2

=2

Therefore

k
- ZT/ div Ces : (dus — u' — dw; 4+ w(0)) dz
i=2 7O

2/QQ(ei)d:c—/QQ(el)dx—iT/Q(Cef:e dx

k k k
1
-3 ZT/ Q(es) da — 427/ Q(ESw; — B (0)) dz + 3 7H(6p5).
i=2 /O i=2 /O i=2
By combining (4.17)—(4.20), equality (4.16) yields

2
gzp/ 835y - (Ouf, — ut — dwy, + 0 (0)) d — %/ 0%us |2 da
Q Q
e%p e%p
+ 52 [ 1+ 2 Z / 62ug, — 0%u| da
+e ,0/ §2uf 6% wy dx + /|(5u,C u|dz —e p/ 52u§6%ws dx
2,€ € 1 : € 2, €12
,25p/ 0ug - (Ouy, —u — dwy +w(0)) de + (57—)/127’/ |0%us | dx
Q 2703 e
k
+ BZ/ |6us — dus_, | dx—p/ dugdwg d:z:+p/ dujdwsg dx
2= Ja Q Q
k—1 k
fﬁGZT/ |5u§|2da;+/ Q(e) dz + > TH(6p5)
i=2 YO Q i=2
e2p & k
2 2,12 3,12 2,12
<e p/Q|5 wa| dm+7ZT/Q|5 w;| derspZT/QM w;|* dx
i=4 =2
k—1 k
+§/ |u')(0)\2dx+4p27'/ |52wi|2dx+427/Q(Edwi—Eu';(O))dx
Q i=2 /9 i=2 /9

15

(4.20)
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k k
Jr/QQ(el)da?qL;T/QCef:61d:17+i;7'/962(ez)dx

Since w € W32(0, T; WH2(Q; R?)), by Holder’s inequality there holds

/|6w2|2dx—7'/ ‘“’27 _”b(o)fdx

<27/Q % dx+27/’ _Tw(o)’gdac
gzr/Q M dx—l—;/ﬂ‘/o (w(t)—w(o))dtfd:c
§27'/Q MdeJrQTz/OT/QWdedt.

Thus, we have found that

k T k N ] 2
ZT/ |6w;|? d < 27'2/ / |w|2dxdt+227'/ ’M dz
i=2 7O 0 JQ i=2 7O T

T 2 k T 2
§272/ |1I)|2dxdt—|—72/ ’/ w(t)dt‘ dz
0o Ja T/l JE-1)r
T T
3272/ /|i[)|2dxdt+2/ /|w|2d:z:dt.
0 Q 0 Q

Analogously, one checks that

€2p/ 16%ws|? dz = 52p/ w(tz) — 2711;(0) —w(0) ‘2 da

T

2r 9
—ap/Q’ // d)\df‘ dx

T
< C€2p/ |1D(0)\2dx+252p7/ / | |? da dt,
Q 0 Jo
as well as the following

/\52w@|2dx—z /‘/ - wit) — it =7) dt‘ dx + Ct
(i—1)T

<= Z// / |2d§dtdx+C’T</ /\w|2da:dt+(}r.
(i—1)7 Jt—7

In addition, we have that

Z /|53w1|2dx— 52/’/1 . /T (s—1) dsd{‘ dx
gc/g/o V5|2 dt da.

Finally, in view of Jensen’s inequality, we compute

k
427/ Q(Edw; — Ew(0)) dx < 47(k — 2) /Q Q(Ew(0)) dz

+SZ / /( . Buw(€) d€) + 87 /Q o+ /0 (Bu(€) — Bu0)) de) da

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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T T
< 4Tn/QQ(Ew(O)) dm+8/Q/0 Q(Ew) dtdchrS/Q/o Q(Ew(t) — Ew(0)) dt dz. (4.26)

By (4.22)—(4.26), the first two rows of the right-hand side of (4.21) are uniformly bounded in terms of
the boundary datum w, independently of 7 and . Therefore we obtain the estimate

52p/ §2us, 1 6%wy, dx—st/ 52u§6%ws dx
Q Q
2 3, € € 1 : e?p 2,6 |2
+e%p Qé uf o - (du, —u —6wk+w(0))dx—7 9\5 ugq|” dx

2

+ %/ﬂ |6%u5|* do — 25p/952ui+1 (uf, — ut — Swy, +w(0)) da

2\ & :
+ (g—i)pZT/Q|§2uf|2dx+/QQ(ei) dx—i—TZH((i@f) —p/ﬂéui&uk dx

i=3 =2
k—1
+p/ 6u§5w2dx—£27'/ |5u§|2dx§C—|—/ Q(e") dx
Q 16—~ Jo "

k k
1
+ E 7'/ Ces : e dac—i—z g T/ Q(eF) dx. (4.27)
i=2 9 i=2 79

Multiplying the previous inequality by 7 and summing for k = 2,...,n — 2, one obtains
n—2 n—2
e%p Z T/ §%us 6% wy dz — e%pr(n — 3) / §2u§6%ws da + P Z T/ |6ug, — u'|? dx
k=2 /O Q 2= e
n—2 52 n—2
> T/ sy - (0u5 — ut — dwy + w(0)) dow — =2 > 7/ 0%us_,|? dz
k=2 79 2= e

2 2
+ 5 rn-3) / (0%u5 > do —2ep 3 7 / sy - (Guf, — ut = dwy +1(0)) dor
Q k=2 7€

2 n—2 k n-2 n-2 k
€ 2 2 12 e 2 <
+(5_E>pZZT /0\5 ug| dx+ZT/QQ(€k)dx+ZZT H(0p;)
k=3 i=3 k=2 k=2i=2
n_o P n—2k—1
_ . _ €, dr — 2= 2 £|2
p;T/Q(S’UJk dwy dx + pT(n 3)/95% dwy dz 16 kZ:QZ;T /Q|5Uz| da
n—2 k
§C+T(n*3)/Q(el)d$+ZZT2/C€§:€1dz
Q k=2 i=2 2
n—2
+ @ Z 7'2/ Q(e) dx. (4.28)
i=2 a

By choosing k =n — 2 in (4.27) and by (4.7), we have

2
—52,0/ 62u§52w3dx+€i/ |62us |2 da:—l—B/ |6us, 5 — u'? da
Q 2 Ja 2 Ja

9 n—2o n—2
5 e e £
+ (5—5>p E T/Q |52Ui\2d$+/ﬂQ(€n_2)d$+ E :TH(épi)
i=3 =2

n—3
—p/ ous,_o Swn,gdx—ﬁ—p/ oui - dwe dx — L Z’T/ |6us|? dx
0 0 16 = Jo
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n—2 1 n—2
§C+/Q(el)dm+27/(Cef:eldx—&—fZT/Q(ef)dx. (4.29)
@ i=2 79 4= e
In view of (4.7) and (4.24) we deduce the lower bounds

