
Nanophotonics 2024; 13(17): 3017–3035

Review

Antonio Ciarlo*, David Bronte Ciriza, Martin Selin, Onofrio M. Maragò, Antonio Sasso,

Giuseppe Pesce, Giovanni Volpe* and Mattias Goksör

Deep learning for optical tweezers

https://doi.org/10.1515/nanoph-2024-0013

Received January 9, 2024; accepted April 23, 2024;

published online May 23, 2024

Abstract: Optical tweezers exploit light–matter interac-

tions to trap particles ranging from single atoms to

micrometer-sized eukaryotic cells. For this reason, optical

tweezers are a ubiquitous tool in physics, biology, and nan-

otechnology. Recently, the use of deep learning has started

to enhance optical tweezers by improving their design, cal-

ibration, and real-time control as well as the tracking and

analysis of the trapped objects, often outperforming classi-

cal methods thanks to the higher computational speed and

versatility of deep learning. In this perspective, we show

howcutting-edge deep learning approaches can remarkably

improve optical tweezers, and explore the exciting, new

future possibilities enabled by this dynamic synergy. Fur-

thermore, we offer guidelines on integrating deep learning

with optical trapping and optical manipulation in a reliable

and trustworthy way.

Keywords: optical tweezers; deep learning; optical manipu-

lation

1 Introduction

Optical trapping and optical manipulation exploit light–

matter interactions to trap and manipulate various types

of micro- and nano-particles. These techniques date back

to Arthur Ashkin, who demonstrated in the 1970s that it is
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possible to levitate microparticles in a fluid using a focused

laser beam [1]–[4]. Later, A. Ashkin and coworkers demon-

strated that it is also possible to trap particles in 3D using a

strongly focused laser beam [4] – a technique now known

as optical tweezers [5], [6].

Optical tweezers are now an ubiquitous tool in science,

allowing for flexible, non-invasive manipulation of nano-

andmicro-particles aswell as for themeasurement of forces

acting on them. Both trapping and forcemeasurement using

optical tweezers have proved fundamental in fields ranging

from statistical mechanics [7]–[11], nanothermodynamics

[12], soft matter [13], [14], and biology [15]–[21] to micro-

fabrication [22], [23] and atomic physics [24]–[26]. Different

kinds of optical tweezers have been developed to tackle

the specific challenges of each application, such as trap-

ping of nanoparticles using plasmons [27], [28] and Raman

tweezers [14].

Deep learning is a collection of computer algorithms

that can improve and adapt their solutions by learning the

rules connecting input and output directly from data [29],

solving problems ranging from particle tracking and char-

acterization [30] to protein folding [31] and face recognition

[32]. The first steps towards the deep learning revolution

were taken in the 1940s with the mathematical modeling

of biological neurons by neuroscientist Warren McCulloch

and logician Walter Pitts [33]. The recent growth of deep

learning has been driven largely by the recent increase

in the computational power of processors and the size of

datasets, but also by the spread of user-friendly all-purposes

deep learning frameworks, such as PyTorch [34], [35] and

Keras/TensorFlow [36], [37], which enable quick and easy

deployment of deep learning solutions for a wide range of

tasks.

Several aspects of optical tweezers that are difficult

to study theoretically, either due to the computational cost

or because of the high modelling complexity, can now be

addressed using deep learning. Deep learning can improve

the calculation of optical forces by increasing its speed

[38] and even accuracy [39], helping to realistically simu-

late more complex systems. From an experimental stand-

point, deep learning can enhance the calibration of optical

tweezers [40] and improve the tracking of trapped particles

[41]. Furthermore, recent progress in deep learning is also
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benefiting the real-time control of optical tweezers [42] and

the design optimization [43].

This perspective presents an overview of optical tweez-

ers and deep learning, highlighting their recent collabora-

tive developments. We speculate on possible future inno-

vations resulting from this synergy, particularly by propos-

ing the application of the most advanced deep learning

approaches. To conclude, we suggest strategies for those

aiming to utilize deep learning in combination with optical

trapping and optical manipulation in a reliable and safe

way.

2 Optical tweezers

Optical tweezers are an ubiquitous tool in science and

they are contributing to the progress of fields like biology,

physics, and nanotechnology [5], [6]. As can be seen in

Figure 1, the field of optical trapping and optical manip-

ulation is rapidly expanding. Instead, after the first two

pioneering experiments in 1970 on optical levitation [1] and

in 1986 on the 3D optical trapping of dielectric particles [4],

optical tweezers have been widely used in literature, start-

ing from their first use in biology [16], [18]–[20] and culmi-

nating in the Nobel Prize to Arthur Ashkin in 2018. Based on

light–matter interactions, optical forces can trap particles

in the proximity of a focused laser beam. Furthermore, the

trapping forces are typically so small that, by employing a

trapped particle as a probe, it is possible to measure forces

well below those reachablewith an atomic forcemicroscope

(AFM) and micro-fabricated cantilevers [44]. Despite of the

recent progress in optical trapping, there are stillmany open

challenges [6], including the calculation of optical forces, the

efficient calibration of an optical trap, the position detection

of a trapped particle, and the development of new optical

trapping systems.

The calculation of optical forces has typically relied

on approximations that depend on the trapping regime

defined by size of the particle [5], [45]. The trapping regimes

are the geometrical-optics regime, the Rayleigh regime, and

the intermediate regime. The geometrical-optics regime is

valid when the size of the particle is much larger than the

wavelength 𝜆0 of the trapping light. In this case, the wave

nature of the light can be neglected and optical forces can

Nobel Prize 
A. Ashkin

Computer beats human
at face recognition

AlphaFold predicts
proteins structure

Figure 1: The rise of optical trapping and deep learning in scientific publications. Number of articles published per year that use “optical trapping”

(blue line), “machine learning” (gray line), or “deep learning” (orange line) in their title, abstract, or keywords. Milestones in the development of these

fields are highlighted with illustrations. Data obtained from Web of ScienceTM on November 2023.
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be calculated using ray optics [46], [47]. Instead, theRayleigh

regime occurs when the linear dimensions of the trapped

object are much smaller than 𝜆0. Thus, the trapped object

behaves like a dipole and the optical forces are mostly pro-

portional to the gradient of the light intensity [48]. Finally,

the intermediate regime lays in between, where the linear

dimensions of the trapped object are comparablewith𝜆0. In

this case, the optical forces need to be calculated from the

electromagnetic fields obtained as an exact solution of the

scattering problem, which can be a very complex and com-

putationally intensive process [49]–[51]. Common to all the

regimes is that the trapping forces for small displacements

from the trapping position can be approximated as a har-

monic force

F(r) = −k ⋅ r, (1)

where k is the stiffness of the trap, r is the displacement from

the equilibrium position, and F(r) is the optical force.

