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Evidence of superfluidity in a dipolar supersolid from
nonclassical rotational inertia
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A key manifestation of superfluidity in liquids and gases is a reduction of the moment of inertia under
slow rotations. Nonclassical rotational effects have also been considered in the context of the elusive
supersolid phase of matter, in which superfluidity coexists with a lattice structure. Here, we show that
the recently discovered supersolid phase in dipolar quantum gases features a reduced moment of
inertia. Using a dipolar gas of dysprosium atoms, we studied a peculiar rotational oscillation mode in a
harmonic potential, the scissors mode, previously investigated in ordinary superfluids. From the
measured moment of inertia, we deduced a superfluid fraction that is different from zero and of order of
unity, providing direct evidence of the superfluid nature of the dipolar supersolid.

S
uperfluids exhibit their most spectacular
properties during rotation. This is be-
cause the superfluid state is described by
a macroscopic wave function, the phase
of which can change only by integer

multiples of 2p upon completing a closed path.
For a cylindrical superfluid rotating at low
angular velocities, w → 0, this condition leads
to the vanishing of both angular momentum
L andmoment of inertia I = hLi/w. An angular
momentum can appear only for sufficiently
large w at integer multiples of the reduced
Planck’s constant ℏ, through the appearance
of quantized vortices. These nonclassical rota-
tional effects have been verified for most known
superfluids: nuclear matter (1), 4He (2), 3He
(3), gaseous Bose-Einstein condensates (4),
degenerate Fermi gases (5), and exciton-polariton
condensates (6). A related phenomenon is the
Meissner effect in superconductors (7).
At the end of the 1960’s, another type of

bosonic phase of matter described by a macro-
scopic wave function, the supersolid, was pre-
dicted to exist. In a supersolid, superfluidity
coexists with a crystal-type structure (8–10).
A. J. Leggett suggested that a rotating super-
solid should show a moment of inertia inter-
mediate between that of a superfluid and that
of a classical system, I= (1− fs) Ic. Here, Ic is the
classical moment of inertia and 0 ≤ fs ≤ 1 is
the so-called superfluid fraction (10). This
phenomenon is called nonclassical rotational
inertia (NCRI). Standard superfluids can have
fs <1, but only at finite temperature, T > 0, be-
cause of the presence of a thermal component.
In a supersolid at T = 0, the reduction of the
superfluid fraction is instead caused by the
spatially modulated density, which tends to
increase the inertia toward the classical limit
(10, 11).
At the time it was proposed, the primary

candidate for observing supersolidity was

solid helium. Torsion oscillators were used
extensively to attempt detecting NCRI (12).
The original announcement of the possible
presence of a large superfluid fraction, fs ≈ 10−1

(13, 14), later received a different interpreta-
tion based on a change of the elastic properties
of the solid (15) and has not been confirmed by
more recent studies (16). Superfluidity in bulk
solid helium has now been excluded down to
the level of 10−4 (17), and the search goes on in
two-dimensional (2D) films (18).
We studied a different supersolid candidate,

a gaseous Bose-Einstein condensate (BEC) of
strongly dipolar atoms in which a density-
modulated regime coexisting with the phase
coherence necessary for supersolidity has been
recently discovered (19–21). So far, its super-
fluid nature has been tested through nonrota-
tional excitation modes that can be described
in terms of the hydrodynamic equations for
superfluids (22–24). Here, we aimed instead
at characterizing the NCRI of such a system,
searching for direct evidence of superfluidity
under rotation, in the spirit of the helium
experiments.
Achieving dipolar supersolids large enough

to realize a cylindrical geometry has so far not
been possible, so we used a specific rotation
technique that fits the asymmetric, small-sized
systems available in the laboratory.We excited
the so-called scissorsmode, a small-angle rota-
tional oscillation of the harmonic potential
that naturally holds the system. This tech-
nique, inspired by an excitation mode of nuclei
(25), has been proposed (26, 27) and used (28)
to demonstrate the superfluidity of ordinary
BECs. A recent theoretical study has shown
that the scissors mode can also be used to
characterize the NCRI of a dipolar supersolid
(29). We studied the change of the scissors
mode frequency across the transition from
BEC to the supersolid regime to directly com-
pare the supersolid with a fully superfluid
system.
In this experiment, a BEC of strongly mag-