EQpZ T/ §3us o - (Sug, —u' — Swy, + w(0)) dx
Q

——z—:pz /6uk+1 (62us, — 6%wy,) dx>—3€—pz /|52 Pdx

Z |<52w,€|2 de > ——*+ Z |<52u§|2 dz — C, (4.30)
k=2 k=2
and, analogously,

n—2 2 n—2
EQpZT/(SQuiH.(Skada:E ——Z / |62u |2dm—57p27/ 62wy | dx
k=2 “9 k=2 /O
> *TP / 625 |2 dw — C (4.31)
In addition, arguing as in [48, Subsection 2.4],
n—2 n—2
— 2ep Z T/ §2us - (Sug, —u' — Swy, +w(0)) d = 5:02/ |6us,,y — Sug|* do
k=2 79 k=279
— sp/ |6us > dx + sp/ |6ug)? da — 25p/ (6u,_y — ou) - (—u' 4+ 1w(0)) dz
Q Q Q

+ 2€pz /Q((;ui_,_l — dug) - owg dx > 735;)/9 |6us,_,|? da — 2&:p/Q lu'|? dz
k=2

n—2
—EpZT/ |6us|? dox — C, (4.32)
k=2 “9

where we used (4.7) and (4.24). By collecting the terms in (4.28)—(4.32) involving second-order differences,
we have

(e — 367 /’Z /|52U \de_~_7(1_~_7(n_ /|62u§\2d;v

n—2 k

T O P D 1%z do = (14 (0 - 3)) [ 5 FPundo
Q Q

k=3 i=3

> <€3€2€2(1+72(n3)))p7§'r/g|52u22dz
(5—— ZZ /|(s2 £12 gz + & (HT /\52 £2dz — C (4.33)

k=2 1=3

Finally, using the elementary inequality
|6us|? < 20us —u' > +2/u'? ae. in Q, for every i,

we deduce that

n—2 n—2
735/)/ |5ui_1|2dx725p/ |u1|2dx75p27/ |5ui|2dxfp27/ ouy, - dwy dx
Q Q k=2 79 k=2 79
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n—2k—1

+ pr(n — )/6u1 §w2d:cf—zz /\6u 1>dz —p / o 0w, _odx

k=2 1=2

P = 2
+p/(5u€~5w2d$—— T/ ous |* dz
> —35p/ |6us, 4| da — QEp/ |ut|? dx

Q Q

1 n—2 . n—2 .
—(5+16)pkz_27/g|5uk2dm—1%kz_: / |6us|* do —

,_\

> —65/)/Q |6us_, —ut|)? da — (25 + g / |6u, — u'|? dx

—gz /|5u§—u1|2dx—c/ |2 dz — C. (4.34)
s im2 Q Q

Summing (4.28) with (4.29), in view of (4.7), estimates (4.30)—(4.34) yield the inequality

n—2
(i - 25)'027/9 |6u, — ut|? dx + (% - 65),0/Q |6us _; —ut|? dx

2 n—2 k

p(1+T 2 2,2
/\5u2| dr+ (e~ 5) Z; /\5 P2 g
n—2 k
+Z /Q dx+ZZTQ’H ops) / _9 da:+TZ”H ops)
k=2 i=2 i=2
n—2 k n—2
(I+7(n—3 /Q da:—&—zz /(Ce eldr + - Z /Q
k=2 i1=2
+MZ7—2/Q(ef)dx—i—ZT/(Cef:eldx—i—C/ [u'|? dz + C. (4.35)
1= Q i=2 /9 Q
By the definition of 7, for € small enough we eventually obtain
n—2 k
apzz /|(52 E|2dgc—|—,oz /|5u ut|? dx
k=3 1=3
+ZT/ Q(ei)derZTH(épZ) <c (4.36)
k=2 7 k=2
and the assertion follows. O

5. T'-CONVERGENCE FROM DISCRETE TO CONTINUOUS

In this section we prove that for fixed ¢ > 0 the sequence of discrete energy functionals {I.,} (see
(4.1)) converges, as the time step 7 tends to zero, to the functional I.. This will allow us to pass to the
limit 7 — 0 in the discrete energy estimate (4.15) in order to obtain its continuous analogue, see (5.37)
below.

In order to state the convergence result we need to introduce a few auxiliary spaces and to extend the
energy functionals I. and I... Let

U :={(u,e,p) € W"(0,T; L*(Q;R®)) N L'(0,T; BD(Q))
x L2(0,T5 L (M) x L0, T5 My (Q U To; M)}
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and
U ={(u, e,p) : [0,T) = (BD(Q) N L*(;R?)) x LA(Q;M253) x My(Q U To; M3?)
piecewise affine on the time partition of step 7 on [0, T7,
and such that (u(0),e(0),p(0)), (u(r),e(r),p(7)),. ..,
(u(T), e(T),p(T)) € A7 (u®, e, p°, u')}.
We set

I.(u,e,p) if (u,e,p) €V,
GE y € =
(u, e:p) {+oo otherwise in %,
(where V is the space defined in (2.11)), and
IET((UT(O), eT(O),pT(O)), (UT(T), e.,-(T),pT(T)), B (UT(T)v eT(T)va(T)))
GET(uT7 e‘rapT) = if (u7'7 €T7p7') S %Tafﬁnc’
+00 otherwise in % .

We now show that the sequence of energies {G.,} converges to G, in the sense of I'-convergence in %
as 7 — 0.

Theorem 5.1 (Liminf inequality). Let {(ur,er,pr)} C % and (u,e,p) € % be such that
ur —u  weakly in WH2(0,T; L*(Q; R?)), (5.1)
pr(t) =% p(t)  weakly* in My(QUTo; ME®) for every t € [0,T],
er —e weakly in L*(0,T; L*(Q; M2X3)).

sym
Then, we have that
Ge (u7 @’p) <liminf G, (UT, e‘rap'r)~
T7—0

Proof. Let {(ur,er,pr)} and (u, e, p) be as in the statement of the theorem. If liminf, 0 G.r(ur,er,pr) =
400 there is nothing to prove, therefore without loss of generality we can assume that

hmmfGET(uT,eﬂpT = hm [ 277771/ |52U7(i7)|2 dx

n—2

+ Z TNrit2 / Qe (iT))dx + et Z nr Z+1H(§p7—(z7’)):| < 400, (5.4)

In view of (5.1) and (5.2) it follows that u(0) = u® and p(0) = p°. Denoting by @, and @, the piecewise
constant and piecewise quadratic interpolants associated to u, (see (4.13) and (4.14)), respectively, by
(5.4), up to the extraction of a (not relabeled) subsequence, we have