Calibrating an optical tweezers consists of determining

the relation between the position of a particle and the force

it experiences. For small displacements from the equilib-

rium position, it is sufficient to determine the trap stiffness.

The traditional approaches to calibration rely on explicit

mathematical recipes such as the potential method [52], the

autocorrelation method [53], the power spectrum analysis

[54], the mean square displacement method, the equiparti-

tionmethod, or themaximum-likelihood-estimator analysis

(FORMA) [55]. While these approaches perform well when

the field is static, conservative, and a high amount of data

are available, they present some limitations when the force

field does not satisfy these assumptions.

In optical trapping experiments, the location of the par-

ticle is often the most critical parameter. Even though the

previously mentioned calibration techniques differ in their

approaches, they all rely on this knowledge. There are two

main possibilities for tracking the position of the particle.

For a single particle in an optical trap, one can use the trap-

ping laser as a probe to determine its position, for instance

using a quadrant photodiode (QPD) or a position sensitive

detector (PSD). However, when there are multiple particles

ormultiple traps, interpreting theQPD signal becomesmore

complex and cameras are typically necessary. These cam-

eras provide a larger viewof the experimental systemunder

investigation, containing much more information than the

QPD/PSD signals but with the drawback of a lower acquisi-

tion rate.

Nowadays, in order to expand the applicability of opti-

cal trapping, new techniques to control optical tweezers

are being developed. External real-time feedback allows to

correct the trapping force by adjusting either the intensity

of the light or the position of the trap [56], [57]. Introducing

external feedback increases the effective trap stiffness but

comes with the drawbacks of a limited bandwidth and of a

higher sensitivity to errors in the detection of the position of

the particle. To overcome these problems, automatic feed-

back control mechanisms have been postulated for plas-

monic tweezers [28] and realized for intracavity optical

trapping [58].

3 Deep learning

Deep learning is a branch of computer science that, by

using artificial neural networks, allows computers to learn

from data and improve their performance without explicit

programming. It is a subset of machine learning, as shown

Figure 2, that utilizes artificial neural networks with mul-

tiple layers. The term “deep” refers to the use of these

multiple layers. Nowadays, its use is growing exponen-

tially after the chess computer DeepBlue defeated the world

chess champion Garry Kasparov in 1997 and GaussianFace

[59] surpassed humans in face recognition, as shown in

Figure 1. Today, deep learning has become a useful tool

in science, helping in the prediction of complex systems

such as AlphaFold [31], which predicts the 3D structure

of proteins starting from the sequences of their amino

acids. Typically, deep learning approaches extract hierar-

chical features from data to realize complex tasks such as

image recognition, natural language processing, and speech

synthesis with remarkable accuracy and efficiency. They

achieve this by automatically learning hierarchical features

from raw data, reducing the need for manual feature engi-

neering, whereas traditional machine learning models, like

linear regression, principal component analysis, or deci-

sion trees, often require explicit feature extraction. This

has led to a near-exponential growth in the use of machine

learning and, in particular, deep learning [29], as shown in

Figure 1.

Deep learning is typically based on deep (i.e., multi-

layer) artificial neural networks with many trainable

parameters that transform input data into output data [29].

These parameters are automatically adjusted during the

training process, in which the system learns the rules that

connect the input data to the desired outputs by oper-

ating on known input/output pairs, called training data,

using algorithms such as stochastic steepest descent and

error backpropagation [60]. Thus, specific problems can

be addressed reliably without explicitly knowing the rules

connecting input and output, especially when the data to be

analyzed closely resemble the training data.

The fundamental building block of neural networks is

the artificial neuron [33]. The artificial neuron processes
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Figure 2: Machine learning and deep learning. Deep learning (orange rectangle) is a subset of machine learning (black rectangle). Machine learning

approaches include linear regression, principal component analysis, and decision trees. Deep learning approaches include dense neural networks,

convolutional neural networks, U-nets, attention-based transformer networks, graph neural networks, generative adversarial networks, variational

autoencoders, diffusion model, and deep reinforcement learning.

its inputs by performing a weighted sum and returning a

transformation (typically a nonlinear activation function)

of the resulting sum. During the training process, the train-

able parameters, often referred to as weights, are tuned to

optimize the output of the neuron. Artificial neurons can

be connected in layers, with each neuron receiving input

from neurons of the previous layer and passing its output

to the next layer, forming themost standard artificial neural

network.

Deep learning can be implemented through different

network structures, i.e., different architectures, and choos-

ing the right one depends on the task at hand. The efficiency

and effectiveness of the solution are strongly influenced by

the architecture because different problems have distinct

data characteristics and complexities. Generally speaking,

more complex data require more complex models in terms

of the number of parameters needed for fitting and analysis.

Moreover, deep learning can be used to generate synthetic

data of high quality. To illustrate only the architectures used

in the literature for optical tweezers applications and the

architectures we propose for potential and new applica-

tions, it is convenient to group the different architectures

into three groups based on their purposes: data analysis

(Dense neural networks, convolutional neural networks, U-

nets, recurrent neural networks, transformers networks,

graph neural networks), data generation (Generative adver-

sarial networks, variational autoencoders, diffusion mod-

els), and decision making (Deep reinforcement learning).

3.1 Data analysis

Dense neural networks (DNNs) are artificial networks in

which all the nodes in each layer are connected to all the

nodes in the adjacent layers. They have a structure char-

acterized by a first layer referred to as the input layer and

a last layer referred to as the output layer (dark circles in

Figure 2), and one or more layers in between referred to

as hidden layer (gray circles in Figure 2). They are used

to deal with tabular data, sequential data, and data with

small dimensions. When dealing with high-dimensional

data, such as images, the number of connections between

the layers increases drastically leading to problems such

as overfitting, meaning that the neural network performs

exceptionallywell on the training data but fails to generalize

to new, unseen data.

