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2. Automatic feature selection and configuration in a Computer Vision System
3. Automatic feature selection outperformed human selection 
4. Classification by Random Forest provided 100 % accuracy on cv Italia and 92% on 
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29 Abstract 

30 Quality rating is currently accomplished by non-destructive and subjective sensory evaluation or by 

31 objective and destructive analytical techniques. There is a strong need of an objective non-destructive 

32 contactless quality evaluation system to monitor fruit and vegetable along the whole supply chain. 

33 This paper proposes a Computer vision system to satisfy this request. Image processing and machine 

34 learning techniques have been combined to develop a Computer vision system whose configuration 

35 and tuning has been strongly simplified: that makes easier its deployment in real applications. The 

36 system has been verified on two table grape cultivars (Italia and Victoria) against three different 

37 classification tasks. The first considered five quality levels (5, 4, 3, 2, 1); the second separated the 

38 higher fully marketable quality levels (5 and 4) from the boundary (3) and the waste (2 and 1); the 

39 third separated the higher fully marketable quality levels (5 and 4) from the other three (3, 2 and 1). 

40 The system achieved a cross-validation classification accuracy up to 92% on the cultivar Victoria and 

41 up to 100% on the cultivar Italia. The obtained results support its capability of powerfully, flexibly 

42 and continuously monitoring the quality of the complete production along the whole supply chain.

43 Keywords: table grapes; quality evaluation; Computer vision system; random forest classifier.

44 1.  Introduction 

45 Table grape (Vitis vinifera L.) is a non-climacteric fruit subject to serious quality loss after harvest, 

46 mainly due to water loss, which cause stem browning and sensitivity to microbial decay. Rachis 

47 browning is the most important physiological disorder of table grapes post-storage, while the primary 

48 pathological spoilage problem is decay caused by Botrytis cinerea (Lichter, 2016). 

49 Colour characteristics, firmness (skin, pulp and whole berry), chemical and volatile composition are 

50 the main sensory attributes evaluated by consumers. Usually, a green rachis is an indicator of 

51 freshness and hence a brown rachis can be a cause of consumer rejection and fruit waste. Generally, 

52 the quality level of table grape is determined through sensory and subjective determination combined 

53 to analytical and destructive techniques, which are time consuming and sometimes may require 



54 sophisticated equipment. Research has been focused on developing non-contact, rapid, environmental-

55 friendly and accurate methods for non-invasive evaluation of quality in fruits and vegetables (Liu et 

56 al., 2017). Among these, Computer vision systems (CVSs) may be applied to extend quality 

57 prediction and discrimination along the whole supply chain from harvesting up to consumers. CVS 

58 combines mechanics, optical instrumentation, electromagnetic sensing and digital image processing 

59 technology (Patel et al., 2012). Computer vision systems are widely used to accomplish quality 

60 control on fruit and vegetables (Blasco et al., 2017). As reported by many Authors, CVS was used to 

61 assess quality and marketability of tomatoes (Arias et al., 2000), artichokes (Amodio et al., 2011), 

62 fresh-cut nectarines (Pace et al., 2011), fresh-cut lettuce (Pace et al., 2014), fresh-cut radicchio (Pace 

63 et al., 2015) and rocket leaves (Cavallo et al., 2017). Moreover, assessment of solid soluble content of 

64 table grape was also conducted using the hyperspectral imaging systems with the scatter mode by 

65 Baiano et al. (2012). In addition, Bahar (2017) evaluated quality of table grape measuring rachis 

66 browning through no destructive image analysis. Colour, with shape and size, represents a strong 

67 index of product quality for both producers and consumers and is therefore used by humans or by 

68 instruments to monitor the quality. Computer vision systems have been used also to evaluate the 

69 quality of grapes. Pothen et al., (2016) proposed a vision-based system to evaluate the ripeness of 

70 grapes with the aim to monitor the temporal evolution of vineyard and the spatial map of fruits to 

71 support the decision about harvest dates and locations. The system uses the H component of the Hue 

72 Saturation Value (HSV) colour space to be independent on spectrally uniform illumination change. 

73 The thresholds on the H information that separate the considered classes of ripeness are set 

74 empirically by the designers of the system. Unfortunately, the illumination often changes in its 

