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Abstract—In this paper, we present MINTIME, a video
deepfake detection method that effectively captures spatial
and temporal inconsistencies in videos that depict multiple
individuals and varying face sizes. Unlike previous approaches
that either employ simplistic a-posteriori aggregation schemes,
i.e., averaging or max operations, or only focus on the largest
face in the video, our proposed method learns to accurately
detect spatio-temporal inconsistencies across multiple identities
in a video through a Spatio-Temporal Transformer combined
with a Convolutional Neural Network backbone. This is achieved
through an Identity-aware Attention mechanism that applies a
masking operation on the face sequence to process each identity
independently, which enables effective video-level aggregation.
Furthermore, our system incorporates two novel embedding
schemes: (i) the Temporal Coherent Positional Embedding,
which encodes the temporal information of the face sequences
of each identity, and (ii) the Size Embedding, which captures
the relative sizes of the faces to the video frames. MINTIME
achieves state-of-the-art performance on the ForgeryNet dataset,
with a remarkable improvement of up to 14% AUC in
videos containing multiple people. Moreover, it demonstrates
very robust generalization capabilities in cross-forgery and
cross-dataset settings. The code is publicly available at:
https://github.com/davide-coccomini/MINTIME-Multi-Identity-
size-iNvariant-TIMEsformer-for-Video-Deepfake-Detection.

Index Terms— Deepfake detection, computer vision, deep
learning, vision transformers, convolutional neural networks.
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I. INTRODUCTION

VER the last few years, we are witnessing an increasing

spread of deepfake images and videos that are becoming
more credible and realistic due to the continuous advance-
ment of generative models, such as Generative Adversarial
Networks (GANSs) [1], Neural Radiance Fields (NeRFs) [2],
[3] and Diffusion Models [4]. Such models can generate very
high-quality and photorealistic deepfake images and videos,
making the verification of such media increasingly difficult.
This ultimately makes distinguishing reality from fiction a
daunting task at best. To this end, exploiting manipulated
images and videos of people has generated several defamation
campaigns against public figures, celebrities, or even regu-
lar citizens whose lives can be undermined by manipulated
content. Moreover, deepfakes may be used for a variety of
serious crimes such as extortion, intimidation and damages to
democracy [5].

In response to this sudden and uncontrollable development,
many efforts have been made to counteract deepfakes by
implementing a multitude of deepfake detection systems based
on a variety of approaches. However, distinguishing manipu-
lated from pristine content introduces many challenges, and
there are still many open issues. In this work, we focus on
those issues that we consider crucial for detecting deepfakes
‘in the wild’ and are starting to attract the research commu-
nity’s attention. Previous studies [6], [7], [8] have pointed out
that identifying temporal inconsistencies and anomalous varia-
tions between two frames of the same video is fundamental for
successful deepfake detection. Much work, however, tends to
focus on spatial inconsistencies only, handling videos with a
frame-by-frame classification approach and relying on naive
aggregation schemes to extract video-level predictions [9],
[10], [11], [12]. When videos are analyzed frame-by-frame
or divided into separately classified sequences, one needs
to face the problem of aggregating frame- or sequence-level
predictions into a video-level prediction. We can divide
approaches into a-posteriori aggregation, i.e., those that use
static functions such as average or maximum to obtain the
final result, and internal aggregation, i.e., those that let the
model analyze the entire video to determine the final video-
level prediction. Methods based on the first approach are very
sensitive to the choice of aggregation function as shown in
[8] and [13].

An additional problem resides in a vulnerability that attack-
ers can exploit to deceive a deepfake detector. In cases of
videos with multiple distinct people (identities) appearing
together [14], an attacker could decide to manipulate only one
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Fig. 1. The impact of the deepfake detection strategy in a case of video
containing multiple identities and variations in the face-frame area ratio. The
proposed approach is the only one capable of identifying spatio-temporal
inconsistencies and at the same time effectively handling cases of multiple
identities, variations in face size and without the use of aggregations that
would impact the result.

of them. However, if the detection is carried out en bloc for
all the detected faces, the negative contribution to the final
prediction made by the fake faces could be ‘overshadowed’
by the non-manipulated ones, thus deceiving the system. One
possible approach would be to split the video into several clips,
at least one for each identity, but this would require multiple
forward passes of the model generating multiple predictions —
hence, leading once more to the aggregation problem. These
approaches usually rely on a-posteriori aggregation policies
to obtain an overall video-level prediction, which signifi-
cantly affects the final result. To the best of our knowledge,
no method in the literature can handle any number of identities
based on an internal aggregation scheme. In general, prior
works in the literature have put minimal effort into this specific
case of multiple-identity videos, which, however, is common
in real-world verification problems.

Typically in deepfake detection systems, faces are detected
from the input video or image, and before being input to a
classification model, they are resized to a uniform size. This
may result in vital loss of information, for instance the size
of the subject’s face with respect to the rest of the scene.
Such information could be exploited to build models robust
to environmental clutter, e.g., a sudden change of distance
from the camera or low-resolution background faces from
an original video/image, which could better distinguish traces
introduced by the deepfake generation process.

Finally, the deepfake generation model also tends to intro-
duce specific patterns within images and videos. Hence,
deepfake detectors often end up learning to recognize only
generative models included in the training dataset and are
therefore ineffective when dealing with unseen manipula-
tions, demonstrating poor generalization [15], [16], [17], [18],
[19], [20], [21], [22]. Furthermore, many approaches may be
ineffective in real-world cases because they are trained and
validated in very constrained situations where, for example,
there is only a single subject in the video or people tend to
always stay at the same distance from the camera [23].

To overcome the above challenges, we present the Multi-
Identity size-iNvariant TIMEsformer (MINTIME) for video
deepfake detection. The main contributions presented by our
approach, which are also illustrated in Figure 1, are:
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« Ability to identify inconsistencies in both space and
time through the combination of a Spatio-Temporal
Transformer and a Convolutional Neural Network
(CNN) — unlike other hybrid models designed for deep-
fake detection [6], [11], [12] that decouples space and
time working exclusively in one dimension.

o Ability to handle multiple people in the same video
through an Identity-aware attention mechanism, capable
of keeping track of the identity to which each face
detected in the video refers, combined with a positional
embedding technique, namely Temporal Coherent Posi-
tional Embedding, which can maintain both spatial and
temporal coherence.

« Ability to handle variations in the face-frame area ratio
through the introduction of size embeddings that keep
track of the ratio between the detected face area and the
entire frame at each instant of time.