To deal with high-dimensional data, convolutional neu-

ral networks (CNNs) employ 2D layers of neurons partially

connected one to the other [61]–[63]. The key layers are the

convolutional layers, which use filters to scan the input and



A. Ciarlo et al.: Deep learning for optical tweezers — 3021

perform convolutional operations, as shown in Figure 2. A

filter uses the same weights for different subsets of the

input image, thus reducing the number of required train-

able parameters and the risk of overfitting. More impor-

tantly, each filter corresponds to a feature map that detects

a feature in the input data. In this way, the convolutional

layer can detect different features of the input for each of

its filters. Typically, the image size decreases as it passes

through the layers, reducing the computational load and

providing access to the information present at different

length scales. Often, a dense neural network is added to the

final layer of the convolutional neural network to generate

an output representing comprehensive information associ-

atedwith the input, for example, the coordinates of the posi-

tion of a particle [41]. By reducing the dimensionality of the

input, CNNs identify more abstract and high-level features

from the data, such as the general shape of a particle or

cell, at the expense of low-level features. Therefore, CNNs

excel in image detection, recognition, and segmentation

[64], [65].

U-nets [66] are characterized by their “U-shaped”

design consisting of a contracting path (encoder) connected

to an expanding path (decoder) connected also by skip

connections, as shown in Figure 2. These skip connections

bridge earlier and later layers in the network, ensuring that

both low-level and high-level features are effectively com-

bined by enabling the direct transfer of feature maps. The

contracting path reduces the dimension of the input thanks

to several convolutional layers, capturing and summariz-

ing local information to learn high-level features. Instead,

the expanding path consists of transposed convolutions (or

deconvolutions) to up-sample the feature map restoring the

dimension of the input. Through the skip connections, the

expanding path receives high-resolution feature maps pre-

serving the low-level features in the final output. Between

the contracting and expanding path, i.e., at the bottom of

the U shape, there is a bottleneck layer having the most

abstract and high-level representation of the input data.

Even if U-nets solve the loss of low-level features, they still

need, like any CNN, a large number of diverse training

data to reach good performances and acceptable reliability.

For example, U-Nets have achieved significant success in

the analysis of brain tumors images from MRI scans [67],

denoising astronomical images [68], and characterizing the

microstructure of samples imaged with scanning electron

microscopy [69].

Unlike the previous architectures, recurrent neural net-

works (RNNs) retain and utilize information from previous

time steps [70]. For this reason, RNNs incorporate mem-

ory gates that adjust their internal state based on prior

data [55]. A fundamental characteristic of RNNs is their

capability to establish recurrent connections, generating a

feedback loop within the network. This enables the infor-

mation to circulate within the network, making it respon-

sive to the order and timing of input data. However, con-

ventional recurrent neural networks encounter constraints

resulting in difficulties in capturing prolonged dependen-

cies effectively, including the vanishing gradient problem

[71]. To address this issue, advanced models such as long

short-term memory (LSTM) [72] and gated recurrent unit

(GRU) [73] networks have been developed. These struc-

tures contain more advanced memory gates that can select

and retain information over extended sequences, making

them especially effective in tasks such as speech recog-

nition, where long-term contextual information is crucial.

Overall, RNNs excel in applications where the sequence of

data elements is important, such as natural language pro-

cessing [74], protein analysis [75], [76], optical coherence

tomography data segmentation [77], and adaptive optics

control [78].

Attention-based transformers networks (ATNs) employ

self-attention mechanisms to analyze sequential data,

enabling them to identify how even distant elements in the

sequence interact and influence each other [79], as shown in

Figure 2. The first step is to add some position information

to the sequential input data through positional encoding

(typically creating a vector applying the cosine function for

every odd index of the input data and a vector applying the

sine function for every even index). Then, an encoder layer

maps all the input sequences into a continuous represen-

tation. It is composed of 2 sub-modules: the multi-headed

attention and the dense neural network. The multi-headed

attention layer allows the model to focus on specific ele-

ments of the input data, assigning them different levels of

importance during the learning process thanks to a scoring

matrix (determining the amount of attention one element

of the input should have on the others). The word “multi-

headed” refers to the fact that this layer analyzes simul-

taneously the input with different attention sub-modules

called “heads”. The dense neural network, which follows

multi-headed attention, enhances the representations of the

input elements to learn higher-level information. After the

encoder, its output is sent to a decoder that has two multi-

headed attention layers followedby adenseneural network.

The first multi-headed attention layer receives the output of

the encoder after positional encoding and sends its output

to the second multi-headed layer that combines it directly

with the output of the encoder (without positional encoding)

allowing the decoder to understand which encoder input

is relevant to put a focus on. In the end, the dense neural
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network classifies the input and chooses the highest proba-

bility prediction for the output. Transformers have proved

themselves very useful in language modeling [80], text gen-

eration [81], and image captioning [82].

Graph neural networks (GNNs) are designed to analyze

data organized as graphs, capturing complicated relation-

ships within them [83]–[85], as shown in Figure 2. A graph

comprises a set of nodes (or vertices) linked by edges (or

links). The nodes, in which information is stored within a

vector known as a feature vector, correspond to the input

data, while the edges represent the corresponding depen-

dencies. The process begins by taking the input graph and

passing it through a sequence of neural networks. This

transformation transforms the structure of the input graph

into a graph embedding (i.e., into vectors), preserving essen-

tial details about nodes, edges, and overall context. Next,

the feature vectors associated with the nodes are passed

to a neural network layer. These features are combined

and aggregated within this layer, and the resulting informa-

tion is then passed on to the next layer in the network. In

this way, the GNN updates node representations iteratively

to capture information from neighboring nodes, often by

following a series of message-passing steps. During these

steps, each node aggregates information from its neighbors,

applies a learnable function, and updates its representa-

tion accordingly. The first obvious application of GNNs is

the classification of nodes and the completion of graphs

with missing links. More interesting applications in which

GNNs excel are, for example, web recommendation systems

[86], traffic prediction [87], and protein–protein interac-

tions [88].

3.2 Data generation

Generative adversarial networks (GANs) create high-quality

synthetic data by using a specific method called adversarial

training [89]. This method uses two neural networks: the

generator, which produces the synthetic data, and the dis-

criminator, which verifies whether the data are real or fake,

as shown in Figure 2. The adversarial training improves

the synthetic data generation by training the generator and

discriminator in alternating steps. First, the generator pro-

duces synthetic data from the input data and the discrim-

inator tries to classify them. Following this, by using both

real and synthetic data, the discriminator is trained to better

classify data. Finally, the generator is updated to produce

more realistic data by using the results of the training of the

discriminator. This adversarial process continues iteratively

until the generator produces synthetic data able to deceive

the discriminator. Step-by-step, the generator can produce

samples that are almost indistinguishable from real data,

makingGANs apowerful tool in data augmentation anddata

synthesis applications. A recent evolution of GANs, called

time-series GANs (TGANs), allows the generation of time-

series data by taking into account the temporal correlations

of the time-series data [90]. However, training GANs can be

challenging because they might suffer from mode collapse

(producing limited diversity in generated samples). GANs

are used not only for data generation, but also for image-

to-image translation [91], for enhancing the resolution of

images [92], and for anomaly detection [93].

