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Abstract19

Automated in-field data gathering is essential for crop monitoring and man-
agement and for precision farming treatments. To this end, consumer-grade
digital cameras have been shown to offer a flexible and affordable sensing
solution. This paper describes the integration and development of a cost-
effective multi-view RGB-D device for sensing and modelling of agricultural
environments. The system features three RGB-D sensors, arranged to cover
a horizontal field of view of about 130 deg in front of the vehicle, and a
suite of localization sensors consisting of a tracking camera, an RTK-GPS
sensor and an IMU device. The system is intended to be mounted on-board
an agricultural vehicle to provide multi-channel information of the surveyed
scene including color, infrared and depth images, which are then combined
with localization data to build a multi-view 3D geo-referenced map of the
traversed crop. The experimental demonstrator of the multi-sensor system is
presented along with the steps for the integration of the different sensor data
into a unique multi-view map. Results of field experiments conducted in a
commercial vineyard are included, as well, showing the effectiveness of the
proposed system. The resulting map could be useful for precision agriculture
applications, including crop health monitoring, and to support autonomous
driving.
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1. Introduction22

Persistent and timely crop monitoring is crucial for the development of23

sustainable food production systems. While remote sensing from satellites24

and aircrafts has been successfully used for some decades to allow for rapidly25

mapping and characterize wide areas through acquisition of multispectral im-26

agery and 3D data, they generally lack the spatio-temporal resolution needed27

for precision agriculture or phenotyping tasks. In crops with smaller exten-28

sion, Unmanned Aerial Vehicles (UAVs) have been effectively adopted for29

remote crop survey with higher spatial and temporal resolution compared30

to satellite and airborne devices. In high-density crops, however, collecting31

information on biophysical properties at plant or leaf/fruit level via aerial32

sensing may be still infeasible. As a result, ground-based sensing through33

Unmanned Ground Vehicles (UGVs) has been proposed for in-field close-34

range applications [1].35

In this respect, imaging sensors embedded on ground vehicles have recently36

attracted much attention as an effective solution to collect high resolution37

proximal data and provide information on plant characteristics at centimetre38

or sub-centimetre scale. At the same time, they can be used for vehicle guid-39

ance automation and scene perception and understanding in general, thus40

contributing to all aspects of crop monitoring automation, from data gath-41

ering up to high-level data processing and interpretation.42

Among imaging sensors, consumer-grade RGB-D cameras, i.e., sensors that43

embed color and depth sensing into a unique device, have emerged in the44

last years in mobile robotics applications, to provide the vehicle with a real-45

time representation of both appearance and 3D structure of the environment.46

One shortcoming of typical consumer-grade color-depth sensors is their lim-47

ited field-of-view, which makes them unsuitable for applications that need48

continuous survey of extensive areas, like in agricultural settings.49

In this work, a multi-view RGB-D camera system is proposed to enhance the50

perception ability of an unmanned agricultural robot. The system features51

three RGB-D cameras arranged to cover a horizontal field of view of about52

130 deg. The cameras are integrated with localization sensors, including53

a stereo-based tracking camera, an RTK-GPS and an IMU, which provide54

accurate vehicle position information for image geo-referencing based on Ex-55

tended Information Filter (EIF). All the sensors are physically integrated in56

a custom-built sensor box, which is designed to be self-contained from both a57

computational and energy point of view and independent from the particular58
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vehicle architecture. The system is intended to generate accurate maps to59

facilitate operations on a narrow scale with a smaller environment footprint.60

To this end, a point cloud assembler that uses EIF-based pose estimates and61

the known relative poses between sensors is developed to reconstruct a geo-62

referenced multi-view 3-D map of the traversed environment, which could63

provide a useful input to precision farming technologies and crop monitoring64

tasks.65

An additional use of the map is that it can be incorporated into a high-fidelity66

simulator that can support the development and pre-testing of algorithms for67

autonomous driving. In this respect, the map can be converted into a mesh68

representation using the Ball Pivoting Algorithm (BPA) and imported into69

a simulation environment under Gazebo [2].70

The rest of the paper is structured as follows. First, related work is pre-71

sented in Section 2. The hardware and software design of the multi-view72

sensing device is reported in Section 3. Section 4 describes the multi-view73

3D mapping approach. The simulator is detailed in Section 5. Experimen-74

tal results obtained in real agricultural settings are presented in Section 6.75

Finally, conclusions are drawn in Section 7.76

2. Related Work77

The availability of up-to-date and accurate data is an essential pre-requisite78

for precision farming tasks, such as variable rate application of fertilizers/pesticides,79