T—-271
l1m1nf / /|uT| dxdt—l—/ ﬁT(-—I—QT)/Q(éT)dxdt
T—0 Q

+e/OTﬁT(~+T)7-L(pT)dt] < +o00. (5.5)

In view of (5.5) for 7 small there holds

T-21
hmlnf / / (|t * + |, ?) dxdt+/ /Q ér)dxdt

+e/ ’H,(pT)dt} < +00. (5.6)
0
Therefore, there exists a map v € W22(0,T; W12(Q;R3)) such that

i, — v weakly in W3%(0, T; WH3(Q; R?)). (5.7)

Arguing as in [48, Subsection 2.5.1], we obtain that u = v, and u(0) = u®.
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By (5.4) we deduce the upper bound
lim i(I)lf Dy (p-;0,T) < C. (5.8)
T—

Since p,(0) = p° for every 7, by [11, Lemma 7.2] there exists a map g € BV ([0, T]; My(2 U To; M%)
such that
Pr(t) = q(t) weakly™ in My(QUTo; ML) for every t € [0,T) (5.9)
and
D3(g;0,T) < liminf Dy (p-30,T).

By (5.5) for a.e. t € [0,T] there exists f! € L?(Q;M2%3), and a t-dependent subsequence 7; such that

sym

e, (t) = f' weakly in L?(€; M3X3). (5.10)

sym

By (5.9) and (5.10), for a.e. ¢ € [0, 7], the sequence {E,, (t)} is bounded in My(Q U To; M53) (see [11,
Theorem 3.3]). This implies that for a.e. ¢ € [0, 7] there exists a map v* € BD(f2) such that

i, (t) =% v'  weakly* in BD(Q), (5.11)
Evt = f'+q(t), (5.12)
q(t) = (w(t) —v") © vH' on T. (5.13)
In view of (5.1) there holds
ur(t) — u(t) weakly in L?(Q;R?) for every t € [0, 7). (5.14)

In addition, for fixed ¢ € N, and t € (( — 1)7,47], we have
Ur(t) — ur(t) = (i1 — t)ur(t).
Thus by (5.6) we obtain the estimate
T -
|tr — urllL20,7;02(Qr2)) = %HuT(t)||L2(0,T;L2(Q;R3)) <Cr,
which in turn by (5.14) implies that
U, (t) — u(t) weakly in L2(Q;R?) for a.e. t € [0,T). (5.15)
By (5.9)—(5.11) we conclude that
vt = u(t), (5.16)
and the convergence in (5.11) holds for the entire sequence @, (t).
Fix i e Nand ¢t € ((i — 1)7, ¢7], then
15(8) = pr (e cuuronatzs) = It = )0 Oll v romoanses) (5.17)
Therefore by (2.4)

_ T .
D — p‘r||L1(0,T;Mb(QUF0;M?]’DX3)) = 5Hpr||L1(0,T;Mb(QUFU;M;”))

T
< i/ H(p,)dt < Cr, (5.18)
2TK 0
where the last inequality is due to (5.6). In view of (5.18),
157(£) = r ()| an, (urgmazzzy = 0 for ae. t €[0,77.

Thus, by (5.2) and (5.9) we deduce that

p(t) =q(t) for a.e. t €[0,T]. (5.19)
Finally, by (5.11)—(5.13), (5.16), and (5.19), there holds
e-(t) — e(t) weakly in LQ(Q;MS;H?) for a.e. t € [0,T]. (5.20)
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By Fatou’s lemma, (5.7), and (5.20), one gets that

—/ exp — - /|u VP dxdt 4 = /exp — - /Q ) dxdt

1
< 5/ lim inf [6 pm(t)X[T,TfrJ(t)/ i (£)|? dx
0

T7—0 O

+ i+ 2032 () [ QUer(t) de]

E P 1 T-21 - B
<h£n_>1(r)1f[ 5 /T nT/ |, |? d;vdt+2/T nT(-+27)/Q(eT)dxdt}

. . 52[) n ) ) n—2
= hgn_}gf [2277}”/ [0%w, (i7)|* dz + ;Tnf H_Q/ Qe (iT)) dm] (5.21)

where X[ 7, and X[;7_2, are the characteristic functions of the sets [7,7"— 7] and [r,T" — 27], respec-
tively.

To conclude we need to prove a liminf inequality for the plastic dissipation. To this purpose, let
0<ty<t; < <ty <T. Inview of (5.8) and (5.19), and since p, only jumps in the points ir,
i=1,...,N, we have

e (= L) p(t) — ti1)) < amint [ exp (= ), (60— 5o ()]
i=1

=1

<timigt [ S e (= D)) ~ -G = 1)) + T Da(pr:0,7)

= lim inf Tzn:exp ( - g),H((Sp-,—(Z'T))} < hm 1nf { ZnT Z_%1’;'-1((5197(27'))}

i=1 i=1
. iT .
+ hn}) T‘ Z (exp ( - ;) - 77¢,i+1)7'l(5pr(”))’~
Since 7, (- + 7) — exp(—t/e) strongly in L>°(0,T") as 7 — 0, by (5.8) we deduce

71_i_>InO’7" z"; (exp ( — %T) — nr,i+1)H(5pT(iT))‘

< hm H exp ( — é) — N (t+7 )HLOO(O - Xn:rﬂ(épf(”))
=1

t
(1) 0] P07
im || exp - nr(t+7 )LM(OT) 1 (P )
t
<l Clexp (= 2) =+, =
SRl 2) T Lo

Thus, we have checked that

éexp (= ) - p(ti1)) < oot [éexp (= ) Hp- (1) pr(t:-1)]

3

< hmlnf [ ZUT 'L+1H(6p7'(l7_))i|

The arbitrariness of the time partition {t;},=o,... m yields that

n—1

Dy (exp(= - /);p;0,T) < lim inf [T > i H(Op,(i7)) | (5.22)

i=1



DYNAMIC PERFECT PLASTICITY AS CONVEX MINIMIZATION 23
The thesis follows now by combining (5.21) and (5.22). O

We now prove that the lower bound identified in Theorem 5.1 is optimal.