« Being unaffected by aggregation strategies thanks to an
internal aggregation obtained by analyzing the entire
video in a single sequence, letting the network infer
the video-level prediction by handling appropriately
multi-identity videos in a single forward pass. This way,
the model directly returns a single prediction for the entire
video without requiring additional post-processing.

The performance of the proposed system has been evaluated
in a multitude of different contexts, with an improvement
of up to 14% AUC in videos containing multiple identities.
It has also been validated in cross-forgery and cross-dataset
scenarios, outperforming state-of-the-art in all contexts, with
improvements in the AUC score of up to 22% in some cases,
demonstrating a high level of generalization.

II. RELATED WORK

The growing interest in deepfakes has fuelled the emergence
of numerous solutions to detect them using a variety of
approaches [24]. Generally speaking, what practically all these
methods seek to achieve is to correctly classify a video as
pristine or deepfake by learning to distinguish patterns that
are often introduced during the deepfake generation process.
As we focus on video deepfake detection, we summarize
previous works into two main categories based on the type
of approaches they adopt.

Space-Only: These methods often treat the video as a series
of frames by performing a separate classification per frame
and then aggregating them into a final overall classification
using an a-posteriori aggregation scheme such as the average
or maximum function. These approaches focus primarily on
identifying specific traces introduced by deepfake generation
methods, namely those of a spatial nature. Even though they
are most suited for deepfake image detection, where there
is no need for detecting temporal inconsistencies, they are
often applied to videos in a frame-by-frame manner. Most are
based on well-established deep learning approaches, such as
CNNs [9], [10], [25], [26]. For example, the authors in [27]
proposed the Central Difference Convolution (CDC) that uti-
lizes both pixel intensity and pixel gradient data to provide a
fixed representation of variations in texture and then detect
deepfakes. Also, recently some attention-based approaches
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have been proposed [15], [28], [29], [30]. For example, the
authors in [30] proposed an attention-based method capable
of analyzing an image in low and high frequency to detect
irregular patterns and artifacts. Some previous works also pro-
posed hybrid architectures that combine Vision Transformers
with various types of CNNs as in [12], where the features
extraction capabilities of EfficientNet [31] are combined with
the Cross Vision Transformer [32]. Aggregation, in this case,
is done by making the maximum among the predictions
obtained on the individual frames. A similar approach but
using an XceptionNet [33] is proposed in [11]. One of the best
generalization capability was demonstrated by [34], where the
authors propose using high-frequency noise to expose discrep-
ancies between authentic and tampered regions, employing
three functional modules for effective feature extraction and
learning. However, all these methods cannot capture temporal
inconsistencies that can be crucial in deepfake detection.
Spatio-Temporal: These approaches aim to capture temporal
inconsistencies and obtain a video-level classification without
any kind of additional aggregation. Some of them focus on
specific types of spatio-temporal artifacts common in the case
of deepfake videos, such as anomalous lip movement [18] or
inconsistent eye-blinking [35], but they are limited since they
do not look for additional artifacts that may be present in
other parts of the face. Moreover, others exploit the optical
flow of video [36] or analyze the relationships between audio
peaks and video content [37]. A recent approach [7] is
composed of two stages: firstly, it uses self-supervised learning
to capture temporal information from real videos, such as
facial movements and expressions, and secondly, it uses these
learned representations to train a forgery detector to make
real/fake decisions based on these factors. The authors of [38]
also proposed a method to detect inter-frame patterns via
LSTM networks [39] looking for temporal inconsistencies.
Finally, one of the most relevant methods focusing on temporal
incoherence within videos is FTCN [6], which uses a Temporal
Transformer Encoder at its core. Although these methods
are designed to capture spatio-temporal inconsistencies, they
do not consider several important nuances of the problem.
For example, they construct the input sequence by selecting
a single person from the video, even when there is more
than one, and do not consider the different face-frame area
ratios that may occur or vary in them. An attempt to handle
cases of multiple people in the video comes from [12] in
which identities are classified separately, and if even one of
them is detected as manipulated, then the whole video is
considered fake. However, this method is frame-based and
relies on an ad hoc aggregation scheme (average or max), thus,
requiring a forward pass for each frame. Incorrect handling of
these situations can lead to completely ignoring a manipulated
subject in favour of a perfectly pristine one, which leads to
wrong classification of the overall video. An aspect partially
exploited in deepfake detection is the identity of subjects
appearing in videos. Some works attempt to detect deep-
fakes by identifying a person from temporal facial features,
specific to how a person moves while talking [40], or by
using biometric analysis techniques [41]. However, these latter
approaches remain particularly effective mainly in the case of
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a major manipulation of the person’s identity and have limited
capability in detecting videos manipulated by other types of
deepfake generation methods. They are also often tied to an
identity and are ill-suited in cases where the subject under
consideration is not a famous person, and there are few videos
depicting him/her. In terms of generalization, an exception
is made in the case of [42] where the authors proposed an
Identity Consistency Transformer capable of detecting the
inconsistencies in the identity with good performances in
several scenarios.

III. BACKGROUND

Vision Transformer (ViT) [43] ViT is a type of deep neural
network architecture designed for image classification tasks,
which relies on the transformer architecture [44], originally
developed for natural language processing tasks. The core idea
is to treat an image as a sequence of patches that are first
projected to an embedding space and then fed to a transformer
model. The building block of a transformers network is
the attention mechanism that enables the model to capture
dependencies between patch embeddings and learn contextual
relationships, enhancing its ability to recognize complex pat-
terns in images that can be exploited for the final estimation.
Additionally, the CLS foken, short for “classification”, is a
learnable vector that is a model variable. It is processed along
with the patch embedding and enriched with relevant informa-
tion through the attention process. It finally serves as the global
representation of the entire patch sequence and is typically
used for the final classification. Furthermore, to encode spatial
information and capture the sequential arrangement of image
patches, positional embeddings are employed in a ViT. These
are learnable vectors that encode the portions of each patch
in the image that are added to the patch embeddings. This
enables the model to discern the spatial context within the
overall image.

Attention Mechanism: The attention mechanism enables
models to exploit similarity between items of input item
sequences, so as to capture relevant information. The attention
mechanism works by dynamically computing weights based
on the similarity of items of two sequences that are then
used to compute a weighted sum of a third set, which is
the output. More precisely, let three vector sequences, i.e.,
queries Q € RV*P keys K € R¥*P and values V € RM*P,
where N, M are the corresponding sequence lengths, and D
the vector dimensionality. The attention mechanism is applied
as

QK"
a(Q, K, V)=0 ( o) ) V, ()
where o is the softmax function, and VD is a scaling factor.
In this formulation, the matrix product between the queries
and keys can be understood as the pairwise similarity between
their composed vectors. The softmax function normalizes the
scores across all keys for each query, so that they add up to
one. Finally, the weighted sum of the values is computed using
the normalized scores.