netic Dy atoms is held in an anisotropic

harmonic trap, with frequencies wx,y,z = 2p
(23,46,90) s−1, with the dipoles oriented in the
z direction by a magnetic field B (Fig. 1). The
temperature is sufficiently low to have a neg-
ligible thermal component (30). We induced
the transition fromBEC to supersolid by tuning
through a magnetic Feshbach resonance the
interaction parameter edd, which parametrizes
the ratio of the dipolar and van der Waals
interaction energies (19). In the supersolid
regime, a density modulation develops along
the weak x axis, leading to the appearance of
interference peaks in the momentum dis-
tribution. We know our lattice to be com-
posed of two principal density maxima, or
“droplets,” each containing ~104 atoms (22).
This realizes a so-called cluster supersolid (31),
very different from the hypothesized helium
supersolid with one particle per lattice site. In
principle, further tuning of eddwould bring the
system into the so-called droplet crystal regime,
with no coherence between the droplets (19–21).
The scissors mode is excited by changing

suddenly the direction of the eigenaxes of the
harmonic trap (30). This results in a sinusoidal
oscillation with frequency wsc of the angle q
between the long axis of the system and the
corresponding trap axis. We chose to rotate
the system in the (x,y) plane, perpendicular
to the direction of the dipoles, so that the
dipolar interaction potential would be inde-
pendent of q (32, 33).
The oscillation frequency can be directly

related to the moment of inertia of the
superfluid through the following equation:

I = Ic a b (wx
2 + wy

2)/wsc
2 (1)

Where a = (wy
2 − wx

2)/(wy
2 + wx

2) and b =
hx2 − y2i/hx2 + y2i are geometrical factors
measuring the deviation from cylindrical sym-
metry of the trap and of the density dis-
tribution, respectively (26, 29). Whereas a can
be measured experimentally, b needs to be
calculated theoretically (30). For nondipolar
BECs in the Thomas-Fermi regime, one has
the simplification b = a (27). For dipolar sys-
tems, the density deformation changes instead
with the interaction parameter because of
magnetostriction, b = b (edd) ≠ a (32). If the
oscillation amplitude is much smaller than b,
then the density deformation stays constant
during the motion (26).
We can now connect the moment of iner-

tia to a superfluid fraction, which we define
specifically for our system in analogy with
Leggett’s definition, taking into account our
noncylindrical geometry as follows:

I = (1 − fs) Ic + fs b
2 Ic (2)

It is easy to see that this definition coincides
with Leggett’s one in the cylindrical case, b =
0. It also coincides with the known results
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for a superfluid with elliptical geometry, I =
b2 Ic (1, 26, 34). The presence of a residual
moment of inertia in the BEC, despite fs =
1 at T = 0, derives from a peculiar velocity
distribution, which is very different from the
one in a cylindrical geometry (26, 27). Finally,
by combining Eqs. 1 and 2, one can directly
relate the superfluid fraction to the trap and
scissors frequencies and to the deformation
as follows:

fs = [1 – ab(wx
2 + wy

2)/wsc
2]/(1 − b2) (3)

We note that the scissors mode is analogous
to the helium torsion oscillators because
both detect NCRI through the oscillation
frequency (13–16), although there are some
differences. In the scissors mode, all atoms

experience the restoring force from the trap,
so there are no elastic effects to consider (15).
A finite deformation b is clearly necessary for
the scissors mode, whereas torsion oscillators
are normally symmetric, although macroscopic
deformations can be taken into account with
the same formalism (34, 35) and a related tor-
tuosity effect is present for superfluids in
porous media (13).
Let us now turn to the experimental results.

Figure 1, B to E, summarizes the scissors mea-
surements in the BEC and supersolid regimes.
The 2D density distributions are imaged after
a free expansion of the system, representing
effective momentum distributions. They are
fitted to extract the angle q′ in the laboratory
frame for various observation times t. The re-
sulting data for q′(t) are fitted with a sinusoid

to measure wsc (30). Both the BEC and super-
solid regimes feature single-frequency oscil-
lations, as expected for weakly interacting
superfluids (26). We ensured that a thermal
sample featured instead a two-frequency oscil-
lation, as expected for a weakly interacting
system [fig. S1 (30)].
To avoid perturbations caused by other

collective modes (30), we used two different
excitation techniques for the BEC and the
supersolid regimes, which result in a lower
amplitude of the scissors mode for the super-
solid (Fig. 1, D and E). The accuracy in the
determination of the scissors frequency in
that regime is limited also by the finite life-
time of the supersolid (19).
A summary of the experimental results