Theorem 5.2 (Limsup inequality). Let (u,e,p) € V. There exists a sequence of triples (ur,er,p;) €
w2me sych that

ur —u  strongly in WH2(0,T; L*(Q; R?)), (5.23)
pr(t) = p(t)  strongly in My(QUTo; M5?) for every t € 0,77, (5.24)
er — e strongly in L*(0,T; Lz(Q;nger)), (5.25)
and
lim sup Ger(Ur,er,pr) < Ge(u,€,p). (5.26)
T—

Proof. Let u,; be defined as the affine-in-time interpolant of the following values

u,(0) = u?,
ur (1) = u® + Tul,

ur(iT) = M, (u)(iT), for everyi=2,...,n,

where M is the backward mean operator,
t

M, (u)(t) := f/ u(s)ds for every t > 7.
t—7
Define e, accordingly, and let p, be the measure satisfying

p-(0) =p°,

pr(r) =p" +7p",

pr(iT) = M. (p)(it), for everyi=2,...,n,
where

1 t
(¢, M.(p)(iT)) := f/ / wdp(s)ds for every ¢ € Co(2UTy).
T t—71 JQUIg

The triple (u,, e,, p,) satisfies (u,, e,, p,) € %2 (5.25) follows by the definition, and (5.23) is obtained
arguing as in [48, Subsection 2.5.2].

Regarding the plastic strains, fix ¢ € (0,7]. For 7 small enough, there holds ¢ € (( — 1)7,47], i > 2.
Thus, for every ¢ € Co(£2; M?*3), there holds

[ e~ [ pani)
- %’ (@) /(:m </Qur0 pdp(s) — /QUFO @dp(t)) ds
T

ll¢ll Loe (our i
< (QUro) / 1p(s) = P(E)| vty oy s ds: (5.27)
t—r1

T

In particular, for 7 small enough we have

t+7
mxw—mmumm%Mg%s;/ 12(5) — ()| gy ot ds-

t—7



24 E. DAVOLI AND U. STEFANELLI

Since t — ”p(t)”Mb(QUFO;M%XS) is L1(0,7), in view of Lebesgue differentiation theorem we obtain (5.24).

In addition, by the definition of p, there holds

Dy (pr30,T) = Dy (p;0,T) + T||p1||Mb(Qur0;M’~’bX3) + Z/( ) ||137“Mb(guro;M%X3) dt
i=2 Y LT

n

= Dyu(p;0,T) + T||p1||Mb(QuFO;M3DX3) + Z [ M- (iT) — M- ((i — 1)7)“Mb(QuFO;M%X3)

=2
T
< Dy(p;0,T) + T||p1||Mb(QUF0;M?1’3X3) + 2/0 ||p||Mb(QuFo;M?3X3) dt < C.

Arguing as in [48, Subsection 2.5.2] we obtain the inequality

2 n n—2
limsup |2 7 / [0%ur (ir)* d + ) i / Qer(i7)) du
i=2 @ i=2 «

T7—0

< [Ceo (- (5 [t [ @)

To prove (5.26) it remains only to show that

lim sup [TZnT,iHH(épT(iT))} < Dy (exp(— - /€);p;0,T).

T7—0

We first observe that

TZn”HH(épT ir) anHH(pT(W) pr((i = 1)7))

i=1 i=1

Y (s — e (- ”g))a(me) ~pe((i = 1))
i=1

3 0ep (= )Mo, i)~ pe((i - 1)),

By (5.28) the first term in the right-hand side of (5.30) can be bounded from above as follows

’ é (777,1'+1 — exp ( - g))H(PT(iT) —pr((i — 1)7))’

< Z H(pr(i7) = pr (i = 1)) 177 (- + 7) — exp(— - /&) [ (0,7)

< Dy(pr3; 0, T)|177 (- + 7) — exp(— - /€)l| L= (0,1)
< Ol (- + 7) = exp(= - /&)l = (0,1)
and converges to zero as T — 0.
To study the second term in the right-hand side of (5.30) we remark that

iT (i— 1)7'
H(ps (i) — p-((i = 1)7)) < % /(‘1) / —p(s)) dsdt.

Indeed, for every ¢ € Co(Q2 U T'o; M3®) N Kp(Q) by Lemma 2.1 there holds

(@, pr(iT) = pr((i = 1)7 / / @ - dp(t dt—*/ / @ - dp(s
(i—1)7 JQUIg (i—2)T QU

1 T (i—1)T
== / / / —p(s))dsdt
T J-1)r QUFO

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)
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1 /i /(z 17 ( )) s d
< —= —p(s))dsdt.
72 (i—1)7

A further application of Lemma 2.1 indeed yields (5.32).

In view of (5.32) we obtain

iexp (= ) #(ortir) — oG = 1)7)
-ZTQ /( . /( e (= DY ttote) - o) s

-2)7

< ;eXP ( - %T)DH(P; 0,i7)

< iexp( %) sup{zm:’)'-l(p(sj) —p(sj-1)): 0< 81 <+ < 8 < z‘r}

< Dyy(exp(— - /€);p; 0, T). (5.33)
Estimate (5.29) follows now by combining (5.30)—(5.33). O

As a corollary of Theorems 5.1 and 5.2, we obtain a uniform energy estimate for minimizers of G..

Corollary 5.3 (Uniform energy estimate). Let p' = 0. For every 7 > 0, let (ur,e,,p,) € Z2H0 be q
minimizer of Ger. Then, there exists a a minimizer (u®,e®,p®) of Ge in'V, such that

Uy —u  weakly in W2(0,T; L*(; R?)), (5.34)
pr(t) =" p(t)  weakly™ in My(QUTo; M53) for every t € 0,77, (5.35)
ér — ¢ weakly in L*(0,T; L*(; M25Y)), (5.36)

where U, and €, are the piecewise quadratic and piecewise constant interpolants of u, and e,, respectively
(see (4.13) and (4.14)). In addition, there exists a constant C, independent of €, and such that

T t 82,0 T
€p/ / \if\dedsdt—Ff/ |ii°|? dx dt
o Jo Ja 2 Jo Ja
T T
+p/ /|1'f|2dwdt+/ /Q(e‘s)dxdt—kDH(pE;O,T) <C. (5.37)
0 Q 0 Q

Proof. Let {(ur,e,,p;)} be as in the statement of the theorem. Since (u® + tu',e® + tel, p®) € e
for every T > 0, there holds

n
Ger(Ur,er,pr) < GET(UO + tut, e + tel,po) = Z 7'777714_2/ Q(eo + iTel) dx
— Q

0 1
< Z/QQ(e )dx+2T/QQ(e ) dz (5.38)

for every 7 > 0. Arguing as in the proof of Theorem 5.1, in view of (5.38) there exists (u®,e®,p%) € V
such that (5.34)—(5.36) hold true, and

G:(uf,e®,p®) <lim iglf Ger(Ur,€r,pr)- (5.39)
T—

Let now (v, f,q) € V. By Theorem 5.2 there exist maps (v,, fr,¢,) € %285 such that
limsup Ger (7, fr,qr) < Ge(v, f,q)- (5.40)
T—0

The minimality of (u¢, e, p®) follows then by the minimality of (u,, e, p;), and by combining (5.39) with
(5.40).
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In view of Theorem 4.7, by (5.34) and (5.36) we have

Ep/ //\u \2dxdsdt+sp/ /|u |2dmdt+p/ /|u5|2dxdt

+/ Q(ef)dxdt < C. (5.41)
0 Jo
In addition, by (5.35), the lower semicontinuity of H, and Theorem 4.7,
sup Dy (p®;a,T — a) < sup lim 1nf Dy (pr;a,T —a) <C. (5.42)
a>0 a>0 T
The thesis follows by combining (5.41) and (5.42). O

6. ENERGY INEQUALITY AT LEVEL &

The central result of this section is Proposition (6.2) delivering an e-dependent energy inequality
fulfilled by minimizers, namely (6.6). We start by proving a somehow technical lemma.