ViT Block: This is the main component of a ViT model.
It consists of a self-attention layer, i.e., a layer built based
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Fig. 2.
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MINTIME overview: The pre-processing pipeline (left) starts with the detection of faces in the video, follows with the clustering of identities and

then creates the input sequence. The sequence of faces is converted into features by the convolutional backbone (right), which once converted into tokens
(four tokens for each identity for visualization purposes) and concatenated to the embeddings, pass into the TimeSformer and finally into the classification

head for the final classification.

on the attention mechanism, and a feed-forward network, i.e.,
a two-layer Multi-Layer Perceptron (MLP). Typically, several
blocks are stacked to build a ViT. More formally, let z; €
RHWXD pe the patch embeddings of an image with H and W
the spatial dimensions and D the embedding dimensionality.
The processing takes place as follows

Z=12+ a(zWQ, Wk zw")
h(z) =i+ ¢EWHW?, )

where /h(-) denotes the ViT block as a function given an
input tensor, we WKk wV e RPXD are projection matrices
of learnable weights, W! € RP*P" and W2 e RP'*D are
the learnable weights of the feed-forward network with D’
latent dimension and ¢ (-) a non-linear activation function, i.e.,
GeGLU [45]. During backpropagation, all learnable weights
are updated. In our implementation, the multi-head variant
of the attention layer is used [44], and Layer Normalization
(LN) [46] is applied before the residual connections. They are
not displayed in (2) for simplicity in presentation. The output
of one block is given as an input to the next block.

IV. PROPOSED APPROACH

The proposed Multi-Identity size-iNvariant TIMEsformer
(MINTIME) approach is illustrated in Figure 2. It receives
as input a video containing one or more identities and
detects whether the video has been manipulated. Our method
first processes the input video to extract sequences of face
images in an adaptable manner. Then, the extracted sequences
are propagated through a network architecture, consisting
of a CNN backbone network and a Spatio-Temporal Trans-
former, that are able to effectively capture the spatio-temporal
inconsistencies within its content. MINTIME is versatile
and able to efficiently adapt to a multitude of real world
complex settings. In the following, we present in detail
the proposed pipeline and the novelties of our network
architecture.

A. Preprocessing and Feature Extraction

1) Pre-Processing: Given an input video v, we need to
detect the depicted faces and extract various details necessary
for our system. To this end, a frame-by-frame face detec-
tion [47] is initially applied that detects the location within
video frames where faces are displayed. For each of the
detected faces, we derive the following information: (i) the
face image tensor x; € R3*#*W where 3 is the number of
the RGB channels and H and W are the height and width
of the cropped face image respectively, (ii) the timestamps
t; € N, i.e., the index of the frame where they are extracted,
and (iii) the face-frame area ratio s; € (0., 1.], i.e., the ratio
between the area of the face image and the frame. Additionally,
we apply a face clustering scheme [13] in order to group the
detected faces and link them with an identity. In that way, each
detected face corresponds to an identity index [; € N, which
is the cluster id where it belongs. In the end, each arbitrary
face i corresponds to a tuple f; = (x;, I;, s;, t;) containing all
the necessary information for later processing.

To enable the model to handle multiple identities in one
video, we need to generate an input face sequence composed of
faces from several identities. Since the different videos have a
different number of faces, we need to select a fixed number of
faces to generate sequences with fixed slots so as to facilitate
vectorization and batch processing. To this end, the identities
are ordered according to the face-frame area ratio of their
faces (higher ratios first). Top-ranked identities are generally
prioritized by allocating a higher number of slots to them in
the sequence. This is done to drive our model to focus more
on faces that cover a larger area in the video frames and,
therefore, likely be more relevant compared with the smaller
ones. However, as evidenced in Table I, the system takes
into account all identities with the first two that are equally
treated. In our implementation we only consider a maximum
of 4 identities but in the case of a higher number of identities
the slot distribution can be customized as desired. This is just
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TABLE I

NUMBER OF SLOTS (N = 16 IN TOTAL) ASSIGNED TO EACH IDENTITY
BASED ON THE NUMBER OF CONSIDERED IDENTITIES, TO COMPOSE
THE INPUT SEQUENCE

Considered Identities Identity

1 2 3 4
1 16 N/A N/A NA
2 8 8 N/A  N/A
3 6 6 4 N/A
4 6 6 2 2

Fig. 3.  Sequence sampling when the number of assigned faces in the
sequence is inherited through identities. The numbers on the right indicate,
for each identity, how many faces can be used (the assignment is based on
hyperparameters), how many are available and how many have been inherited
from or left to another identity. A negative value in the “Inherited” column
means that some of the available slots have not been used; a positive one
means that some slots have been inherited from the previous identity.

an implementation choice but the system is anyway designed
to deal with any slot distribution.

The sequence length N, i.e., the available slots (16 is usually
chosen), and the number of identities K used for the sequence
generation is fixed, and we treat them as hyperparameters of
our system. The number of slots assigned to each identity
in the case of multi-identity videos is also a hyperparameter
and can be customized based on the number of identities
available in the considered video. If there is only one identity
in the video, its faces fill the entire sequence; otherwise,
the sequence is filled by distributing the slots to the various
identities prioritizing larger ones, as mentioned above. In cases
where there are not enough faces to fill the input sequence
for one identity, then faces from other identities are used,
or the sequence is padded with empty images. On the contrary,
in the case of longer identity sequences, uniform sampling is
performed, taking into account some faces spread as much
uniformly as possible in time. Figure 3 illustrates an example
of the sequence generation process. The output of this process
is a set of tuples F = {(x1,I1,s1,11), (X2, 2, $2,12), ...,
(XN, In, SN, tn)} consisting of all tuples of individual frames
considered in the sequence.

2) Feature Extraction: To extract features from the detected
face images, we use a CNN backbone that maps the image
tensors x; of the faces in the input sequence into the feature
space. Then, the output of the CNN backbone is propagated to
the Spatio-Temporal Transformer for further processing. The
CNN backbone can be denoted as a function f: R3>*HxW _
RExH /XW/, where C are the channel dimensions of the feature
space, i.e., the dimensionality of the output feature maps.
Hence, the resulting features maps are f(x;) € REXH W'
where H' and W’ are its spatial dimensions resulting from
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the mapping and depend on the employed backbone network.
In the rest of the paper, we omit the accents in the notation
of H' and W’ for a more compact presentation.