Variational autoencoders (VAEs) are generative mod-

els that combine deep neural networks with probabilis-

tic modeling to learn representations of data and gener-

ate new samples by mapping input data into a continu-

ous latent space [94]. VAEs use deep neural networks to

produce a meaningful latent space representation of the

input data, where a latent space is a lower-dimensional

space in which the input data are mapped into a distribu-

tion (typically, a multivariate Gaussian). To do this, VAEs

use an encoder and a decoder, as shown in Figure 2. The

encoder is a neural network (typically, a dense or convo-

lutional neural network) that extrapolates from the input

data the mean (𝜇) and the variance (𝜎) of the distribu-

tion in the latent space. Once these two parameters are

known, the encoder uses them to sample a point (z) from

the latent space by using the reparameterization trick fol-

lowing a standard Gaussian distribution, i.e., z = 𝜇 + 𝜖 ⋅ 𝜎
with 𝜎 Gaussian random noise term. Then, the decoder

uses a neural network to reconstruct the original input

data from the latent space representation obtained with the

encoder. In this way, it takes points from the latent space

and generates a new data sample that is similar to the input

data one. VAEs have proved useful to reconstruct complex

many-body physics [95], for regressions [96], and for music

generation [97].

Diffusion models (DMs) are a deep learning architec-

ture created to simulate the evolving changes in data over

time or space, emulating the fundamental principles of dif-

fusion processes and allowing a heterogeneous data pro-

duction [98]. These models add noise or perturbations to

the input data during different steps, converting them into

an uncertain state, as shown in Figure 2. Subsequently, the

model is trained to reverse this process using a neural net-

work to predict and control the noise reduction, gradually

restoring the data point to its original or desired state. This

approach to noise reduction produces data samples that

reflect the underlying trends and variability of the data

distribution while ensuring coherence, realism, and high

heterogeneity thanks to the randomness of the process.

This means that DMs have an exclusive ability to capture
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patterns and variations inherent in data distribution. The

adaptability of diffusionmodels cover awide range of appli-

cations, including image generation [99]–[102] and natural

language processing [103].

3.3 Decision making

Deep reinforcement learning (DRL) is a deep learning

approach that combines deep neural networks with rein-

forcement learning techniques to learn sequential decision-

making in complex environments through trial and error

[104], [105]. It is based on reinforcement learning, in which

an agent learns to make sequential decisions in an envi-

ronment to maximize a cumulative reward signal. In DRL,

the agent employs a neural network that is trained using

feedback from the environment, as shown in Figure 2. This

feedback consists of rewards or penalties for the agent

based on its actions. Through iterative interactions with

the environment, collecting experiences, and updating its

neural network, the DRL agent gradually learns an opti-

mal policy or value function, enabling it to make effective

decisions in complex and high-dimensional environments.

In this way, DRL can do very complex tasks like playing

Go [106], driving autonomous vehicles [107], and designing

optical multi-layer thin films [108].

4 Deep learning for optical

tweezers

The advantages of machine learning, such as simplicity,

versatility and speed, enhance optical tweezers by improv-

ing particle detection and tracking, trajectory analysis and

calibration, optical force calculation, and by enabling tasks

such as real-time control of optical traps and new designs.

When automated without deep learning, these tasks typi-

cally require manual tuning of parameters, low noise mea-

surements, or extremely long calculations. This is undesir-

able because it is time consuming for the researchers and

also risks introducing human biases. In the following sub-

sections, we discuss different cases where deep learning has

already been successfully combined with optical trapping

and optical manipulation, and we propose new possible

applications.

4.1 Particle tracking

In optical tweezers experiments, particle tracking is a key

task. Deep neural networks have significantly enhanced

this task, notably improving the speed and accuracy of

detection, particularly when standard methods are not

optimal, such as for irregularly shaped particles or biolog-

ical samples. Leading tracking algorithms now frequently

incorporate convolutional neural networks (CNNs) [30], [41],

[109]. These CNNs exhibits greater resistance against noise

compared to classical algorithms. This prevents tracking

errors due to the presence of noise in the particle video and

increases the accuracy of the extracted particle trajectory, as

shown in Figure 3a. Nevertheless, acquiring enough train-

ing data from experiments is challenging because the true

values of the position of the trapped particle are not known

and may need to be collected manually or with standard

methods. To solve this issue, it is possible to train the algo-

rithms on simulated data [30], [41].

An alternative approach that has shown promise is to

exploit the symmetries inherent to the tracking problem.

This approach is employed by the recently developed the

deep-learning approach called LodeSTAR (Localization and

detection from symmetries, translations, and rotations)

[110]. By systematically linking the roto-translation of the

input image to a corresponding roto-translation of the

expected result, it is possible to enable training on small

datasets, even with as little as a single image, without the

necessity of ground truth. In thisway, a single training image

is sufficient to train LodeSTAR.

In addition to the position from images of the particle,

deep learning can extract more information, such as the

particle’s size and orientation. For example, deep learning

has been recently used to track the orientation of sperms in

an optical trap enabling the extraction of the sperm rotation

rates [111]. Furthermore, going beyond analyzing images

acquired with digital video microscopy, deep learning can

potentially be applied alsowith data acquiredwithmethods

based on quadrant-photodiodes (QPDs) or position-sensitive

detectors (PSDs). In these cases, deep learning can allow,

for example, the extrapolation of the trajectory signal from

noisy signals or with frequency higher than the detection

bandwidth.

Importantly, deep learning oftenmanages to excel even

when standardmethods fail. A potential application is to use

U-nets to trackmultiple trapped particles that approach one

to the other, as schematically illustrated in Figure 3b, a situ-

ation in which standard methods fail and require complex

ad-hoc fixing [112]. This is especially relevant for multiple

trapped particles and in case of defocusing (due for example

to overlapping of two or many particles).