Lemma 6.1. Let u € BV(0,T; My(QUTo; M53)) and let ¢ € C°(0,T). Then
T
Drlgins0.7) < = [ 4()Dal0,1)at.
0
Proof. We subdivide the proof into two steps.

Step 1: Since the function ¢ — Dy (p;0,t) is nondecreasing, it has only a countable number of jumps.
Thus, for every A > 0 there exists a time partition

A _ A A
0=ty <ty <---<tp, =T
such that, setting
Nt) = DH(M;O,t]A-) for every t € [t] ,t]_H) j=0,...,my—1,
¢ satisfies

| >

max {Dy(11;0,t) — o™ (t)} <

6.1
te[0,T] ( )

Let now 0 = Sg <8l << 3(1;\/5 =T be a time partition such that maxi:17___7N5(s? - sffl) < 4, and

N
Dy (p:0,T) <Y H(u(s)) — pu(s? 1)) + A

i=1

Up to taking a further refinement of {s}, we can assume that, setting

o) = Z?—l(ﬂ(sf) — (s ,)) foreveryt e [s§7s?+1), j=1,...,Ns—1,

there holds \ \
(0) = Dru(ps0.8) < F0) + 5 = 1) +
for every t € [t} 7tﬁ_l) for every i = 1,...,my — 1. By combining (6.1) and (6.2) we deduce the inequality

ma {Dyy(4;0,1) ~ ) < (6.3)

telo

(6.2)

Step 2: consider a time partition 0 = 7“8 <r{<..-< 7”?\45 = T such that {r0} is a refinement of the time
partition {s?} constructed in Step 1, and

sup { ng(ti)’H(,u(ti) —p(ti—1)): 0=t <t1 < <ty =T, meN, max (ti —ti—1) < 5}

1=1,...,
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T
BEGECHEVCENEEDY [ sOm ) = e )

Ms—1 Ms—1

:_Z[ H(u(r%) — p(r_ dt<—Z/T dt, (6.4)

where in the last inequality we used the fact that {r0} is a refinement of {s}. Hence, by (6.3) we deduce

sup { Sl H(ults) — plti1)) s O=tg <t1 <<ty =T, meN, max (t—ti1)< 5}

1=1,....m

T T
< [ p0DuGm0. 0yt +x [ loo)] . (65)
0 0
The thesis follows by taking the limit in (6.5) as J tends to zero, and by the arbitrariness of A. O

We are now in a position to presenting the e-dependent energy inequality.

Proposition 6.2 (Energy inequality). Let (u®,e®,p%) be a minimizer of Ge. Then

/ /Q dx—|—2€,0//|u (8)|*dxds + = /|u (t)|? dx
+DH(pE;o7t)}dtg/ ; //Ce w(s) da ds dt

T
35 p (5)[2 da ds dt — 2 p/ @(t)/ (1) - (w(t) — 05 (1)) da dt

+p// () (p(t) + 2e(1)) dmdt—ep// o(t) dx dt

—ep / /Q 1] (8)[2 da dt + 2¢p / / (0)(o(t) + e(t))] dar dt (6.6)
for every ¢ € C(0,T).

Proof. We argue as in [37, Proposition 4.1] by comparing the energy associated to (u®, e, p®) with that
of a rescaled triple (a¢,é°,p°). Consider an increasing diffeomorphism
B:[0,T] = [0,T]
such that 8 € C2([0,T)), 8(0) =0, B(T) = T, and 5(0) = 1, and set
@ (s) == ut(B7(s)) —w(B7H(s)) +w(s), &(s):= e (B71(s)) — BEw(B™(s)) + Buw(s),
and
7°(s) :==p(B71(s))

for every s € [0,T]. It is easy to check that (@€, é%,p¢) € V. Hence, by the minimality of (u®, e, p®) there
holds

G (7,8, 57) — G(uF, %, p°) 2 0. (6.7)
Using the definition of (4°,é%, %), we can rewrite its associated energy as

Ge(a°,¢%,p°) / eXp - )B(t)/ﬂ@(es(t)—Ew(t)+Ew(ﬁ(t))) dz dt

[ _swie o
By G0

+7p ; eXP(—*
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w(t)Bt) . 2 -
+ S i(a0)|) de+ eDnlesp(— - 2)7750.7).
Along the footsteps of [37, Proposition 4.1], we fix ¢ € C°(0,T). Let § € (0,1) be such that edp(t) <
exp(—t/e) for every t € [0,T], and define § as the solution to
B(t) by _
exp ( - ?) — exp ( - g> = 0p(t). (6.8)

It is immediate to see that 8(0) = 0 and B(T) = T. In addition, deriving (6.8) with respect to time, we

have
B(t) = exp (@) (exp ( - é) - edc,b(t)) (6.9)

for every ¢t € [0,T], yielding 3(t) > 0 for every t € (0,T) and $(0) = 1. As already observed in [37,
Proposition 4.1],

B(t) = t — eyt )exp( )+0(52) (6.10)
In addition, by (6.8) and (6.9),
Bt) =1 - d(lt) + (1)) exp (£ ) + O(5) (6.11)
and by performing a further derivation in time of (6.9),
B(t) = 75(@ +20(t) + 5¢(t)) exp ( ) +0(8?). (6.12)
Let us firstly observe that
(%13% / /Q (t) + BEw(B(t))) da dt

i

[ (- / a

= 2% / 3(t) — - - / Q dgc dt
[ o (- 20 /QEw )it
[ e (-7

In view of (6.8) and (6.11

side of (6.13) becomes

%l—%&/ — —ep - - /Q dxdt
:(%12%6/ &p )—i—exp(—f))ﬁ —exp - - /Q ) da dt
T

= —a/ (t) [ Q(e°(t)) dxdt. (6.14)
0 Q
By the regularity of w and by (6.10) there holds

/ Ces( Ew(ﬂ(t))) dw dt}. (6.13)