for the scissors frequency and the related
moment of inertia is shown in Fig. 2. The
results are compared with the theoretical
predictions of (29), calculated for trap parame-
ters and atom numbers close to the experimen-
tal ones. For the BEC, we measure a frequency
that depends only weakly on the interaction
parameter edd, consistent with the prediction
of a weak change of the deformation b (edd)
(32). By contrast, when the system enters the
supersolid regime, we observed a clear reduc-
tion of the frequency, in agreement with the
theory. From the measured frequency, we can
determine the moment of inertia I/Ic through
Eq. 1, where the deformation b is determined
from the numerically calculated density dis-
tributions (29). These results are shown in Fig.
2B. In the BEC regime, the moment of inertia
differs by a factor of two from the classical
value and the ratio I/Ic is consistent with b2,
as expected for a fully superfluid system. In the
supersolid regime, at edd= 1.45, themoment of
inertia increases toward the classical value but
does not reach it. This provides evidence of
NCRI for the dipolar supersolid.
The data point in Fig. 2B further in the

supersolid regime, at edd = 1.5, has larger
error bars because of the shorter lifetime of the
system. We were unable to study the droplet
crystal regime, which is predicted to appear
for edd ≈ 1.52 (29) because of the loss of the
interference pattern (19–21).
The change of I/Ic is in principle caused

by both the change of shape, b (edd), when
the supersolid modulation forms and the
related change of the superfluid fraction. The
experiment-theory agreement for I/Ic both in
the BEC regime, where fs = 1, and at edd =1.45,
where I is expected to be close to Ic, supports
the validity of the calculated b for our system.
Equation 2 shows that if the superfluid frac-
tion of the supersolid varies between 0 and 1,
then I/Ic shown in Fig. 2B should vary between
1 and b2. More directly, we calculate the
superfluid fraction from Eq. 3, using the ex-
perimental frequencies and the theoretical b.
The results are shown in Fig. 3, together with
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Fig. 1. Scissors mode measurements. (A) Sketch of the experimental geometry. The atomic system
(ellipse) is trapped in an anisotropic potential with eigenaxes x and y. A sudden rotation of the trapping
potential excites an angular oscillation q(t) (red arrows). (B and C) Examples of the experimental
distributions after free expansion and of the corresponding 2D fits used for extracting the oscillation angle q′
after the free expansion in the BEC regime [edd = 1.14 (B)] and the supersolid regime [edd =1.45 (C)].
(D and E) Time evolution of the angle q′(t) in the BEC regime (D) and the supersolid regime (E). Error bars
represent the SD of four to eight measurements.

RESEARCH | REPORT
D

ow
nloaded from

 https://w
w

w
.science.org at C

N
R

 FIR
E

N
Z

E
 on Septem

ber 20, 2022



the corresponding points calculated from the
theoretical predictions of (29).
In the BEC regime, the data confirm that

the system is fully superfluid, fs = 1, as already
found for nondipolar BECs (28). In the super-
solid regime, we can reliably calculate the
superfluid fraction only for the experimental
data point at edd = 1.45. Unexpectedly, the
superfluid fraction of the supersolid is very
large, fs ≈ 0.9, in agreement with the numerical
calculations. Given the measurement uncer-
tainty, fs is consistent with unity and incon-
sistent with zero. This result demonstrates
the superfluid nature of the dipolar super-
solid under rotation.
The theory predicts a reduction of the

superfluid fraction moving further into the
supersolid regime, although fs remains finite
even in the droplet crystal regime because of
the superfluidity of the individual droplets
under rotation (29). In the experiment, we
cannot check whether fs decreases moving to
edd = 1.5 because the lower measurement
accuracy and the increase of b2 shown in Fig.
2B prevent us from measuring fs reliably (30).
It is interesting to compare our results with

the original prediction by Leggett for the
superfluid fraction of a supersolid rotating
in a 1D annulus,

fs ≤ [∫ dx/r(x)]−1 (4)

where r(x) is the normalized density along
the annulus and the integral is performed on
a lattice cell (10, 11). Equation 4 shows that
the reduction of the superfluid fraction is a
consequence of the breaking of translational
invariance, because fs is determined by the
minimum density between lattice sites. Intui-
tively, in a homogeneous superfluid, r(x) =
constant implies that each atom is equally
delocalized so no rotation happens. In a sys-
tem where r(x) → 0 between neighboring
lattice sites, the sites are distinguishable, so
the system rotates classically. The supersolid
is the intermediate case in which the atoms
are still delocalized, but the density modula-
tion allows a partial rotation, increasing the
moment of inertia compared with a homo-
geneous superfluid.
In 1970, Leggett used Eq. 4 and the known