With the use of the CNN backbone, we generate com-
prehensive representations that capture the low-level spatial
information of face images and facilitate the analysis of
face sequences by the Spatio-Temporal Transformer. In our
experiments, we benchmark the performance of two CNN
backbones, i.e., an EfficientNet-BO [31], which has been
combined with Transformer networks in prior work [12], and
the popular XceptionNet [33] used in several approaches [11].

B. Spatio-Temporal Transformer

To implement our Spatio-Temporal Transformer, we used a
variation of the classical ViT, namely the TimeSformer [48],
proposed for video analysis and designed to capture not
only spatial information but also the temporal evolution of
the scene. We extend it with several adaptations for the
proper analysis of our input face sequences. More precisely,
we build our model using the divided space-time attention,
which incorporates separate spatial and temporal attention
mechanisms applied to the input in turns. It splits frames into
non-overlapping patch tokens and first calculates the attention
between the corresponding patches in the previous and next
frames to capture temporal dynamics, and then calculates the
attention between the patches of the same frame to capture
spatial information. To the best of our knowledge, this is
the first time that this architecture has been employed for
DeepFake Detection.

1) Face Tokens: Having extracted the feature maps for
all faces in a sequence, we then generate face tokens
for our Spatio-Temporal Transformer — unlike the original
TimeSformer [48] where tokens are generated from frame
patches. In particular, to generate our face tokens, we con-
catenate, reshape and project with a linear layer all the feature
maps extracted from the faces of our sequence through the
feature extraction step. This can be considered as the function
g: RNXCxHxW _, RNHWXD where D is the dimensionality
of output face tokens. Hence, the final face tokens are denoted
as zy € RVAWXD,

Furthermore, we employ a CLS token zy € R'*?, which
is processed by our network along with the other face tokens.
This captures all relevant information from the face tokens
and is used to derive the final video-level prediction for an
input video. In that way, we enable our system to perform
internal aggregation for the final prediction, without relying
on an a-posteriori aggregation scheme. Our final face tokens
are

7 = [ZO} c R(NHW+1)><D (3)
Lf

where [-] indicates concatenation.

Additionally, we enhance our face tokens with the two
embedding schemes that capture temporal order and relative
face-frame size, as depicted in Figure 4. These embeddings,
explained in more detail in the next lines, are based on both
the spatial position of the patches extracted from each face
and on the temporal position of the face in the video.
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Overview of Temporal Coherent Positional Embedding and Size Embedding on a two-identities video frame. The identities’ faces are detected at

different frames and this is translated into TCPEs equally between the ones appearing together in the scene and different TCPEs when the faces appear in two
distinct frames. For example the first two faces both appear in frame O so they have the same TCPE but different SE because they have diverse face-frame
area ratios. The third and the fourth face, on the other hand, are detected in different frames (10 and 20 respectively) and so they have different TCPEs. The
same situation for the last two faces, detected in frames 30 and 40 respectively. Also, each face has a diverse face/frame area ratio, conducting different size

embeddings for each face.

Temporal Coherent Positional Embedding (TCPE): To
encode temporal information into our tokens, we adopt the
positional embedding scheme used in the ViT [44]. For their
application, we order faces based on their timestamps #; in
chronological order. Since two faces can derive from the same
video frame, their temporal encoding should be identical and
not relative to their position in the face sequence. Therefore,
in that case, we use the same positional embedding, which
corresponds to the minimum index in the face sequence. In that
way, we maintain local and global temporal coherence for the
frames of each identity and across the frames of all identities in
the video, respectively. We use trainable positional embeddings
that are added to our tokens.

Size Embedding (SE): To inject size information into
our tokens, we build a similar approach as the positional
embeddings, where, instead of positions, we exploit the
face-frame area ratio to retrieve the embedding tokens. Since
the face-frame area ratio s; is a percentage in the (0%, 100%]
range, we split this range into 20 intervals of 5% each. Then,
for each interval, a size embedding vector is determined,
which is used for all faces with a ratio falling within the
corresponding interval. For example, if a face has an area
covering the 16% of the entire frame, the size embedding of
the fourth interval, i.e., (15%, 20%], will be used. In that way,
we encode the relative face size to our face tokens, enabling
our network to learn to leverage such information. Similar to
positional embeddings, we use trainable size embeddings that
are added to our tokens.

2) Identity-Aware  Spatio-Temporal Attention: In our
approach, we want to capture spatio-temporal relations in
the face tokens of the input sequences. Hence, following
divided space-time attention from [48], we employ the
attention mechanism (1) in two ways so as to capture: (i)
the spatial relations between tokens of the same face, i.e.,
spatial attention, and (ii) the temporal patterns analysing face
tokens derived from a particular image location in time, i.e.,
temporal attention.

For spatial attention, our goal is to process each frame inde-
pendently. Let z € RVHWHDXD represent a token sequence
comprising face tokens, denoted as z; C z, where z; € R!*P.
For each token z;, we define a set of related face tokens
z; € R¥W>D This set consists of all the face tokens extracted

from the same face image, characterized by a specific identity
and a specific timestamp according to z;. Note that z; does not
contain tokens extracted from other face images, even if they
originate from the same identity but in different timestamps.
The attention mechanism is applied between the CLS token
zo and all tokens in our sequence z, including itself. For all
other tokens, the attention mechanism is applied only with
the CLS token zo and the corresponding ones in the z;. More
formally, the spatial attention is given by

azoW2, 2wk zw)) i=0

so(zi) = Zo Z , @

K
SVVS’ K}

i i

a@mW, W) i#0
where sa(-) denotes the spatial attention for an input token,
and WXQ, WSK , WSV € RP*D gre learnable weights. This pro-
cess is similar to the space attention used in TimeSformer [48].
Similarly, for temporal attention, we aim at capturing the
temporal inconsistencies for each region in detected faces.
Since we target videos with multiple identities, we need to
process the face images from each identity separately, without
mixing information from different identities. Hence, for each
face token z; € R'*P we consider the concatenated set
zl.l € RN'XD of all tokens of the corresponding image regions
where the same identity is displayed, where N/ is the total
number of faces of the identity. Again, for the CLS token,
the attention scores are computed considering all face tokens.
All other tokens consider only the CLS and the corresponding
ones in the zl.I . To this end, the attention output is given by:

a@W2, 2wk 2w i=0

id —ta(z;) = zZ z
=1 a@wl [ wk | ™ |wy i £0

Zi Zl.