), and by the Dominated Convergence Theorem, the first term in the right-hand

B(t)
Pu(t) = Buao)] = | [ Bi€) ] < slulwrsorarnze),

Hence, by (6.8) and (6.11) one obtains

;ig})% e ( - Bg))é’(t)/QQ(Ew(t) — Bw(B(t)) dz dt =0, (6.15)
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Finally, by (6.8), (6.11), and the mean value theorem we get

;E);/T exp - @ B(t) /(‘cef (t) : (Ew(t) —Ew(ﬂ(t))) dz dt
= %1_% 5/ exp - 7) + dep(t )) /Q(Cef(t) : (/tﬁ(t) Ew(€) df) dz dt

= lim 5/0 exp ( - g) + 55¢(t) /tﬂ(t)/gcea(t) - Bui(€) da de dt
T

T
= —¢lim o(t) /Q Ce®(t) : Ew(¢) dz dt = —5/0 o(t) /Q Ce®(t) : Ew(t)dx dt, (6.16)

=0 Jo

where, in the second-last line, for every ¢ € [0,7], &' is an intermediate value between ¢t and (). By
combining (6.13)—(6.16) we obtain

lim 1{/ /Q w(t) + Bw(B(t))) da dt

50 0

_/0 esp (- /Qeft ) dt)
/ /Q dxdt—i—e/ /(Ce t) dx dt. (6.17)

We proceed by performing the analogous computation for the inertial term. We seek to estimate

y | R
im {5/ ex (= 20 o) /’ _(t) . (t)ﬁ(;)_wét)))z

w(t)BE) | . P2
+ Gy + i (B(t ))) )dt—— exp ( /|u )2 do dt | (6.18)
By (6.8) and (6.11) we have
. 1e2p T 1 5 )2
(%1_1)1(1) 57/0 ((5@))3 exp ( - —= / |6 (¢)|* dx dt
352”/ /\u |2 da dt + 222 p/ (t)/Q|if(t)|2d:vdt. (6.19)

By (6.8), (6.11), and (6.12), there holds

1e2p (7 B(t) ) NN _
%13%57/0 exp(—s)/g[(ﬁ.(t))5(u ()2 + [w(t)]? - 20 (t)-w(t))] dedt =0, (6.20)

as well as

L, (T BN B
}1_1)1})66 p/o exp(—?)/Q (B(t))4u (t) - (w(t) — 4 (¢t)) dedt

T T
~ &) / B (1) - ((t) — 6 (1)) dar dt — ep / (0(t) + 2e(£))iE= (£) - (t) — i (8)) dw dt. (6.21)
0 0

To estimate the remaining term, we observe that by (6.11) and in view of the regularity of the boundary
datum,

L)) [P0
G W) =~ 0= GO + [ e de
26i(1) ¢

) B(t)
— -2 o0 + gt exp (£) + [ i) ds + O()
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By the regularity of w, by (6.10), and by Lebesgue’s Theorem,

lim H / t) &) dE + e (t)p(t) exp (é)

550 L2(0,T)
B(t)
:lime/ (W(€) — W (1)) de
5—0 L2(0,T)
t+8el| ol o< 0,1y exp(T/<) ——
<1m |2 / (¢ de
=0 t—3elloll oo 0,y exp(T/e) Lo

Therefore, by (6.11) and (6.12),
2

- 1{55’/;6@(_““)5@)/9 - 0 (e

5—0 0 € (B(t))
w(t) . (ab(t) — () B(2) _
+ 2( -~ Gar w(ﬁ(t))) Gy } dz dt} —0, (6.22)
and
1 T Bt)Y - s (t) (1) .
;1_1}% 5€ p/ exp( ?>5(t)/9 By . (7 B0 +w(,8(t))) dz dt
~ o p/ /Q B + ep(t)) da dt

—€ p/ / t) dx dt. (6.23)

By combining (6.18)—(6.23), we obtain
L (T B0y g [ WA i
i 5{57 ) e (- 7)5 “’/wa Gy By

- “(’g()g)(? +1D(B(t))’2d:rdt— ?/()Texp<— é)/ﬁlﬁs(t)\zdwdt}

353,0 T T
=" ¢(t)/ |a€(t)\2d;z:dt+252p/ @(t)/ |31 (t)|? da dt
0 Q 0 Q

_ Y G (t) - (w(t) — uf T
P / B (1) - ((t) — i (1)) dar dt

T
—EP/ (p(t) + 2e9(8))i"(¢) - (w(t) — 0°(t)) da dt

— 2 p/ / t) +ep(t)) dedt
—e pA / t) da dt. (6.24)

To complete the proof of the e-energy inequality it remains to estimate from above the quantity
timsup 5 (Delexp(— - /2); 730, T) = Dyulexp(~ - /)70, T) (6.25)
6—0

To this aim, fix ¢t € [0,7], and let s € [0,7] be such that t = 8(s). Let 0 < tg < t1 < -++ <ty < T,
and for ¢ = 0,...,m, let s; € [0,7] be such that 8(s;) = ;. By the properties of 3, it follows that
0<s50<81< <8, <T. In view of (6.8), we have

g;exp <—t€> H(F () — 7 (1)) = iexp (_5(:)) HF (50) — pF(s51)
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< Dy(exp(— - /2);p50,T) +8 Y @(si)H(p" (1) — p*(s0-1))
=1

< Dy(exp(— - /€);p%;0,T) + 6Dz (5050, T).

Thus we can bound (6.25) from above as

. 1 ~& £ ()
hr;lsg)lp 5 (Dulexn(=-/e);5%0,T) = Dy(exp(—- /¢);p%0,T)) < Du(pip®0,T), (6.26)
—

where Dy is the quantity defined in (2.9). Combining (6.7), (6.17), (6.24), (6.26) and Lemma 6.1 we
finally obtain the inequality

1
O<hmsup—6(G (a5, e%,p°) — G(u®, e, p%))

d—0
/ /Q ) dar dt — / /(Ce (t) de dt
ﬁ’%" /|u |2dwdt+25p/ ga(t)/ i (6)|? de dit

—Ep// ((t) — 4 (1)) da dt — // £) + 2e3(4))ii€ (¢) - (1n(t) — (1)) dr dt
72€p// (o(t) + 2o(t) dmdtfep// o(t) da dt

—/ @(8) Dy (p%; 0,¢) dt (6.27)
0

for every ¢ € C2°(0,7). The energy inequality (6.6) follows now by performing an integration by
parts. O