Hypothetically, TGANs could improve the tracking of

particles from videos with missing frames or non-constant

sampling frequencies. This is because they can generate

particle images, such as bright-field images, that respect the
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Figure 3: Deep learning for particle tracking. (a) Trajectory of an optically trapped particle obtained from a noisy video by DeepTrack (orange)

compared to that obtained with the classical radial symmetry algorithm (blue line). Reproduced from Ref. [41]. (b) As potential application, a U-net can

be used to track trapped particles that approach one to the other also when one particle overlaps with the other (defocused particle in the bottom

picture on the left). (c) As potential application, a TGAN can fill missing frames in a video file (e.g., due to uneven sampling rate) and track the particles

allowing the applications of calibration methods that require a constant sampling rate (e.g., those based on power spectral density, autocorrelation

functions, and mean squared displacement). (d) As potential application, an ATN can find the trajectory of optically trapped particles in a video file and

use it to determine the physical properties of the particles, such as their refractive index np and radius r, as well as information about the immersion

media, such as its viscosity 𝜂 and its temperature T .

temporal correlation of the inputs. As a result, they can gen-

erate missing data from the properties of the phenomenon

being studied, as schematically shown in Figure 3c. It is

possible, for instance, to create a constant sampling rate

video from one that is non-constant, enabling the utiliza-

tion of calibration techniques based on power spectral den-

sity, autocorrelation functions, and mean squared displace-

ment. Instead, ATNs can be used to locate trapped particles

in a set of many particles and evaluate their properties

(such as dimensions and refractive index) or the fluid prop-

erties (such as temperature and viscosity) by identifying

how distant points of the trajectory of the particle inter-

act and influence one another, as schematically shown in

Figure 3d.

4.2 Trajectory analysis and calibration

Deep learning has proven to be an efficient method for

analyzing confined particle motion, especially when exper-

imental conditions change, and has proven effective for

calibrating optical tweezers in scenarios where traditional

methods are inadequate, such as non-conservative force

fields and limited data collection situations. Recently, the

trajectory analysis with deep learning allowed the estima-

tion of rheological properties by reducing the amount of

data needed [113], as schematically shown in Figure 4a. This

kind of analysis, whichwould ordinarily requiremeasuring

for several minutes, can now be obtained in a matter of

seconds. This result was possible by training the neural net-

work on simulated data, further showcasing the potential of

synthetic data to be used to train models. In this case, sim-

ulating the training data are both essential to get sufficient

amounts of data and relatively simple since the equations

of motion of a trapped particle are well understood. When

the equations of motion are unknown or too complex to be

evaluated numerically, RNNs are a good choice due to their

ability to retain and utilize historical information about the

particle trajectory.

Deep learning has also been used to analyze particle

trajectories within an optical trap measured using from
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Figure 4: Deep learning for trajectory analysis and calibration. (a) A convolutional neural network is trained on simulated data in order to extrapolate

from the particle trajectory the medium viscosity 𝜂. Reproduced from Ref. [113]. (b) As potential application, a diffusion model can be used to extract

information about the diffusion processes of a trapped particle when there are missing points in the trajectory. (c) The DeepCalib method used

a recurrent neural network trained on simulated data to extract the trap stiffness for a microparticle held in a harmonic potential. Reproduced from

Ref. [40]. (d) As potential application, an attention-based transformer network can determine whether a trapped particle is in thermal equilibrium

or in a non-equilibrium condition.

the forward scattering captured by a quadrant photodi-

ode to discern different kinds of particles [114]. Potentially,

deep learning architectures, such as diffusion models, can

be utilized to estimate the properties of various diffusion

processes experienced by a trapped particle, even when

there are missing points in the trajectory. Indeed, the dif-

fusion model can be employed to reconstruct the particle

trajectory by effectively filling in the gaps and can esti-

mate the required properties, as schematically illustrated in

Figure 4b.

Deep learning can also be used for calibration pur-

poses. This was demonstrated in Ref. [40], where RNNs

were used to estimate force fields with limited data avail-

able (trajectory length <10 s) for harmonic potentials [40],

as shown in Figure 4c, as well as for more complex and

time-varying force fields. Recent findings underscore the

capabilities of neural networks to go beyond determining

the stiffness of optical traps, and to estimate properties of

trapped particles such as their refractive index or radii

[115]. For these reasons, the use of deep learning methods

such as RNNs becomes particularly powerful when studying

biological samples, even in challenging scenarios.Moreover,

we propose the use of deep learning, specifically trans-

formers network, can determinewhether a trapped particle

is in thermal equilibrium or not, as shown in Figure 4d,

task that is challenging by using standard methods. This is

possible because by training the transformer network with

data from particles in non-equilibrium states, the attention-

based architecture can focus on properties of the trajectory

that are peculiar only to out-of-equilibrium particles. More-

over, transformer networks could potentially extract from

the trajectories additional useful information, such as the

entropy of the system.

4.3 Optical force calculations

Calculating optical forces can be computationally expen-

sive, especially when optical forces require repeated calcu-

lations, such as when simulating the Brownian dynamics

of an optically trapped particle [116], or for non-Gaussian

beams, such as Laguerre–Gauss beams, or for particles

with irregular shapes, such as cells. Deep learning offers
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a solution to this problem. For example, neural networks

have successfully predicted the forces acting on a spherical

trapped particle both in the intermediate regime, even for

complex beams [38], and in the geometrical-optics approx-

imation [39]. Importantly, the improvement in speed does

not come at the expense of accuracy. Quite the opposite,

neural networks have also been shown to be able to over-

come some artifacts caused by the restricted number of rays

used in the geometrical-optics approximation [39]. Simple

dense neural networks have been shown to perform well

for this task, probably thanks to the low dimensionality

of both inputs (e.g., the three coordinates of the particle

position as well as some of the particle physical properties)

and outputs (e.g., the three components of the force). The

enhanced computational speed enables simulations of sce-

narios previously unattainable utilizing conventional com-

putational methods. For instance, modeling a trapped parti-

cle that changes size [38] (Figure 5a), improving the perfor-

mance and accuracy of geometrical-optics calculations [39]

(Figure 5b), exploring the parameter space of an ellipsoid

in a double beam configuration [39], simulating the dynam-

ics of a trapped red blood cell [117], or evaluating forces

produced by beams with amplitude profiles of arbitrary

complexity [118].

As a perspective, DMs and GANs could be used to eval-

uate the optical forces of complex light fields (also ran-

dom fields, as speckles field [55], [119]–[121]) from intensity

images of the field acquired with a camera, as schematically

shown in Figure 5c. This is not possible with standardmeth-

ods, whereas DMs and GANs can learn how an intensity

image relates to a force field during the generation process.

Moreover, CNNs, possibly trained with an adversarial

approach, could be used to evaluate the optical forces pro-

duced by near-field optical trapping from the 2D design

of the substrate, as schematically shown in Figure 5d. Cur-

rently this design requires the use of numerical methods

that requires a lot of computational power and time for

having acceptable results.