75 spectral distribution both indoor and outdoor: it is therefore generally better to check the constancy of 

76 colour measures and to correct them whenever needed as the proposed system does using a colour 

77 reference in the scene. Rodriguez-Pulido et al., (2012) used image analysis to evaluate the maturation 

78 of grapes and the cultivar by analyzing the seeds and the berries. A colour-chart and a carefully 

79 controlled set-up are used to make consistent the acquisition process and manually set thresholds are 

80 used to separate the classes of interest. Raban et al. (2013) developed a statistical method of image 



81 analysis to measure rachis browning in four table grape cultivars in growth or storage. In Rahman and 

82 Hellicar, 2014, a classification of mature grape bunches was shown. Their work consists of a 

83 segmentation step to detect circles (berries) in the scene, RGB and HSV colour features extraction and 

84 SVM classifiers training to predict mature grape bunches and undeveloped grape bunches. Nogales-

85 Bueno et al. (2014) presented a hyper-spectral imaging system to predict, on grape skin, total phenolic 

86 concentration, sugar concentration, titratable acidity and pH using Modified Partial Least Squared 

87 Regression (MPLS). Diago et al. (2015) developed an image analysis system to predict yield 

88 components (berry weight, number of berries per cluster and cluster weights) by means of contour 

89 extraction and circle detection. These predicted variables are key components and have an impact on 

90 cluster architecture and compactness. Aquino et al., (2018a) use image analysis, on an android-

91 smartphone platform, to assess the number of berries in grapevine bunches at a phenological stage 

92 between berry-set and cluster-closure. Their system requires a dark background box to be placed 

93 behind the cluster to isolate the cluster, to enhance its separation from the background and to prevent 

94 mutual reflections between adjacent bunches. The RGB image are converted to the CIELAB colour 

95 space before any processing. Maximum light reflection points and morphological processing identify 

96 and select potential berries. False positives are discarded by a neural network trained on a proper set 

97 of berry descriptors. Mean and standard deviation of the a and b components in the CIELAB colour 

98 space are used as colour descriptors. Moving the CVS on a portable hardware platform such as a 

99 smartphone certainly extends its applicability along the supply chain but require further efforts to 

100 solve all the problems related to weaker constraints on the acquisition set-up (background, geometry 

101 and lighting). In Aquino et al. (2018b) a non-invasive and in-field yield prediction was presented. This 

102 research involves several stages as input images pre-processing, identification of berry candidates and 

103 neural network training in yield components prediction. Sollazzo et al., (2018) have verified the 

104 correlation between colour and chemical compound related to the assessment of grapes ripeness using 

105 colour measures obtained by a colorimeter or subjectively evaluated using a properly designed colour 

106 chart. On the other hand, our system has been designed to reduce the manual interventions in both 

107 configuration and tuning of the algorithms to enhance the performance and to simplify its application 



108 to different products. The aim of the proposed system is to achieve contactless and no destructive 

109 quality evaluation of table grape during cold storage using a colour reference in the scene: the system 

110 fully exploits image analysis and machine learning techniques to reduce human intervention in 

111 configuration and tuning to the minimum. This significantly simplifies its deployment and application 

112 in several points of the supply chain extending the quality monitoring and improving the product 

113 management.

114

115 2.  Materials and Methods

116 2.1.   Plant material and experimental setup

117 Table grapes (Vitis vinifera L., cvs Italia and Victoria) were provided by a farm (Ermes snc, 

118 Noicattàro, Bari, Italy) in two harvests (September and October) at the same maturity stage (total 

119 soluble solid content of 16° Brix, according to OIV, 2008) and were transported within 1 h from 

120 harvest to the Postharvest laboratory. One hundred bunches for each cultivar were placed in open 

121 polypropylene bags (25 × 30 cm, 30 μm, Carton Pack, Rutigliano, Italy), each one containing 1 bunch 

122 (about 1kg of product) and stored at two different temperatures (5 and 10 °C) for 25 and 20 days 

123 respectively for cv Victoria and 37 and 27 days respectively for cv Italia. The length of storage was 

124 defined as the number of days needed to reach the lowest quality level (QL) at each temperature. 