7. PROOF OF THEOREM 2.3

Having established the uniform estimate (5.37) we are now ready to prove Theorem 2.3. For every
e > 0, let (uf,e,p?) be a minimizer of G, satisfying (5.37). Since p(0) = p" for every ¢ > 0, by a
generalization of Helly’s Theorem [11, Theorem 7.2] there exists p € BV (0, T; My(Q U To; M5?)) such
that

pe(t) = p(t)  weakly* in M,(QUTo; M3?)  for every ¢ € [0,T], (7.1)
€

In addition, (5.37) yields the existence of maps u € W2(0,T; L*(Q; R?)) and e € L?(0,T; L*(€; M2%3))
such that, up to subsequences,

u® —u  weakly in Wh2(0,T; L*(Q; R?)), (7.3)
e — e weakly in L*(0,T; L*(Q; MZ53)). (7.4)

In particular by (7.3), and by the embedding of W12(0,T; L?(Q;R3)) into C,,([0,T]; L?(Q;R3)) there
holds
uf(t) — u(t) weakly in L*(Q;R3) for every t € [0, 7], (7.5)

and u(0) = uP.
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By (7.1), (7.4), and (7.5) up to subsequences there holds

u®(t) =* u(t) weakly* in BD(Q) for every t € [0,T],
e (t) — e(t) weakly in L*(€; ngxng{) for every t € [0,T]. (7.7)

The fact that p satisfies the boundary condition on TI'y for every ¢t € [0,7] follows arguing as in [11,
Lemma 2.1].

Let v € C°((0,T) x ;R3). For A > 0, we have that

(u +/\exp(t)v e +)\exp( )Ev p) eV,

thus by the minimality of (u®,e®, p®),

i<G <u Jr)\exp(t)v e’ +)\exp< >Ev p> Gs(ue,es,p€)> >0,
/ / (v+ev+e v)dxdt—i—/ /(Ce Evdzdt=0 (7.8)

for every v € C°((0,T) x Q;R?). Integrating by parts with respect to time, (7.3) and (7.4) yield

—p/ /u vdwdt—i—/ /(Ce Evdzdt =0

for every v € C°((0,T) x Q;R?), that is
pii(t) — divCe(t) =0 (7.9)

in the sense of distributions. Since the same procedure applies to every v € C2°(0,T; C(;R?)) with
v =0 on Ty for every t € [0,T], we also obtain

Ce(t)y =0 on 902\ Ty. (7.10)

namely

Let now g € C°(0,T; L*(9; M%XS)), A > 0, and consider the test triple

t t
(ue, e® — Aexp <g>q,p5 + Aexp (g)q>
By the minimality of (u®, e®, p®),
1 G [u®, e — Nexp ! q,p° + Aexp <E>q — G (u®,e®,p%) | >0 (7.11)
A € b 6 b E € ) b p . .
On the other hand,

% (D (exp(— - /e);0° + Aexp(:/€)q; 0, T) — Dy (exp(— - /€); p%;0,T))

< Dy(exp(— - /e);exp(-/€)q;0,T),
and by the in-time regularity of ¢,

Dufesp(=- eyresp(-/2):0.T) = | Ceo (= D (Lexn ()at) + exo (L) ato)
<: / ey at + / ey ar

Thus (7.11) can be rewritten as

//(Ce qudt+/ dt+6/ H(4q(t))dt > 0.

for every g € C°(0,T; L*(Q; M%?)), and by (7.4),

/0 /Q(Ce: qudtS/OT’H(q(t))dt
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for every q € C°(0,T; L?(%; M%XS)). By approximation, the previous inequality holds in particular by
choosing ¢ = Mxrxp with M € M3*3, [ and B Borel subsets of (0,7) and U 'y, respectively. Hence,
we deduce that

[Ce(¢)]p € OH(0) (7.12)
for every t € [0,T] and for a.e. = € .

In order to complete the proof of the theorem it remains only to show that the limit triple satisfies
the energy inequality (c5’). We argue by passing to the limit in (6.6). In view of (7.4),

lir% //(Ce w(s)drdsdt = / //(Ce s Bu(s)dxdsdt, (7.13)
e—

whereas (5.37) yields

2%{32”/ //\u |2dxdsdt+€p/ / (i (t) — (1)) da dt
te p/ / dxdt—i—ep/ / |2dxdt} - (7.14)

for every ¢ € C2°(0,T). In addition, by (7.3) there holds

hmp/ / (D) (8) + 265(1))] dr dt

e—0

~ lim p / / i (1) - 0, (1) (1)) dv
:313% - / /Q da:ds—i—p/Tgb(t)/uE() ‘(t)da:dt}
—Eh_r%p/o gb(t)/gua() w(t) de dt — / / / s) da ds, (7.15)

lim 25p/ / (0)((8) + £(8))] da dt = 0 (7.16)
e—0
for every ¢ € C°(0,T). By collecting (7.13)—(7.16) we deduce the inequality

limsup/ /Q ))dx + = /\u |2d:1c+25,0/ /|u (t)|? dx ds
e—0

+ Dy (p%;0,t) — p/QuE(t) -(t) dx} dt

< /OT o(t) /(:/Q((Ce(s) L Bri(s) — puls) - w(s)) da ds.

By the Holder inequality, and by the regularity of w, there exists a constant C' independent of e, and
such that

and

/Q ))dx + = /|u |2d:z:+2€p/ /|u (t)|? dz ds 4+ Dy(p%; 0,t)
= [ #(0)- 00 da] > ~Cll¢ 1= 01

Hence Fatou’s Lemma yields

T t
. . . 1> B . £ €
/O () limsup | KL (t))da:+2/ﬂ i (t)|2dx+25p/0 /Q|u ()2 da ds

e—0

+ Dy(pF:0,4) — p/Quf(t) (1) da di
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T ¢
< /0 cp(t)/o /Q((Ce(s) s Bi(s) — pu(s) - w(s))dx dsdt (7.17)
for every ¢ € C2°(0,T). We observe that by (2.3)

H /Q((Ce(s) : Eiin(s) — pa(s) - i(s)) dx’

< C”e”LZ(O,T;LZ(Q;MS;iS))”EwHLOO(O,T;L?(Q;MS;H?))

L£2(0,T)

+ pllill2 0,722y 9] L= (0,7522 (2:m9))

since w € W32(0,T; W12(Q;R?)), and by the continuous embedding
W20, T; WH2(Q RY)) < C((0, T); L* (% R?)).