information on the helium lattice to estimate
fs < 10−4 for solid helium (10), a result com-
patible with current measurements (17). Our
dipolar supersolid does not move in a 1D con-
figuration as in the Leggett model but has a
more complex dynamics in the whole (x,y)
plane, with both motion along the x axis,
where the density modulation forms, and
rotation of the individual droplets. There-
fore, we expect Eq. 4 to account only for the
superfluid fraction related to the dynamics
along x, because it does not consider the
superfluidity of the individual droplets.
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Fig. 2. Scissors mode frequency and moment of inertia versus the interaction parameter. (A) Scissors
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are the mean-field and beyond-mean-field theoretical predictions, respectively (29, 32). (B) Moment of
inertia. Large squares and circles are derived from Eq. 1 using the experimental measurements of the
scissors frequencies and the theoretical b (29). Black dots are the numerical simulation (29). Small open dots
are the theoretical prediction for b2 (29). Error bars indicate 1 SD (30). In the experiment, edd has a
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1.2 1.4 1.5
εdd

0.25

0.50

0.75

1.00

0.00

f s

1.451.351.15

0

25

50

75

ρ(
x)

 (μ
m

-1
)

100

-10 -5 0 105
x (μm)

Fig. 3. Superfluid fraction from BEC to supersolid. Red squares and blue circle are the superfluid
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line) and edd = 1. 5 (dashed line). Gray indicates the region of integration for Eq. 4.
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Because we cannot measure r(x) experi-
mentally, we used numerical calculations (30).
The right side of Eq. 4 is shown in Fig. 3 as
triangles. It drops from unity for the BEC to
~0.3 for the supersolid, a relatively large value
set by the large overlap between the two cen-
tral droplets (Fig. 3, inset). It then decreases
for increasing edd, reaching almost zero at
edd = 1.5, where the droplets overlap almost
vanishes. In that regime, one can recover the
finite superfluid fraction of the numerical
calculations by considering the droplets’ super-
fluidity. Indeed, applying Eq. 2 to the case of
independent droplets and considering that
each droplet’s moment of inertia about its
axis is zero because of the cylindrical sym-
metry (30), one obtains the estimate fs

drop ≈
(1 − b)/(1 − b2). Using the theoretical distribu-
tions, we get fs

drop ≈ 0.5 for all the data points
in the supersolid regime (black diamonds
in Fig. 3). This estimate is quite close to the
numerical data point for fs at edd = 1.5, and
>2 SDs below the experimental data point
at edd = 1.45. Together with the qualitatively
similar reduction of the two theoretical data-
sets for increasing edd, this suggests that the
mechanism identified by Leggett might have
a relevant role in our small dipolar supersolid.
To obtain a quantitative assessment, one will
need further measurements and a theoretical
analysis based on a 2D analog of the Leggett
result (36, 37).
We have established the superfluid nature

of the dipolar supersolid by characterizing its
nonclassical rotational inertia. The supersolid
is different from standard superfluids be-
cause of the reduced superfluid fraction caused
by the spontaneous breaking of translational
invariance. The techniques that we have dem-
onstrated, with an improvement of the mea-
surement precision and of the resolution on

edd, will allow testing whether the super-
fluid fraction of the supersolid is indeed
smaller than unity. Achieving larger systems
might also allow studying the supersolid be-
havior in an annular geometry or in a 2D
configuration, as well as studying the dy-
namics of quantized vortices in the supersolid
phase (29).
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A supersolid rotation
When a bucket of water is rotated, the water rotates with the vessel, contributing to the total moment of inertia. If such
an experiment were done with a superfluid, it would decouple from the vessel and would not contribute to rotation.
Tanzi et al. studied an intermediate case, a supersolid, which is predicted to only partially decouple, resulting in a
moment of inertia smaller than the classical value. Whereas previous such experiments were done with helium, the
authors used a gas of highly magnetic dysprosium atoms in an optical trapping potential that was suddenly changed,
causing the gas to oscillate. Measuring the frequency of these oscillations provides evidence for a reduced moment of
inertia.
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