125 Thus, during storage, for each cultivar and storage temperature, 10 table grape bunches were 

126 evaluated by 8 panellist, in order to assign a QL using the following subjective scale: 5 = very good 

127 (rachis green, firm berries, no signs of decay), 4 = good (rachis green with slight symptom of 

128 dehydration, firm berries), 3 = limit of acceptability or marketability (rachis moderately browned, firm 

129 berries slightly brown), 2 = poor (evident signs of browning of rachis, loss of firmness of berries), and 

130 1 = very poor (unacceptable quality due to decay). Thus, 100 bunches of Italia and 100 bunches of 

131 Victoria were used for the QL assessment. The QL3 was considered the minimum threshold of 

132 acceptance for sale or consumption (Cefola et al. 2018), therefore values below 3 indicated a waste 

133 product (Figure 1). 



134 2.2.   Workflow of the proposed approach to predict the quality level of table grape bunches

135 The proposed approach to contactless and non-destructive evaluation of quality of table grapes by a 

136 Computer vision system (CVS) involves different tasks: acquisition of a dataset of calibrated colour 

137 images annotated with the QL of the corresponding table grape; proper pre-processing of the acquired 

138 images; colour features identification and extraction; training, tuning and testing a Random Forest 

139 Classifier (RFC). This workflow is graphically represented in Figure 2.

140

141 2.2.1. Data acquisition and pre-processing

142 Calibrated colour images were acquired and processed for each cultivar (Italia and Victoria); in total, 

143 for each cultivar, the data set was composed by 400 images, obtained acquiring each bunch 4 times in 

144 different position. Images (for each QL from 5 to 1) were acquired using the set-up previously 

145 reported (Cavallo et al., 2017 and, 2018; Pace et al., 2015 and  2017) using a 3CCD (Charged 

146 Coupled Device) digital camera (JAI CV-M9GE) with a dedicated CCD for each colour channel. The 

147 optical axis of the Linos MeVis 12 mm lens system was perpendicular to the black background. Eight 

148 halogen lamps (divided along two rows placed at the two sides of the imaged area) were oriented at a 

149 45° angle with respect to the optical axis. The images were saved using the uncompressed TIFF 

150 format. A small X-Rite colour-chart with 24 patches was placed into the scene to estimate colour 

151 variations due to environmental conditions and sensor characteristics by comparing the expected 

152 numerical values released by X-Rite with the measured ones. The colour-chart was automatically 

153 detected regardless its position and orientation. Its white patch was used to white-balance the image: a 

154 correction coefficient was evaluated (dividing the reference value by the measured value) and 

155 multiplied to each band to reduce the distance between the measured white and the reference one. 

156 Noisy pixels, for which at least one channel was greater than the maximum allowed value in the 

157 colour space (i.e. 255) after the white balance, were removed. The CVS automatically separated the 

158 product at hand (foreground) from the background using two thresholds automatically derived from 

159 the analysis of the whole image in the HSV colour space, without any human intervention. The 



160 segmentation was used only to identify the region belonging to the product (to be further processed) 

161 and not to separate different parts of the table grape. The segmentation approach was conservative: 

162 thresholds were derived to discard all the background pixels even at the cost of removing some 

163 peripheral parts at the borders of the product.     

164

165 2.2.2. Feature extraction

166 From every calibrated image related to each QL and cultivar suitable features were extracted. 

167 Specifically, two set of features were used: the first one was represented by statistical measures 

168 evaluated over the whole foreground on the channels in the CIELAB colour space (Cavallo et al., 

169 2017); the second one was derived by a centroid-based colour segmentation algorithm (Pace et al., 

170 2015).

171 To evaluate the first set of features all the pixel belonging to the foreground were converted from the 

172 device dependent RGB space into the device independent CIELAB colour space in which the L* 

173 channel expresses the lightness dimension (in the range [0,100]) while a* and b* represent 

174 respectively the green-red and blue-yellow colour components (both in the range [-127,128]). Mean 

175 and standard deviation (std) of each colour channel (L*, a* and b*) were computed. Moreover, 

176 mean(a*)*mean(b*), mean(L*)*mean(a*), mean(L*)*mean(b*), mean(a*)/mean(b*), 

177 mean(a*)/mean(L*) and mean(b*)/mean(L*) were considered. All these features were normalized using 

178 the min-max method to balance their influence on the final results: the obtained 12 normalized 

179 features were all positive and in the range [0,1].