identification of infected plants or invasive species, and controlled traffic farm-80

ing. While satellite and airborne technologies have been in use for some81

decades to effectively provide multi-spectral and 3D information in wide82

agricultural and forestry areas, these platforms generally lack the resolu-83

tion needed to observe stems, leaves or fruits. Satellite images typically have84

pixel resolution of hundreds of meters and airborne sensing may provide res-85

olution of a few meters, whereas monitoring orchards or vineyards requires86

observations at a smaller scale. Information update frequency is also limited,87

varying from hours to several days. In crops with smaller extension, UAVs88

equipped with RGB, multispectral or LiDAR sensors, have been adopted to89

overcome these bottlenecks, allowing for efficient crop survey at user–defined90

spatio-temporal resolutions to assess vegetation vigor or for canopy charac-91

terization [3], [4]. However, in high density crops, using aerial data can still92

be ineffective for precise measurement at leaf/fruit level, e.g., for health sta-93

tus assessment and yield estimation.94
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As an alternative or complementary approach, proximal sensing from ground-95

based or manually deployed devices can be performed. Proximal sensors96

range from RGB cameras to high-resolution hyperspectral imaging, infrared97

(IR) thermal cameras, and 2D/3D LiDARs. Applications include fruit de-98

tection and counting [5], up to plant phenotyping [6], health status assess-99

ment and growth monitoring [7], [8]. While these methods were proved to100

be effective and accurate for detailed information extraction, they are of-101

ten constrained to structured environments, such as greenhouses and specific102

acquisition conditions, such as controlled illumination or pre-defined posi-103

tioning of the sensing devices, or they require the adoption of expensive104

high-resolution sensors [9], which limits their practical implementation.105

In order to address these issues, crop monitoring by agricultural ground106

robots has been proposed as a step forward to automated proximal mea-107

surement and characterization of high-value crops and soils [10], [11]. While108

much work has been done in the context of ground robots for harvesting and109

picking operations, the use of UGVs for in-field crop monitoring and assess-110

ment has been proposed more recently. UGVs can carry a number of sensing111

devices, thus potentially providing an efficient means to gather multi-modal112

information at a narrow scale. At the same time, they can be equipped with113

manipulators and actuators to perform targeted actions, such as selective114

spraying or fertilizing, with relatively high operating times.115

Although UGVs offer enough payload to transport a number of bulky sen-116

sors, keeping low complexity and costs is a major requirement for in-field117

implementation. In this respect, visual sensors mounted on ground robots118

have been shown to provide an efficient and affordable solution in a wide119

range of agricultural applications, including plant and fruit detection, fruit120

grading, ripeness detection, yield prediction, plant and fruit health protec-121

tion and disease detection. In addition, visual sensors provide a rich source122

of information to support autonomous navigation functions such as localiza-123

tion, obstacle detection and situation awareness in general [1], [12].124

Among visual sensors, portable consumer-grade RGB-D cameras, like Mi-125

crosoft Kinect, have been receiving growing attention, as an effective means126

to recover in real-time 3D textured models of plants and extract plant and127

fruit features [13], although the application of this sensor remains mostly lim-128

ited to indoor contexts. A novel family of highly portable, consumer depth129

cameras has been introduced by Intel in 2015 (R200 and D4xx, Santa Clara,130

CA, USA). These cameras are similar to the Kinect sensor in scope and cost,131

but use a different working principle based on IR stereo, which makes them132

4



more suitable for outdoor conditions. In addition, their output include RGB133

information, infrared images and 3D depth data, thus covering a wide range134

of information about the scene. The potential of these sensors for agricul-135

tural applications has been investigated in recent works [14], [15].136

Following this research trend, this work explores the potential of a multi-view137