&)

where id —ra(-) denotes the identity-aware temporal attention
for an input token, and WIQ, W,K , W,V € RP*D are learnable
weights. Figure 5 illustrates how attention is calculated exclu-
sively by tokens referring to identity O faces (green), ignoring
those referring to identity 1 faces (red) and vice versa, while
all attend to the CLS token. The more intense the colour, the
higher the attention score for the pair of tokens. The grey
squares are token pairs for which the attention scores are not
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Fig. 5.  Identity-aware Attention on tokens for two-identities video. The
naming X_Y stands for the identity ID and token ID respectively. The more
intense the colour, the higher the attention value for each couple of tokens.
The attention is not computed between couples of tokens referring to different
identities.

calculated. This is because they are pairs of tokens derived
from two distinct identities; hence, the identity-aware attention
mechanism is not applied.

To this end, the equation (2) for the transformer block & of
our Spatio-Temporal Transformer can be reformulated as

Z=1z+id —ta(z)
Z=17++su(Z)
h(z) =2+ ¢EWHW?, (6)

In that way, our transformer blocks analyse the face tokens
in both space and time, capturing relevant information, with-
out mixing the processing of tokens belonging to different
identities. Regarding implementation, we follow ViT [43] and
TimeSformer [48] and use the multi-head attention, LN before
the residual connections, and GeGLU activation function for
¢. Our Spatio-Temporal Transformer consists of a total of L
such transformer blocks.

3) Model Output: Following the common practice [43], the
final prediction is derived through a single-layer classification
head, which takes as input the CLS token zé obtained from
the last transformer block and returns the confidence score for
classification. Formally, this process can be described as

y=ph) 7

where p(-) denotes our classifier and y is the final prediction
and classification output. The CLS token has collected global
information from all the face tokens and, in our case, from all
the identities considered.

V. EVALUATION
A. Dataset

The majority of video deepfake detection datasets available
mostly contain homogeneous videos with somewhat standard
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framing and contexts and filming only one person at a time.
For that reason, a study of the deepfake detection video
datasets in the literature is first conducted to find one that
would include temporal inconsistencies, various face-frame
area ratios, videos with several people in the same scene at
the same time, and varied in terms of deepfake generation
methods and perturbations. For these reasons, ForgeryNet [49]
is chosen as the most suitable dataset for our experiments. The
training set consists of 163,176 videos (73,678 pristine and
89,498 fake), while the validation set, which has been taken
as our test set (the ForgeryNet test set is unlabeled, so it cannot
be used) comprises 14,048 videos (6,205 pristine and 7,843
fake); the frame rate ranges between 20 and 30 fps and the
duration is rather different. The training and validation sets
contain mostly single-identity videos with a good percentage
of multi-identity sequences; for instance, in the training set,
11.7% of videos display two identities while 3.1% have three
or more identities. A similar distribution is observed for the
validation set (details can be found in the supplementary
material). Notably, the possibility that the same actor appears
both in the train and validation set is avoided by the procedure
adopted by the authors of the ForgeryNet dataset. In fact,
the authors first split the identities of the original videos
into two subsets, training and evaluation, roughly according
to a proportion of 7:3 [49]. This guarantees that any person
appearing in a training video is not included in the evaluation
set, and later, the evaluation subset is further divided into
validation and test with an approximate ratio of 1:2. We also
analyzed the face-frame area ratio of videos in this dataset,
discovering its variety with videos containing faces covering
an area up to almost even 100% of the entire frame. Comparing
it with the videos in the DFDC dataset, the faces in the
ForgeryNet videos have a more varied face-frame area ratio
with a variance of 288.6, compared with only 5.4 in the
case of DFDC. This means that in the ForgeryNet dataset,
the people are filmed at a less standard distance, which is
crucial for validating the impact of our Size Embedding. The
tampered videos in the dataset have been manipulated using
eight distinct methods: (1) FaceShifter [50], (2) FS-GAN [51],
(3) DeepFakes [52], (4) BlendFace, (5) MMReplacement,
(6) DeepFakes-StarGAN-Stack, (7) Talking-Head Video [53],
and (8) ATVGNet [54]. Each video is manipulated using only
one of these methods. The number of fake videos for each
method can vary with more frequent manipulations such as
FaceShifter or Talking-headVideo and less frequent ones such
as DeepFakes-StarGAN-Stack and MMReplacement. These
manipulations can be broadly categorized into two groups:
ID-Remained and ID-Replaced. In the ID-Remained category,
manipulations (composed by 7 and 8) are focused on alter-
ing the subject’s face without altering the identity; in the
ID-Replaced category (composed by methods from 1 to 6),
the subject’s face is substituted with a different one. To per-
form a more comprehensive analysis of the proposed method,
we also conducted some experiments on DFDC since, even
if it is composed of many more standard videos, there are
549 multi-identity test videos that offer additional cases for our
approach.
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B. Implementation Details

Pre-Processing: For face detection, we use the publicly
available MTCNN face detector [47]! with a similarity thresh-
old of 45% and a minimum cluster size ratio of 20% of
the whole faces. Faces are resized to an equal height and
width of 224 pixels. For face clustering, we employ the
scheme from [13] that applies the DBSCAN [55] clustering
on face embeddings extracted with an InceptionResnetV1 [56]
pretrained on VGGFace?2 dataset [57] based on FaceNet [58].
For better generalization, the face sequences undergo several
data augmentations during the training phase, in which many
random perturbations are applied, inspired by [49]. In partic-
ular, each time that a sequence is given as input to the model,
31 randomly selected transformations are applied uniformly
for all the video, such as image compression, various types of
blur techniques, image flip and invert, colour editing, random
noise, cutout and others.

Training Setup: MINTIME was trained in two main ver-
sions, a) MINTIME-EF, which uses an EfficientNet-B0 [31] as
feature extractor and trained on DFDC dataset [59] as in [12],
and b) MINTIME-XC, which uses an XceptionNet [33] as
feature extractor (inspired by [11]) and trained on ForgeryNet
images as in [49]. The first version is a lighter one and used
as a baseline and it was trained keeping fixed the whole
convolutional backbone excluding the last 2 blocks, with a
batch size of 8. The MINTIME-XC was trained end-to-end
with a batch size of 32. Both models are trained for 30 epochs.
The optimizer used is SGD with a learning rate of 0.01,
which decays to 0.0001 using a cosine scheduler. The weight
decay was set to 0.0001 as in [48]. All models were trained
considering a maximum of two identities per input sequence,
which does not limit the possibility of using more or fewer
identities at inference time. The maximum number of faces we
put in the input sequence was set to 16. As previously stated,
the number of faces considered for each identity to fill the
input sequence is a hyperparameter and our experiments were
based on the configuration of Table I. The hardware used to
perform the training consisted of up to four NVIDIA A100.

Reproduced Approach: Since the SlowFast [60] model
trained in ForgeryNet [49] was not available, we retrained it
starting from the model pretrained on Kinetics 400 [61] in
order to see how it behaved in certain contexts not reported in
the original paper. This is the only training conducted in which
a single identity per video is considered in order to emulate
what has been done in the original ForgeryNet paper [49].