180 To automatically obtain the second set of features, a hierarchical clustering algorithm was applied to 

181 the calibrated colour images. This unsupervised machine learning algorithm yields a structure called 

182 dendrogram that hierarchically groups all the colours according to a chosen distance metric. This 

183 structure can be cut at different depth providing, at the kth level, k clusters. The Euclidean distance 

184 was used as distance metric and the dendrogram was cut at the 2nd level providing two clusters. Two 

185 centroids were identified to represent these two clusters: they were therefore used to segment each 

186 image into two different regions. Specifically, all pixels belonging to the foreground were converted 



187 into CIELAB space and assigned to the nearest identified centroid using Euclidean distance (colour 

188 segmentation). Finally, the two percentages p1 and p2 of pixels belonging to the two clusters were 

189 used as further features to describe colour changes of the product surface due to senescence. In Figure 

190 3 is shown an example of centroid-based image segmentation carried out on table grapes labelled as 

191 QL5 and QL1. The image shows the difference between the two quality levels in terms of percentages 

192 of pixels belonging to the two relevant colours: it is important to note that even if they are roughly 

193 associated to green and brown they are chosen freely and automatically by the system to represent the 

194 colorimetric characteristics of the product at hand and are not constrained to mimic what humans 

195 consider to be relevant to for the desired task. Statistical features and percentages produce a vector 

196 with 14 basic elements. Moreover, additional polynomial features where composed by combining 

197 these basic features to further improve the expressivity of the feature vector. Nonlinear functions are 

198 often very difficult to fit and polynomial features can improve models’ accuracies. Anyway, high 

199 polynomial degrees should be avoided to prevent undesirable effects (overfitting, curse of 

200 dimensionality). A proper combination of polynomial features and tuning of their degree must be 

201 found to maximize effectiveness.

202

203 2.2.3. Random Forest models

204 Random Forest has been chosen as the supervised classification model to predict the QL of table 

205 grapes. This ensemble model is composed by multiple predictive trees whose combination achieves a 

206 predictive performance greater than each single component. Specifically, Random Forest, also called 

207 decision forest, consists of an ensemble of decision trees with feature and sample bagging: each tree is 

208 built on a sample (bootstrap) of the training set using a random feature subset instead of the whole 

209 feature space. This technique entails two main advantages: (i) in spite of a slight bias growth, variance 

210 (overfitting) is drastically reduced and (ii) the predictive performance (obtained by averaging the 

211 answers of the different trees) is generally improved. 

212 Since the target variable (QL) is a discrete variable that can assume five possible values (from QL5 to 

213 QL1) each decision tree is a classification tree. Nonetheless an equivalent regression ensemble model 



214 could be used with numerical response variables using regression trees as shown in Cavallo et al. 

215 (2017). Two cross-validation schemes were nested to implement this model. An external 5-fold cross-

216 validation was applied to the available samples (and to their associated feature vectors) to evaluate the 

217 predictive performance of the complete Random Forest model; an internal 10-fold randomized search 

218 was exploited to find the best configuration of the parameters (model tuning) at each iteration of the 

219 external cross-validation scheme.

220 To evaluate the efficacy of the automatic feature selection approach, each run was repeated working 

221 also on a set of manually selected features. Specifically, on the base of the visualization of bivariate 

222 graphics showing the relationship between predictors and target, three features (“mean of a* ”, “mean 

223 of b* ” and centroid-based colour percentage) were chosen. The comparison of performances obtained 

224 using these two different sets of features was used to assess the effectiveness of the automatic feature 

225 selection.

226 Furthermore, three different resolution of classification of QL were checked. QL5 and QL4 represent 

227 the higher fully marketable qualities, QL3 represents the limit of acceptability or marketability while 

228 QL2 and QL1 represent only wastes. Therefore, the following classification tasks were verified:

229  a) 5 classes classification: QL5 vs QL4 vs QL3 vs QL2 vs QL1;

230 b) 3 classes classification: {QL5, QL4} vs QL3 vs {QL2, QL1};

231 c) 2 classes classification: {QL5, QL4} vs {QL3, QL2, QL1}.