(a) (b)

(c) (d)

Figure 5: Deep learning for optical force calculation. (a) Experimental (black symbols) and neural-network-simulated (orange line) rotation rates𝜔

as a function of the parameter 𝛼 of the superposition of two Laguerre–Gaussian beams, 𝛼 LG0,+5 + (1− 𝛼) LG0,−5. The error bars represent standard

errors. Reproduced from Ref. [38]. (b) A dense neural network calculates the optical forces in the geometrical-optics approximation increasing not only

the calculation speed but also the accuracy when compared to the conventional geometrical-optics approach. The neural network (orange line) has

been trained with data generated with geometrical optics using 100 rays (purple line) and approximates much better the exact solution (black line).

Reproduced from Ref. [39]. (c) As potential application, a GNN could evaluate the force field (red arrows in the right panel) directly from images of

the optical field (on the left). (d) As potential application, a CNN could be used to evaluate and optimize the trapping force directly from the 2D design

of a near-field optical trap.
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4.4 Controlling tweezers

Real-time control of optical tweezers using deep learning

can improve their operational efficiency and reliability. In

2021 [122], a neural network was trained to guide optically

trapped particles to precise target positions while avoiding

collisions with other particles and obstacles. The first step

in this process is to detect particles in images captured by a

camera using a thresholding method. The particle positions

are then used to determine the most efficient movements

for the captured particle, resulting in its alignment with the

desired target. This is done by training a deep reinforce-

ment learning algorithm in a simulated environment. In this

way, the NN can determine the most suitable direction for

guiding the trapped particle to its target position, all while

avoiding potential collisions with other particles, as shown

in Figure 6a.

To achieve precise optical tweezers control, digital

twins can be coupled with deep learning. Digital twins

are virtual models of physical objects, systems, or pro-

cesses, generated by collecting and integrating data from

their corresponding physical counterparts [123]–[125]. By

including optical tweezers within a digital twin framework,

researchers can virtually execute and manage microscopic

objects, such as individual molecules or nanoparticles, with

great precision. This enables improved experimentation at

the nanoscale and supplies an abundance of real-time data

on the behavior and interactions of the objects. This data can

then be analyzed by deep-learning algorithms to optimize

experimental conditions and swiftly detect complex pat-

terns and trends thatmaybedifficult for human researchers

to discern. For example, digital twins and VAE can be used to

automatize trapping experiments of only particles with spe-

cific properties as schematically shown in Figure 6b. This

experiment is not feasible using standard methods because

of the need to extrapolate the properties of the particle in

real time.

Moreover, Bayesian deep learning can be incorporated

into the control structure of optical tweezers to consider

possible uncertainties such as sensor noise and variations

in particle characteristics. Bayesian deep learning is a deep

learning approach using Bayesian modeling, which is a sta-

tistical model where the probability is influenced by the

belief in the likelihood of a specific outcome [126]. This,

(a) (b)

(c) (d)

Figure 6: Real-time control of optical tweezers with deep learning. (a) Sketch of a trapped particle moved in real time by a neural network to avoid

both physical (defocused particles) and virtual (white hollow circles) obstacles. The red solid line represents the trajectory, the white arrows the

direction of the motion, and the green cross the destination point of the particle. Reproduced from Ref. [122]. (b) As potential application, digital twins

and VAEs can be used to automatize trapping experiments of only particles with specific properties. (c) As potential application, deep reinforcement

learning and Bayesian modeling can be used to automatize the DNA pulling experiment done with two optical traps. (d) As potential application, U-net

and Bayesian modeling can improve the process of filling micro-holes in a microfluidic chamber with particles in order to create microstructures.
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in turn, enables the precise and adaptable manipulation

of particles, for example, for drug delivery, for studying

biological processes, or for assembling microstructures, as

schematically depicted in Figure 6c and d. The Bayesian

framework empowers the system to continuously update

its beliefs concerning the state of the particles, thereby

enhancing the robustness and efficiency of optical tweezers

experiments.

4.5 Designing optical tweezers

Optical tweezers are complex systems whose design can

be challenging, especially when using adaptive optics or

plasmonic structures. Deep learning has the potential

to improve and simplify this design process. However,

until now only probabilistic techniques, such as simulated

annealing, have been used to design custom nanostructures

that help improve the performance of plasmonic trapping

[43], [127]. By evaluating the optical force producedbydiffer-

ent shapes of the nanoaperture, it is possible to optimize its

shape, enhance their electromagnetic field, and, therefore,

maximize the trapping force, as shown in Figure 7a.

Deep Learning for designing nanophotonic devices is

now widely used [128] and its extension for designing opti-

cal tweezers is straightforward. More advanced techniques,

such as deep reinforcement learning combined with digital

twins, may improve the design of plasmonic devices. For

example, DRL might try different shapes of the nanode-

vice on the digital twin to find the best shape for the best

performance. Another way to design optical tweezers is to

use a spatial light modulator (SLM) [129] and deep learning

algorithms to alter the beam shape. Then, the beam shape

can be controlled by a diffusion model that generates the

appropriate SLM mask, allowing, for example, the trapping

of multiple particles with different beam shapes and/or to

compensate the spherical aberrations of the optical system,

as schematically shown in Figure 7b.

In addition, digital twins might be used with VAEs to

design the optical elements (e.g., trapping lens properties,

laser wavelength) to have specific properties of the optical

trap such as a specific stiffness of the trap or a trap able to

efficiently trap particles that typically are difficult to trap

(e.g., gold nanoparticles, quantumdots, low refractive index

particles).

5 Guidelines

Considering that many potential applications of deep learn-

ing in the optical tweezers domain remain to be developed,

we provide here some guidelines. We also address some

specific challenges, such as the availability of only limited

datasets and the diversity of optical tweezers setups, which

complicate the application of the same techniques broadly

to different experiments.

The process of applying deep learning to solve an opti-

cal tweezers problem can be broadly split into the following

steps: 1. Problem description. 2. Data collection/simulation.

3. Architecture selection. 4. Training. 5. Testing. Often, it

is necessary to iterate the process multiple times before

achieving an acceptable performance.