As a result, the map

t—>//(Ce  Bir(s) — pas) - i(s)) da ds

is W12(0,7) and hence continuous on [0,7]. The arbitrariness of ¢, (7.17) and the Du-Bois Raymond
Lemma imply the equality

hlglj(l)lp /Q ))dx + = /|u |2dx—|—25p//\u (5)]* dx ds
+ Dulp0,8) = p [ 0#(6) (0 o)

= /0 /Q((Ce(s) : Ew(s) — pi(s) - w(s)) de ds + Cy (7.18)

for every t € [0,T] and for some constant Cy. In particular, (7.18) holds for ¢ = 0. The initial conditions
satisfied by the triple (u®,e®, p®) imply

Q) de+ L [ P dz — p/ w1 (0) d. (7.19)
Q 2 Q Q

Integrating (7.18) with respect to time we deduce the equality

/hmsup /Q ) dx + = /|u |2dx+25p//|u )|? dx ds
e—0

+ Dy (p5;0,8) — p/QiLE(t) ~i(t) dm} dt

:// (Ce(s) : Bir(s) — pis) - 1i(s)) da ds di
BJO Q

[ ] e@yar+§ [ wde—p [ u-io)da] ar (7.20)

for every Borel subset B C [0,T]. In view of (7.18), an application first of the Reverse Fatou’s Lemma,
and then of Fatou’s Lemma yields

/hmsup /Q ) dx + = /|u |2d:£+25p/ /|u (5)|? dx ds
e—=0

¥ Dy (p5;0,0) — /aa() '(t)d:c}dt

zlimsup/ /Q ) dx + = /|u |2dx+2€p/ / i1 ()| dz ds
e—0

+ Dy (p5;0,8) — p/ua() u')(t)dx}dt

Zlimi(r)lf/ /Q ))dx + = /|u |2dx—|—26p/ / |ii° (s)|* dx ds
E—r



DYNAMIC PERFECT PLASTICITY AS CONVEX MINIMIZATION 35

+ Dy 0,4) — /us() (1) e} di

2liminf/ /Q ))dx + = /|u |2dx+25p//|u (8)* dx ds

e—0

—p/ﬂg(t)-u')(t) d:p} dt+/ lim inf Dy (p°; 0, 1) dt (7.21)
Q B €0

for every Borel subset B C [0,T]. By combining (7.2)—(7.4), and (7.21), we deduce the energy inequality

/Q ydr + = /|u )| dx + Dy (p;0,t) — /u(t)-w(t)da:

Q
< / (Ce(s) : Bui(s) — pi(s) - is(s)) duds + | Q) dz
0 Jo Q
- p/ ut - w(0) dx + B/ lut|? do (7.22)
Q 2 Ja
for a.e. t € [0,T]. In view of (7.18), we obtain the uniform estimate
€1l oo 0,712 22y + PN Lo 0,7522(sm3)) < C, (7.23)

where the constant C is independent of e.

In order to prove that u satisfies the first-order initial condition 4(0) = u! we argue as in [45, Theorem
4.2]. The minimality of the triple (u¢,e®, p®), yields the Euler-Lagrange equation

e?p /OT/QeXp ( - g)if(t) - p(t) dx dt + /OT/Qexp ( - ;)Ces(t) : Eo(t)dzdt =0 (7.24)

for every ¢ € W22(0,T; W&’Q(Q;R‘g)) satisfying ¢(0) = ¢'(0) = 0. Let &, — 0, and let S be a countable
dense subset of W, ?(Q;R?). Let I C (0,T) be defined as the set of points to € (0,T) such that

lim % /tt0+5 exp ( - i) /Qifn (t) - h(z) dx dt = exp ( - ti) /Qijen (to) - h(zx) dx dt, (7.25)

6—0 En

for every n € N, and for every h € S. Note that by Lebesgue’s theorem the set [0,7] \ I is negligible.
Fix tg € (0,T), and let s, € C(R) be defined as

0 t <tp
(t —to)?
t—t) 0
gn En

‘We observe that
2
wgn(t) = @X(toio-‘ré)(t)v

where X (4,.+,+5) 15 the characteristic function of (to,to +4). In addition,
2 2
loan(t)] < 5 (¢~ to)" and  @su(t) = = —to)*
as 0 — 0 for all ¢ € (0,T). Choosing ¢(t, z) = @sn(t)h(x), with h € S, by (7.24) we obtain

to+0
/ / exp E”( ) - h(z)dxdt
to

—I—/ / exp - i)go(;n(t)(CeE" (t) : Eh(z)dxdt = 0.
to Q €

n
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Letting 6 — 0, (7.25) and the Dominated Convergence Theorem yield

p/Q W (to) - h(z) dr + é /tOT /Q exp (to — t) (t —to)Ce® (¢t) : Eh(z)dz dt = 0.

En

y (7.23), there holds

E / / eXp to t—to)(CeE"( ): Eh(x) dxdt‘
C
2

<

n

T
ty —t
= HmeTL?(QMS%S))HEWL?(Q;MS;,S/ exp (=) (6~ to)
to
(T—tg)

< C”h”Wol’z(Q?RS)/O texp(—t) dt < C”hHWOlﬂ(Q;Rg).

Thus
p| [ i (o) do] < Cllllyza oz

where the constant C' is independent of €, and tg. In particular, we obtain the uniform estimate

p”’l'],E" ||Loc(07T;W71,2(Q;R3)) <C. (726)
By combining (7.3), (7.23), and (7.26), we deduce that

145" [| oo (0,72 (R3)) AW o0 (0,75~ 12 (3)) < C.
Thus, up to the extraction of a (non-relabeled) subsequence, there holds

a= () = i(t)  strongly in C([0, T); W12 RY)),

which in turn yields 7(0) = u!.

The thesis follows now by the uniqueness of solutions for the dynamic plasticity problem (see Theorem
2.2). O

We point out that the assertion of Theorem 2.3 still holds if we generalize the minimum problem (2.13)
by imposing e-dependent initial data satisfying suitable compatibility assumptions. To be precise, for
every ¢, define the set

V. := {(u,e,p) € WH2(0,T; L*(;R?)) N L*(0,T; BD(Q))
x L2((0,T) x ;M233) x BV([0, T]; My (U To; ME5?)) -

(ult), e(t), p(t)) € o (w(t)) for every t € [0,T,
u(0) = w2, a(0) = ul, ¢(0) = 2, p(0) = p2},

with (u2,e2,p?) € &/ (w(0)), and u! € BD() such that there exists el € L?(Q;M353) satisfying
(ul,el,0) € &(w(0)). Assuming that the initial data are well-prepared, namely

g *u®  weakly* in BD(RQ),
e? — e’ weakly in L(Q; Mg;n?;>
p? =" p°  weakly* in My (Q U Lo; M),

ul —u' strongly in W12 (Q; R3),

Ehi% /Q )da + 2 /|u |2dx—/ ()dx}
:/QQ(eO)dx—ki/Q|u1|2dx—p/Qu1-u';(O)da:,

and
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one can again prove that there exists a sequence of triples {(u®,e®,p®)}, with (u®,e®,p®) C V. for every
€, such that

I(uf,e%,p%) = . ;%rév I.(v, f,q),

such that {(u®,e®,p®)} converges to the solution (u,e,p) of dynamic perfect plasticity, namely (c1), (c2)
and (c3’), in the sense of Theorem 2.3.
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