232 The task a is the most informative but proved to be slightly less robust. The task c is the less detailed 

233 but was much more robust and can timely alert about the achievement of the limit of acceptability or 

234 marketability: this can activate special marketing policy or can send the product toward alternative 

235 recycling paths to reduce waste. Two different approaches were compared during the modelling 

236 phase: in one of them features were manually selected before running the machine learning pipeline; 

237 in the other case features were automatically identified by the learning algorithm. Some of the 

238 parameters of the Random Forest classifier were manually set while other were optimized during the 

239 model tuning using an inner cross-validation randomized search. The following parameters were 

240 manually set: the gini-index (used to measure the quality of splits), the square root of the number of 



241 total features (adopted as the maximum number of features for each classification tree), the minimum 

242 number of samples required to split an internal node (set to the value 2), the minimum number of 

243 samples required for a leaf node (set to 1). Bootstrap samples was used (in addiction to bootstrap 

244 features): that is samples were drawn with replacement. The generalization accuracy was estimated by 

245 using out-of-bag (oob) score: this method avoids the need of a separate test set by considering, for 

246 each training instance i, the average error made by classifying using only the trees of the random 

247 forest that do not contain the instance i in their bootstrap samples. The following parameters were 

248 optimized by model tuning: number of trees (in the range [25,50]), maximum depth of trees (in the 

249 range [5,10]) and degree of polynomial features (in the range of [2,6]). Because tuning parameters 

250 requires a validation set, a nested cross-validation was used: the internal cross-validation used for 

251 tuning split the training data used by the outer cross-validation.

252 3.0. Results and Discussion 

253 To manually select the features by evaluating the relationship between target and predictors, features 

254 were visualized using bivariate plots. A strong correlation was observed between centroid-based 

255 percentage features p1 and p2 and QLs of the cultivar Italia. It was possible to separate higher QLs 

256 table grapes belonging to QL5 and QL4 from QL3, QL2 and QL1 remaining grapes. This interesting 

257 relationship is shown in Figure 4. Similarly, a good correlation was observed between channel 

258 features (mean of L*, a* and b*) and table grapes QLs. 

259 The performances of the predictive models were measured using classification accuracy (correct 

260 predictions/total predictions) averaged over the results of the outer 5-fold cross-validation. In fact, 

261 model tuning was performed by an inner 10-fold cross-validation, while outer 5-fold cross-validation 

262 was used only to evaluate learned models. Each fold was composed by stratified sampling to 

263 guarantee that each QL was properly represented in each fold. The same pipeline was repeated twice: 

264 one with manually chosen features and one with automatic selected features.

265 In Table 1 predictive performances for the three different classification tasks between  manual feature 

266 selection and automatic feature selection are compared on both the cultivars Italia and Victoria. The 



267 performance on the cultivar Italia was better than the one on cultivar Victoria. Probably this is related 

268 to the fact that in cv Italia, the loss of quality is mainly due to the colour change of berries, while in 

269 Victoria this is less discriminant and needs to be integrated by other quality traits (such as berry 

270 dehydration, rachis browning and desiccation) to characterize the QLs. 

271 The separation of all the five classes can be achieved with lower robustness. On the other hand, to 

272 separate the two first QLs (5 and 4) is not relevant in real applications. Even the separation of the last 

273 two QLs (2 and 1) is often not significant because they both correspond to products that cannot be 

274 sold anymore. Along the supply chain is generally important to detect the achievement of QL3 

275 because it represents the limit of marketability (Amodio et al., 2007). The system has been able to 

276 separate the highest QLs (5 and 4) from the other (from QL3 to QL1) with an accuracy of 100 % on 

277 cultivar Italia and of 92% on cultivar Victoria. Similarly, the same CVS, applied to fresh-cut lettuce, 

278 resulted able to discriminate the acceptable product (ranging from QL5 to QL3) from the waste (QL 

279 =2 or 1), starting from features based on colour parameters and also to provide an accurate estimate of 

280 the ammonium content, giving a non-destructive evaluation of a chemical and objective parameter 

281 (Pace et al., 2014). 