C. Metrics

To evaluate the performance of our model, we used in
most contexts the AUC and accuracy calculated as Acc =
% where TP, TN, FP and FN stand for True
Positives, True Negatives, False Positives and False Negatives
respectively. This is because they are widely used in the
literature by previous methods and because they are highly
indicative of detection performance in a binary classification
context such as this. Some additional metrics are occasionally
used in the results, namely the False Positive Rate (FPR)

1 https://github.com/timesler/facenet-pytorch
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TABLE I

VIDEO-LEVEL EVALUATION ON FORGERYNET VALIDATION SET. THE
IDENTITIES COLUMN IS THE NUMBER OF CONSIDERED IDENTITIES
FOR THE INFERENCE. T INDICATES THAT THE MODEL HAS BEEN
TRAINED IN OUR SETUP. % INDICATES THAT THE RESULT IS
TAKEN FROM [49]

Model #IDs AUC Acc #Params
Cross Convolutional ViT [12] 1 75.45  69.65 101M
SlowFast R-50" [60] 1 90.86  82.59 34M
SlowFast R-50* [60] 1 93.88  88.78 34M
X3D-M* [62] 1 93.75 8793 M
MINTIME-EF 1 90.13  81.92 74M
MINTIME-EF 2 9045 82.28 74M
MINTIME-EF 3 90.28  82.05 74M
MINTIME-XC 1 93.20 85.96 85M
MINTIME-XC 2 94.25 87.64 85M
MINTIME-XC 3 94.10 86.98 85M
TABLE III

EVALUATION ON MULTI-IDENTITY ONLY VIDEOS OF FORGERYNET
VALIDATION SET. THE MODELS ARE ALL
TRAINED IN OUR SETUP

Model #IDs AUC Acc
Cross Convolutional ViT [12] 1 59.78  52.08
SlowFast R-50 [60] 1 80.92  72.63
MINTIME-EF 2 89.56 81.21
MINTIME-XC 2 94.12 86.68
_ _FP
calculated as FPR = TNTFP and the mean and standard

deviation (STD) of accuracies. The FPR is used as a metric
because it is important to have a system in the real world
which does not lead to many false detections. The mean and
STD are used to give an idea of the models’ generalization
among the forgery methods. We also used the True Positive
Rate (TPR) calculated as TPR = TPT—i-—I;“N and True Negative

Rate (TNR) calculated as TNR = TNT—JiVFP in order to evaluate
the capability of the models to correctly classify both fake and
pristine videos respectively. Exploiting these metrics we also
calculated the Balanced Accuracy (BA) as BA = w.
All the evaluations are conducted considering a threshold

of 0.5.

VI. EXPERIMENTAL RESULTS
A. Comparison With the State of the Art

1) ForgeryNet Evaluation: According to Table II,
MINTIME-XC outperforms the state-of-the-art on the
ForgeryNet validation set in terms of AUC and is almost
on par with SlowFast R-50 in terms of accuracy, which
is, however, limited to consider a single identity in the
classification phase (the value #ID indicates the number
of identities considered by every model in each specific
test case, with only MINTIME providing the multi-identity
option, without affecting the number of considered videos).
All MINTIME models are also robust in analyzing videos
considering a variable number of identities without a
significant loss of overall performance. To consider also a
frame-by-frame method, we tested the Cross Convolutional
ViT [12], which can be considered as a baseline. The
method significantly underperforms compared with the
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TABLE IV

VIDEO-LEVEL EVALUATION ON FORGERYNET VALIDATION SET IN TERMS OF TNR FOR THE PRISTINE VIDEOS, TPR ON EACH FORGERY METHOD AND
ON THE OVERALL FAKE VIDEOS, FPR, MEAN AND STANDARD DEVIATION (STD) AND BA. THE MODELS ARE ALL TRAINED IN OUR SETUP

TPR on Forgery Method t

Model TNR 1 TPRt FPR| Meant STD| BAt
2 3 4 5 6 7
SlowFast R-50 [60] 84.65 69.70 7171  81.19 8135 78.67 8843 8896 92.05 80.98 15.34 81.86 7.64 82.81
MINTIME-EF 85.84 70.05 69.75 7455 82.05 78.14 79.59 9149 77.03 79.44 14.16 78.72 7.09 82.64
MINTIME-XC 88.15 7994 84.64 8217 84.05 77.59 8537 92.03 7991 84.03 14.06 83.76 4.49 86.09
TABLE V

others, highlighting the importance of capturing the temporal
inconsistencies, particularly in the case of ForgeryNet, where
the faces are not manipulated in all the frames.

Furthermore, in Table III, we evaluate the performances of
the models considering only the videos in which more than
one identity occurs. In this setup, MINTIME-XC significantly
outperforms our reproduced state-of-the-art SlowFast R-50
model by correctly classifying most of the videos considered.
Interestingly, SlowFast R-50, trained considering only one
identity per video, performs poorly on multi-identity videos as
it is heavily influenced by the choice of the single identity to
be analyzed. Also, the frame-by-frame method, namely Cross
Convolutional ViT, completely fails to manage the multi-
identity case, reporting very low performance on this subset
close to random guessing. This poor performance derives
from both the chosen identity and the aggregation function
used to merge the individual face predictions into a single
video-level prediction. For this experiment, we consider the
maximum prediction obtained for the faces in each video.
This highlights the necessity for models capable of handling
multiple identities in the same video. In our case, we consider
identities containing faces that cover larger areas of the video
to be more important. However, we conduct a deeper analysis
of the impact of this choice in our ablation study, where we
demonstrate that our approach is not sensitive to this choice.
We also conduct experiments to highlight the impact of the
TCPE, the Identity-aware Attention, and the Size Embedding
as further analysis.

In Table IV, we report the TNR obtained on pristine videos,
the TPR obtained on the eight different deepfake methods
present in ForgeryNet with its mean and std, the global TPR
obtained considering all the fake videos without specifying
the manipulation method and the global FPR considering all
the pristine videos. The results make clear how both our
models, especially MINTIME-XC, achieve highly competitive
detection performance in all forgery types. SlowFast R-50
appears to be superior to the other competing models in
recognizing video manipulated by method 8, namely ATVG-
Net [54]. Nevertheless, according to the mean and STD, the
model exhibits much higher variability in performance, unlike
our MINTIME-XC, which remains consistent across different
methods and achieves a lower FPR and higher overall TPR.