5.1 Problem description

The first step in implementing any deep learning model is

to provide a detailed description of the problem, outlining

what is known and what the deep learning model needs

to predict. The knowledge of the input and output data,

especially which types of data these will contain, is funda-

mental to choose the proper deep-learning architecture. For

instance, the algorithm could use images from a camera as

inputs and return the commands to send to the laser the

beam properties as output. A key aspect is to define the spe-

cific requirements for the sought-after solution. These could

(a) (b)

Figure 7: Deep learning for designing optical tweezers. (a) The design of a nanoaperture is optimized using simulated annealing. The algorithm

iteratively updates the shape to find the best one for optical trapping. Reproduced from Ref. [127]. (b) As potential application, a diffusion model could

be used in combination with a spatial light modulator to trap multiple particles and enhance the focusing, and therefore the trapping force.
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be that the output is needed quickly, such as for real-time

feedback control, or that the output needs to be accurate, as

for image analysis.

When using deep learning to control the experiment,

the choice of an architecture able to communicate with

the experimental setup and manage the input and output

signals is fundamental. A simple solution is to run the deep

learning model on a desktop computer connected to the

experimental setup. However, more specialized solutions

might also be required, for example employing microcon-

trollers or field programmable gate arrays (FPGAs) with

pre-trained neural networks.

Instead, if deep learning is used in data analysis, pro-

viding the inputs to the network and retrieving its output is

rarely a technical problem.However, it is still recommended

to run the algorithm on specialized hardware (GPUs or

TPUs), relatively easy and accessible through local comput-

ers, servers, or on the cloud.

To enhance the effectiveness and simplify the training

of the deep-learning algorithms, the problem needs to be

written in as simple terms as possible. For example, the

magnitude of the force applied on a sphere in standard

optical tweezers depends only on two inputs (radial distance

and height from the focus) and not on the three values

of the cartesian coordinates (x, y, z) because of symmetry

arguments. By exploiting this symmetry in the modelling

of the problem, the deep-learning model can perform more

accurately and computationally faster, while reducing the

requirements of training data and the efforts in training.

Also at the initial stage, it is critical to consider whether

deep learning is the best fit for the problem of interest.

There are situations in which standard methods perform

as well as deep learning with the additional advantage of

interpretability and explainability of the results. Instead, a

deep-learning model is intrinsically less transparent as it

learns through a relatively mysterious training process. In

general, deep learning is preferable when there is plenty of

data for training or when the relation between the inputs

and outputs is too complicated to be described analytically

or with simple computational models.

5.2 Data collection/simulation

Any deep learning approach will require training data to fit

the parameters of themodel and these datawill need to be as

representative of the problem as possible. Depending on the

problem at hand and the chosen architecture, the amount

of data required for training the neural network will be

different. Typically, the quantity of data should be substan-

tial and diverse, representing the entire variable space of

the problem. This can easily be the biggest obstacle when

applying deep learning. For example, to track the position of

a trapped particle, multiple images in different experimen-

tal conditions are required to achieve sufficient generality.

Nevertheless, some cutting-edge techniques require only a

single sample to complete the training, such as the LodeStar

tracking algorithm [110].

In several situations, the training data can be produced

through simulations allowing access to potentially infinite

amounts of data. Multiple software packages help with

this, such as DeepTrack [30], [41], for simulating images

of particles, for calculating optical forces [38], [39], and

for analysing trajectories [40]. However, the simulated data

must be representative of the problem and, to ensure this, a

small experimental dataset can be used as a validation set.

Sometimes, combinations of simulated and experimental

data can improve the learning process. Typically, one would

then train the algorithmon the simulated data first and then

fine-tune it on the experimental data.

It is important to highlight that the data should be split

into three different subsets: a training set used to train

the parameters of the architecture; a validation set used

to tune its hyperparameters, i.e., the parameters related to

the architecture properties (such as number of neurons,

number of layers, dimensions of the layers); and a test

set used to evaluate the final performance of the trained

model on unseen data (these data should not be used during

the optimization of the architecture or the training of the

model).

Most algorithms employ supervised learning which

requires labelled data. This means that the data must be

labeled with the ground truth, i.e., each input of the training

dataset needs to be associated to a known desired output

that the deep-learning model should provide. Knowing the

ground truth is challenging and requires the utilization

of standard methods or alternative experimental setups.

There are also unsupervised techniques (e.g., VAEs) that do

not need labeled data. In this case, the preparation of the

training dataset ismuch easier a problem, but the validation

of the model becomes more challenging and often requires

explicit analysis by the user.

5.3 Architecture selection

The choice of the architecture to use and its hyperparam-

eters is a crucial point because it greatly influences the

performance of the model. To assist with the selection of

the appropriate architecture, we have compiled in Table 1

the most commonly utilized architectures for typical tasks

relevant to optical trapping and optical manipulation. The

first things to consider are the task to be achieved and the

type of data to be analyzed.
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Table 1: Summary of deep learning algorithms suitable for different problems related to optical tweezers. In the last column, we have listed

references that deal with the technique on a general level or apply it in the context of optical trapping or a related field.

Problem Model References

Particle tracking – single particle CNNs [30], [41]

Particle tracking – multiple particles U-nets [30]

Particle classification CNNs, U-nets [30], [66]

Optical force calculations DNNs [38], [39]

Trajectory analysis – single particle RNNS, ATNs [40]

Trajectory analysis – multiple particles GNNs [130]

Calibration RNNS, ATNs [40]

Designing tweezers Simulated annealing, VAEs [127], [128]

Tweezers control – particle movement DRL [122]

In the case of tracking particles with digital video

microscopy, themost commonly used architectures are vari-

ants of CNNs. If the goal is to track a single optically trapped

particle, a standard CNN is often sufficient [41], [109], [114].

However, if many particles need to be tracked simultane-

ously, then using a U-net is often better than a standard CNN

[30].

In the case of trajectory analysis and calibration, an

architecture that can handle the time series data is required

[40], [115]. RNNs have been used previously and will often

suffice [40]. Also, TGANs and ATNs can perform well with

various time series and are, therefore, a good option when

there are missing data points or complex dependencies in

the data. However, if one has a large number of particles that

interact, then a GNN is a good choice – as demonstrated by

the MAGIK algorithm [130].

To calculate optical forces, DNNs have been shown to

work well [38], [39], [117], [118] and should therefore be the

starting point. If the number of input parameters is small

(up to a few tens, e.g., the particle position, rotation, and a

limited number of parameters describing its shape), then

a DNN will almost certainly perform well. Instead, when

the number of parameters increases, such as in the case

of biological cells which are also deformable, CNNs may

be a better choice due to their capacity to capture spatial

dependencies and their lower number of fitting parameters.

When deciding on an algorithm to use for controlling

optical tweezers, the choice naturally falls on DRL [122],

digital twins, and Bayesian modeling. However, the specific

architecture to use is less obvious and depends on the input

data.