282 The experiments showed that the automatic feature selection was able to outperform the manually 

283 selected features. The ensemble model achieved better scores regardless the cultivar or the specific 

284 classification tasks. This is important because the configuration of the system can be done 

285 automatically by feeding in the system a quite large set of potential features, leaving to machine 

286 learning tools the task of selecting how many and which characteristics are better suited to achieve the 

287 classification task at hand. This makes the extension of the system to other products or cultivar much 

288 easier and achievable even by non-expert users. The proposed models are based on a complex 

289 combination of factors extracted from digital images which allow to predict the sensory quality with 

290 good performance. This overcomes the limits of linear models (Baiano et al; 2012) that were able to 

291 predict the intrinsic characteristics (i.e. pH, soluble solid content, titratable acidity) but that proved to 

292 poorly estimate sensory parameters of table grape such as visual quality. 



293 In addition, to average cross-validation classification accuracy on training and test sets, Table 2 and 

294 Table 3 show the confusion matrices obtained by the classification model using automatically selected 

295 features. This more detailed information can be useful to judge the kinds of errors made by the system 

296 and their relevance to the specific application needs. Different errors can correspond to different costs 

297 and this information can be used to judge the economic impact of errors and tune the classification 

298 strategy according to the required economic risk. 

299 The experiments showed that it is possible to use a CVS to non-destructively and contactless evaluate 

300 the quality of table grapes by developing classification model that are specific for single cultivars. The 

301 performance of the system on each cultivar does not depend on the storage temperature making it 

302 practically useful in real context where the temperature can be confined into specific range but cannot 

303 be kept constant around a fixed point. 

304 Further experiments have been planned to try to understand the source of the different performances 

305 on different cultivars. Globally, the system appears to be able to provide an effective answer to the 

306 request of a non-destructive and contactless method to grade completely the production in a more 

307 objective and reliable way with respect to human made visual evaluation. In addition, the system 

308 compares favourably with costs and time required by the destructive analytical tests made in the 

309 laboratory.

310 4.0. Conclusions

311 A Computer vision system for the non-destructive and contactless evaluation of quality of table grapes 

312 has been presented. It has been verified on two table grape cultivars (Italia and Victoria) showing 

313 good performance on the task of checking and detecting when the product reaches the QL 3, that 

314 represents the limit of marketability and therefore require specific management actions to be assumed. 

315 The Computer vision system uses image processing techniques to process and analyse colour images 

316 and achieve the required classification. It also exploits a few machine learning methodologies to 

317 simplify the configuration and tuning of the algorithms avoiding human intervention as much as 

318 possible without performance loss. On the contrary, the experiments showed that automatic features 



319 selection outperformed manually selected features. This assisted configuration makes easier to extend 

320 its application to different situations along the supply chain and to different cultivars. The Computer 

321 vision system represents a suitable tool to solve the request for a quality evaluation tool that can be 

322 applied to the whole production and provide an objective answer with lower cost in terms of time and 

323 money with respect to the destructive tests in laboratory.      
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Figure 1. Quality level rating scale for table grapes of cultivars Italia and Victoria. 

5= very good (rachis green, firm berries, no signs of decay), 4 = good (rachis green with slight symptom of 
dehydration, firm berries), 3 = limit of acceptability or marketability (rachis moderately browned, firm 
berries slightly brown), 2 = poor (evident signs of browning of rachis, loss of firmness of berries), and 1 = 
very poor (unacceptable quality due to decay).  



Figure 2.  The three phases of the proposed approach: (a) all the table grapes were classified by 

experts according to 5 quality level (QL) where the fresh product corresponds to quality 5 and the 

worst product (waste) to quality 1; (b) all the classified table grapes were acquired and processed by 

the CVS, 14 numerical features were identified and an ensemble Random Forest classifier was 

trained, tuned and tested using the training set; (c) the validated model was used to classify unseen 

table grapes.



Figure 3. An example of centroid-based segmentation of images of table grapes (cv Italia) belonging 

to QL 5 (a, b, c) and QL 1 (d, e, f). A hierarchical clustering unsupervised technique was applied on 

a set of pixels representing the whole dataset. Then, each image was segmented by these centers and 

the number of pixels (for each segment) was used to identify percentage-based features.