2) DFDC Evaluation: Although DFDC is not the best
choice to validate robustness on the multi-identity case or the
impact of size embedding due to the homogeneity of videos
contained in it, for completeness we conducted experiments
to evaluate the ability of our model to identify deepfake
videos on this dataset as well. We train MINTIME-XC on

PERFORMANCES ON DFDC OFFICIAL TEST SET. ¢ INDICATES THAT
THE METHOD HAS BEEN TESTED ONLY ON MULTI-IDENTITY
VIDEOS CONSIDERING A MAXIMUM OF TWO IDENTITIES FOR THE
SEQUENCE CONSTRUCTION

Model Acc  F1-Score AUC
XN-avg [25] 84.6 - -
13D [63] 80.8 - -
LSTM [39] 79.0 - -
TEI [64] 87.0 - -
S-IML-T [65] 85.1 - -
STIL [66] 89.8 - -
MINTIME-XC (our) 86.4 87.0 95.2
MINTIME-XC ¢ (our) 84.7 79.6 93.1
Convolutional ViT [67] - 77.0 84.3
Efficient ViT [12] - 83.8 91.9
Conv. Cross ViT [12] - 88.0 95.1
Selim EfficientNet B7 [68] - 90.6 97.2
ViT with distillation [69] - 91.9 97.8
TABLE VI

CROSS-FORGERY EVALUATION ON FORGERYNET VALIDATION SET.
X3D-M AND SLOWFAST R-50 RESULTS ARE TAKEN FROM [49]

Forgery type  ID-replaced ID-remained

Method

(Training)  Ayc  Ace AUC Ace
X3D-M [62] 9291 8792 6559 5525
SlowFast RS0 [60] 1) 0 9288 8826 6483 5264
MINTIME-EF 83.86 80.18 86.98 79.03
MINTIME-XC 93.66 8658 88.43 84.02
X3D-M [62] 62.87 5593 9540 88.85
SlowFast R-50 [60] | . . 6150 5270 9547 8796
MINTIME-EF 6626 63.13 95.02 89.22
MINTIME-XC 68.53 64.01 9726 92.08

the DFDC training set and compare it with several state-of-
the-art methods in Table V. It can be seen that MINTIME-XC
also performs reasonably well on this dataset, reporting results
similar to other previous methods but without outperforming
them. We also perform an evaluation considering only multi-
identity videos, which, in the DFDC test set, are 549 (355 of
which are pristine videos), and we notice that the performances
remain at a high level, particularly in terms of AUC and
Accuracy.

3) Generalization Analysis: As pointed out in [21], the
generalization capability of a deepfake detection model is
crucial in order to be effectively deployed in the wild.
In Table VI, we report the results obtained from the proposed
models by training them on a subset of forgery methods and
then testing them on the remaining ones. In particular, the
models were trained with videos altered with the so-called
Identity-Remained techniques, i.e., approaches that preserve
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Fig. 6.  Accuracy of MINTIME-XC on ForgeryNet for each method in
cross-forgery training and testing scenario. The first column indicates the
percentage of pristine videos correctly classified. The other columns indicate
the correctly detected fake videos for each forgery method.

the identity of the manipulated subject depicted in the video.
Then, the trained models are tested on videos altered with
both Identity-Remained and Identity-Replaced techniques, i.e.,
approaches that replace the identity of the manipulated subject
depicted in the video. We also repeat the process but training
with videos of Identity-Replaced methods and testing on both.
According to Table VI, MINTIME-XC demonstrates the best
generalization capability to unseen methods, outperforming
competing methods by a significant margin in almost all cases.
It is worth noting that when training on Identity-Remained
samples the performance on Identity-Replaced test videos is
strongly compromised for all models (see second row of
Table VI); in the dual case (see first row of Table VI), the
same happens but not for the MINTIME models that provide
a superior degree of generalization.

We conduct further analysis to see how the model behaves
when trained on a single forgery method and tested on all
others. For this experiment, the training set is composed
by selecting all pristine videos and all the videos generated
with a single forgery technique. The trained models are then
tested with videos from all eight forgery methods. The results
obtained are summarized in the heatmap in Figure 6 in which
the first column reports the accuracy achieved by each specific
trained model on pristine test samples (namely correctly
classified pristine videos), while the other columns present
the performance obtained by each specific trained model on
the fake test samples for each of the eight different forgery
methods (namely correctly classified fake videos manipulated
with a specific method). It can be seen that a good generaliza-
tion capability is evident in most considered contexts. In fact,
although the model achieves higher accuracy on training
methods in all contexts, it still manages to recognize many
videos edited with techniques unseen during training, which is
crucial in real-world verification tasks. The different behaviour
for Method 6 is probably related to the low amount of videos
manipulated with this method used during training, while
Method 8 differs from the others probably because of its very
particular artifacts that make it very hard for detection when
training on samples coming from different forgery methods.

Finally, we evaluate MINTIME-XC trained on the
ForgeryNet training set and tested on the DFDC Preview test
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TABLE VII

CROSS-DATASET COMPARISON ON DFDC PREVIEW TEST SET. THE
PREVIOUS METHODS ARE TRAINED ON FACEFORENSICS++, WHILE
MINTIME-XC Is TRAINED ON FORGERYNET. THE IDENTITIES
COLUMN IS THE NUMBER OF CONSIDERED IDENTITIES
DURING THE INFERENCE

Model Trainset #IDs AUC
Face X-ray [19] FF++ 1 65.50
Patch-based [71] FF++ 1 65.60
DSP-FWA [72] FF++ 1 67.30
CSN [7] FF++ 1 68.10
Multi-Task [73] FF++ 1 68.10
CNN-GRU [74] FF++ 1 68.90
Xception [33] FF++ 1 70.90
CNN-aug [20] FF++ 1 72.10
LipForensics [36] FF++ 1 73.50
FTCN [6] FF++ 1 74.00
RealForensics [7] FF++ 1 75.90
HF Features [34] FF++ 1 79.70
MINTIME-EF ForgeryNet 2 68.57
MINTIME-XC ForgeryNet 2 77.92

Fig. 7. Attention values computed on the 16 input faces for a pristine video
(left) and a fake video (right) both containing two identities; in bottom rows,
sample attention maps (only 4 faces for each identity) are presented.

set [70]. In Table VII, we provide a comparison with other
methods tested in this context. Although our model is trained
on a different dataset from other prior works, it achieves a
highly competitive level of generalization with a high AUC
score in a cross-dataset context.

B. Qualitative Evaluation

All our models have been trained to perform binary classi-
fication of the entire video. However, in the case of deepfake
videos, a hypothetical final user might be interested not only
in knowing whether the video has been manipulated but
also at what instant and if there is more than one tampered
person. These are typical requirements when such systems are
provided to end users (e.g., journalists) [8].