Designing optical tweezers with deep learning is an

area in which there has not been much research yet, but

we believe that generative models, such as GANs and DMs,

might be appropriate to deal with the need to generate

different designs to find the most efficient one.

There are also cases when one wishes to combine dif-

ferent data types, for example when acquired by different

sensors in the same experimental setup. In this case, one

option is to use separate models for the different data types,

but this restricts the algorithm by not giving the full pic-

ture preventing it from investigating correlations between

the two different data streams. A superior option is to use

hybrid models which combine several architectures. For

instance, to handle a time series from a photodiode in com-

bination with images from a camera, one can combine an

RNN and a CNN as backbones to make the prediction using

a DRL network as a head.

5.4 Training

Training consists of adjusting the parameters of a deep

learning model to enhance its performance on the specific

problem to solve. It is convenient to use a standard library

to implement the models. The two most commonly used

are PyTorch [35] (which has been on the rise for several

years) and Keras/Tensorflow [36] (which is being slowly

abandoned). Often, it is also possible to find already imple-

mented architectures that can be used as a starting point for

training your models. For example, the DeepTrack library

[30], [131] offers an extensive toolkit for image analysis

which has been shown to work well on microscopy data.

The training process is often computationally demanding,

which explains why we recommend running it on special-

ized hardware (e.g., using a GPU).

Before starting training, it is necessary to select loss,

a performance metric that quantifies how far the model is

from the ground truth, providing a quantity to be optimized.

Therefore, the loss plays a fundamental role during the

training process as its value quantifies the ability of the

model to predict the real value of the desired parameter

accurately. For example, this can be the square distance
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between a predicted position and the actual position of a

trapped particle, or the proportion of correctly classified

samples.

Next, the initialization of the parameters is done,

often automatically by the deep-learning framework being

employed. Then, the training loop starts. In each iteration,

known as an epoch, the training data are split into small

batches on which the model is evaluated, and the loss is

calculated. The loss is used with an optimization algorithm

such as stochastic gradient descent to slightly change the

weights of the model to minimize the loss value. Parallel

to this, the value of the loss function is calculated on the

validation set to see how well the model generalizes its

prediction.

Generally, the performance of the model will increase

epoch by epoch, but only up to a certain point when mea-

sured on the validation set. Afterwards, the validation per-

formance tends to drop due to overfitting. It can be hard

to tell for sure if a model is overfitting; generally, the more

parameters the model has and the smaller the dataset, the

larger the risk of overfitting. To avoid overfitting, it is pos-

sible to stop the training when the performance on the

validation set has plateaued and before it starts worsening.

Often, tuning of the hyperparameters, such as the number

of layers in a CNN, optimizes the results and, also, reduces

the risk of overfitting.

5.5 Testing

The final step is to test the model to ensure that it per-

forms as desired when applied to new, never-seen-before

data. By using as input to the model a validation dataset

for which are known the desired outputs, the model out-

put is compared with the expected one. If the performance

is satisfactory, then the training process is finished. If the

model has been trained on simulated data, then it is at this

stage that the model is tested against real-world data or in

an experimental setting. However, often the performance

is not as good as desired. If the performance on simulated

data is significantly better than that on real-world data, this

may indicate a discrepancy between the simulations and

the experiment. Similar problems may occur if the training

data are experimental but gathered under different con-

ditions (e.g., a different setup or with a different type of

sample). If this happens, it is mandatory to train the model

again by using a larger or more representative training

dataset.

When employing the model in a real-time experimen-

tal setting, there is often a need for the model to make

its predictions quickly. To achieve the required computa-

tional speed (especially when using the model in embedded

systems, such asmicrocontrollers or FPGAs), connections or

entire neurons may be removed from the neural network

to reduce the size and increase the speed. This operation

is called pruning. The aim is to strike an optimal trade-off

between speed and accuracy for a real-time application and

this requires further testing.

6 Conclusions

In this perspective, we investigate the application of deep

learning for the optical tweezers field. As examples, we dis-

cuss the improvements in particle tracking at low signal-to-

noise levels [41] and in quantifying the rotation of trapped

particles [111]. Furthermore, we highlight the use of deep

learning to address cases that traditional methods cannot

deal with, such as accurately tracking multiple particles

when they are close together, filling in missed frames in

videos, or selectively tracking particles with unique charac-

teristics, such as irregularly shaped particles or biological

samples.

Then, we discuss the enhancement of trajectory anal-

ysis and optical tweezers calibration, which permit one to

estimate rheological properties with only a few seconds of

data instead of minutes [113] and, also, to discern different

typologies of particles [114]. Moreover, we propose to use

deep learning in some cases when standard methods fail:

DMs may help to reconstruct trajectories with missing data

points and estimate the desired properties; ATNs may help

to determine whether a trapped particle is in thermal equi-

librium or not.

Furthermore, deep learning has already improved the

calculation of optical forces by increasing the computational

speed and accuracy [39] and by allowing the study of non-

trivial cases, such as with Laguerre-Gaussian beams [38],

or with non-spherical particles like cells. In this scenario,

optical forces could be calculated also in cases where stan-

dard methods are not viable. Indeed, DMs and GANs can

calculate the force field starting from intensity images of the

optical field, while CNNs can do the same from the design of

a near-field optical trap.

When real-time control of optical tweezers is neces-

sary, standard methods are often too computationally slow.

Recently, NNs have allowed moving a trapped particle to

a target position while avoiding collisions with real and

virtual obstacles [122]. We believe that real-time control and

automatization of optical tweezers can be further improved

using deep learning. Digital twinswith VAEsmay be suitable

when the automatic trapping of specific particles is desired.

DRL with Bayesian modeling may automate experiments,

such as DNA pulling, optimizing the search for favorable
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experimental conditions. U-nets with Bayesian modeling

may help automate the process of designing microstruc-

tures with optimal optical manipulation properties.

Designing optical tweezers can be challenging, espe-

ciallywhenmore complex designs are required. Deep learn-

ing canprovide an effective solution for these requirements.

Although the design of optical tweezers has thus far only uti-

lized probabilistic methods like simulated annealing [127],

deep learning has the potential to enhance this process.

For example, DMs can design optical tweezers with a spa-

tial light modulator for trapping multiple particles while

enhancing the trapping force.

Finally, we provide guidelines for using deep learning

in optical trapping and optical manipulation, highlighting

step-by-step the process to follow to create an effective deep

learning model, from the problem description to the model

validation, while avoiding common pitfalls.
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