Figure 4.  These graphs show on the y-axis the percentages of color 1 (P1) and of color 2 (P2) for 

table grapes of cultivar Italia (a) and Victoria (b) stored at 10°. The digital images of bunches are 

ordered along the x-axis from left to right from the highest quality (QL5 5) to the lowest (QL1). QL 

5 goes from 1 to 40, QL 4 from 41 to 80, QL3 from 81 to 120, QL2 from 121 to 160, QL1 from 161 

to 200. Features P1 and P2 are much more significant in the case of the cultivar Italia. The same 

trends were observed in the samples stored at 5°.



Table 1. Cross-Validation classification accuracy for the cultivar Italia and Victoria obtained 

using the Random Forest model verified on 3 different classification tasks: 5 classes, 3 classes 

and 2 classes. Moreover, its performance has been checked on both manually selected features 

(“Mean(L*,a*,b*), p1, p2”) and automatically selected features. The results assess the efficacy of 

our approach using a self-configuring and mostly automatic CVS.

 

Cross-Validation 
classification accuracy Feature Selection Classification task
cv Italia cv Victoria 

Mean(L*, a*, b*), p1, p2 QL5 vs QL4 vs QL3 vs QL2 vs QL1 0.72 0.6
Automatically selected features QL5 vs QL4 vs QL3 vs QL2 vs QL1 0.74 0.71
Mean(L*, a*, b*), p1, p2 {QL5, QL4} vs QL3 vs {QL2, QL1} 0.91 0.78
Automatically selected features {QL5, QL4} vs QL3 vs {QL2, QL1} 0.94 0.83
Mean(L*, a*, b*), p1, p2 {QL5, QL4} vs {QL3, QL2, QL1} 1.0 0.92
Automatically selected features {QL5, QL4} vs {QL3, QL2, QL1} 1.0 0.92



Table 2. Further data about the performance of the Random Forest model (with automatic feature 

selection) on the cultivar Italia for all the three considered classification tasks: the average Cross-

Validation (CV) Accuracy observed on both the training and test sets and the confusion matrix on the test 

set. In the confusion matrix, the columns represent the classification made by the CVS while the rows 

express the true class of the samples. Therefore, the number of samples belonging to each class is given 

by the sum of the values on each row. 

CV 
classification 

Accuracy
Confusion Matrix (test)

Classification task
Training Test

QL1 QL2 QL3 QL4 QL5  
49 24 7 0 0 QL1
15 51 14 0 0 QL2
3 9 68 0 0 QL3
0 0 0 63 17 QL4

QL5 vs QL4 vs QL3 vs QL2 vs QL1 0.99 0.75

0 0 0 10 70 QL5
QL1151 9 0
QL2

16 64 0 QL3
QL4

{QL5, QL4} vs QL3 vs {QL2, QL1} 0.99 0.94

0 0 160
QL5
QL1
QL2240 0
QL3
QL4

{QL5, QL4} vs {QL3, QL2, QL1} 1 1

0 160
QL5



Table 3. Further data about the performance of the Random Forest model (with automatic feature selection) 

on the cultivar Victoria for all the three considered classification tasks: the average Cross-Validation (CV) 

Accuracy observed on both the training and test sets and the confusion matrix on the test set. In the 

confusion matrix, the columns represent the classification made by the CVS while the rows express the true 

class of the digital images acquired on table grape bunches. Therefore, the number of images belonging to 

each class is given by the sum of the values on each row. 

CV 
Classification

Accuracy Confusion Matrix (test)Classification task

Training Test QL1 QL2 QL3 QL4 QL5  
72 5 2 1 0 QL1
9 57 12 2 0 QL2
0 17 45 9 9 QL3
0 3 11 46 20 QL4

QL5 vs QL4 vs QL3 vs QL2 vs QL1 0.99 0.71

0 0 4 11 65 QL5
QL1141 14 5
QL2

20 44 16 QL3
QL4

{QL5, QL4} vs QL3 vs {QL2, QL1} 0.99 0.83

2 13 145
QL5
QL1
QL2223 17
QL3
QL4

{QL5, QL4} vs {QL3, QL2, QL1} 1 0.92

17 143
QL5