We can derive such information by analyzing the attention
values obtained on the various faces that compose the input
sequence. Indeed, it has been empirically shown that when
the video is pristine, there are no relevant alarms of detection,
as shown in Figure 7 (left), while in the presence of a deepfake
video, the model pays more attention on the faces containing
traces, as shown in Figure 7 (right). Analyzing the attention
values makes it rather straightforward to trace which identity
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Fig. 8. Shots of outcomes obtained with MINTIME in different multi-identity
contexts.

TABLE VIII

EVALUATION OF MINTIME WITH AND WITHOUT THE USAGE OF SIZE
EMBEDDING ON FORGERYNET VALIDATION SET

Model #IDs SE AUC Ace
X 8942 8257
MINTIME-XC 2 s 9425 87.64

has been manipulated and at what instant(s) the trace is
present.

Examples of outcomes from the model are shown in
Figure 8. In all cases, the proposed model is able to identify the
fake identity, if any, even in crowded situations. An interesting
case is the one where a cartoon face picture is involved
(Figure 8 bottom-left), but the model still manages to realize
that the manipulated face is that of the man. The face detector
detects both the cartoon face, which is originally represented
on the t-shirt of the man, and the face of the man, but
then the deepfake detector only evaluates the second one as
manipulated (as it really is) considering the cartoon face as
“pristine” in the sense of unmodified. In the case that a human
face is altered by means of a cartoon face the modification
would have likely been detected by the method.

C. Ablation Study

To better understand the impact of the novelties introduced
in our architecture on the performance, we perform a number
of ablation experiments, modifying our model and disabling
its components in part.

Impact of Size Embeddings: Size-embedding is introduced
to handle certain cases that rarely occur in a deepfake detec-
tion dataset but can be very common in the real world.
In Table VIII, we show a comparison between MINTIME-XC
trained with and without the usage of Size Embeddings on
the ForgeryNet validation set. As can be seen, even in a more
standard context, such as a dataset created specifically for
deepfake detection, the introduction of Size Embeddings yields
better results in terms of both accuracy and AUC.

To verify if the model is robust independently from the
face-frame area ratio, we also constructed four sub-datasets
considering the quartile distribution of face-frame area ratios
of the largest face in the videos, and we tested the model with
and without the usage of Size Embeddings reporting the results
in Table IX. It is evident that the model has similar AUC
values on all sub-datasets, and the impact of Size Embeddings
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TABLE IX

IMPACT OF S1ZE EMBEDDING ON SUB-DATASETS COMPOSED BY VIDEOS
FROM FORGERYNET TEST SET WITH DIFFERENT
FACE-FRAME AREA RATIOS

Model Face-Frame ratio Pristine Fake SE AUC

MINTIME-XC [0, 5%] 1345 2166 § gg:gg

MINTIME-XC (5. 10%] 2000 1494 5 32;521;

MINTIME-XC (10, 20%] 1570 1961 § gg:gg

MINTIME-XC (20, 100%] 179 1716 j 3(1):95»;
TABLE X

EVALUATION OF MINTIME-XC WITH AND WITHOUT THE USAGE OF
IDENTITY-AWARE TECHNIQUES ON MULTI-IDENTITY VIDEOS ONLY
FROM FORGERYNET VALIDATION SET. THE IDENTITIES COLUMN
INDICATES THE NUMBER OF IDENTITIES CONSIDERED
DURING INFERENCE

Model #IDs TCPE IA AUC

MINTIME-XC 2 § 5 gi;ig

MINTIME-XC 3 ﬁ j 32;3;
TABLE XI

THE IMPACT OF IDENTITIES SORTING TECHNIQUES AT INFERENCE TIME
ON MULTI-IDENTITY VIDEOS ONLY FROM FORGERYNET
VALIDATION SET. ALL THE METHODS ARE TRAINED
WITH SIZE-BASED APPROACH

Model #IDs  Sorting Method AUC Acc
Random 8597 77.02
SlowFast R-50 [60] 1 Frequence-Based  84.58  76.04
Size-Based 80.92  72.63
Random 93.73  86.25
MINTIME-XC 2 Frequence-Based 94.08  86.43
Size-Based 94.12 86.68

is clearly apparent, particularly in situations where the face
covers a small area of the frame, i.e., between 0 and 20%.

Impact of Identity-Aware Mechanisms: Considering only
videos containing more than one person in the same scene,
we can see in Table X that the proposed model performs best
when Multi-Identity Attention and TCPE are used, demon-
strating that these mechanisms contribute to better manage
multi-identity cases.

Impact of Identity Reordering Policy: We also investigated
in Table XI how the identity reordering policy could affect
the performance of our model, and we made sure that we
avoided inducing any bias during the training phase. To do
this, we conducted several tests using different techniques. It is
important to decide in which order to insert the various iden-
tities when constructing the input sequence. During training,
we used the average of the areas of the faces associated with
each identity as a criterion, which gave more weight to the
most prominent identities in the scene (Size-based). We also
tried using the number of faces associated with an identity
as a criterion (Frequency-based), and finally, we compared
a random criterion. Our results showed that the three dif-
ferent strategies did not significantly affect the performance
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of our proposed model, except for Random, which had a
slightly higher loss. This may be because the fake identity
could be discarded in favour of other identities in the scene
when reordering the identities randomly. When considering
a single identity per video, the results are strongly affected
by the identity reordering policy, increasing the probability
of missing the manipulated identity. In SlowFast experiments,
it can be seen that this also leads to better results in random
ordering simply by chance in the choice of the fake identity.
This highlights again the importance of analyzing multiple
identities correctly.

VII. CONCLUSION

In this study, we addressed various challenges associated
with video deepfake detection in real-world scenarios and
proposed a novel solution to overcome these obstacles. Our
proposed model, MINTIME, achieves state-of-the-art perfor-
mance on the ForgeryNet dataset and exhibits a high level
of generalization in cross-forgery and cross-dataset settings,
often surpassing previous approaches. MINTIME effectively
manages videos featuring multiple individuals without neces-
sitating any form of prediction aggregation, accommodates
faces with varying sizes relative to the frame area, and simul-
taneously captures spatial and temporal inconsistencies by
employing a modified TimeSformer. Moreover, the attention
values of the trained models offer easy interpretability, allow-
ing for more fine-grained predictions and extracting useful
information for end-users. As a direction for future research,
it would be interesting to investigate how to leverage the
audio component of videos, as a complementary input to the
spatial and temporal components. Furthermore, additional up-
to-date datasets and more challenging real-world scenarios in
the multi-identity context need to be investigated.
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