RGB-D system for geo-referenced image acquisition and mapping of a high-138

value crop, like a vineyard. The device is built following a modular approach139

and can be mounted on any agricultural vehicle to provide ground-based 3D140

reconstruction of the traversed crop rows. Data acquisition and processing141

can be carried out during vehicle operations, in a non-invasive and completely142

automatic way, while requiring low investment and maintenance costs.143

One specific aspect addressed is accurate vehicle localization. Localization144

of the UGV is essential for correct merging of point cloud streams and thus145

for the construction of geo-referenced 3-D maps. In [16], the UGV pose146

estimation problem is formulated as a pose graph optimization to mitigate147

sensor drift and significantly improve state estimation accuracy using a Digi-148

tal Elevation Model (DEM) and a Markov Random Field (MRF) assumption.149

Authors in [17] proposed a Simultaneous Localization And Mapping (SLAM)150

method for generating the map of an agricultural environment and simulated151

it on Gazebo and Robot Operating System (ROS) for the case of an apple152

farm, showing good results in fruit mapping. A well-established solution to153

the localization problem to fuse information from multiple sensors is Kalman154

filtering. In this work, we use the information form of the Kalman Filter as155

data fusion strategy for heterogeneous sensors. The reason is related to the156

high reliability of such algorithm, as confirmed by recent research (e.g.,[18],157

[19]). Other alternatives have been investigated in the literature, including,158

for example, particle filtering, which however has proven to be less accurate159

for localization purposes ([20], [21]).160

3. Multi-view Sensing Device161

This section describes the development of a multi-sensor box for close162

range sensing and modelling of agricultural environments. The sensor suite163

is intended to be mounted on board an agricultural robot and is designed to164

be self-contained, both from a computational and energy point of view, and165

independent from the particular vehicle architecture.166
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3.1. Hardware Design167

The sensor suite is shown in Figure 1 (a). It consists of two sensor arrays,168

namely a Perception Sensors array and a Navigation Sensors array. The169

perception sensors include three Intel RealSense D435 RGB-D cameras ar-170

ranged to cover a wide horizontal field of view of about 130 deg in front of the171

vehicle, which extends up to about 145 deg when considering infrared depth172

information only. The mounting case allows one to alternatively place up to173

two cameras in lateral configuration, e.g., to keep the image plane parallel174

to a crop row for tasks such as row following and/or monitoring. A closeup175

of the multi-camera system is shown in Figure 1 (b). The navigation sen-176

sors comprise one Intel RealSense tracking camera T265, one X-Sense IMU177

MTi-300 and two U-Blox GPS Zed-F9P providing RTK-GPS data in rover-178

base configuration. All sensors are integrated in a 3-D printed PLA box (see179

Figure 1 (c)), which was designed following a modular approach, so that it180

can be assembled in multiple ways according to the specific needs of the test181

field. The described sensor suite can be fixed to the vehicle through a metal182

frame, built with aluminium bars and plates and designed to be stable and183

of adjustable height. Two Intel NUC7i7DNHE computers are used for data184

gathering. The PCs, powered by lithium batteries, are fixed at the bottom185

of the metal frame. Overall, the proposed sensor box provides a flexible and186

self-contained data gathering device with a cost of about 6.5k e(i.e., 27% for187

the two processing units, 45% for the IMU, 14% for the cameras, 7% for the188

GPS, and 7% for the batteries).189

3.2. Acquisition Software Design190

The data gathering pipeline of the sensor suite is shown in Figure 2. The191

sensor box provides two processing units, one running Ubuntu and the other192

running Windows 11. The NUC Ubuntu is devoted to gathering positional193

measurements produced by the GPS sensor and the IMU sensor. Data ac-194

quisition is made through ROS drivers using a dedicated ROS node for each195

sensor. Then, all the acquired data are stored in ROS bags.196

For image acquisition and storage, a software package, named SensorBox,197

was developed using the Intel RealSense SDK 2.0 (v. 2.49), running on198

NUC Windows. The software architecture of the whole package is divided199

into two executables: MultiBagReader and MultiBagWriter. The scheme of200

the first executable (MultiBagWriter) is shown in Figure 3. It works in a201

producer-consumer logic, where the Intel RealSense cameras connected to the202

processing unit are first opened to produce the data which is then consumed,203
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(a)

(b)

(c)

Figure 1: (a) Demonstrator of the UGV’s sensor box: (1)-(2) Intel NUC Windows PCs;
(3) Batteries, (4) T265 Camera, (5) D435 Cameras, (6) X-Sense MTI-300 IMU, (7) U-blox
ZED F9P board, (8) Sensor Box GPS antenna. (b) Closeup of the multi-camera system.
(c) CAD model of the sensor frame.
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Figure 2: Sensor box data flow.

i.e. displayed, to show the acquired field of view and/or the computed visual204

odometry. Then, when the user starts the acquisition, the data are encapsu-205

lated in several ROS bags, stored on the local hard disk of the NUC. In this206

way, each camera produces a bag file at the maximum achievable rate (up to207

30 fps), without any further processing to prevent frame drops. It is worth208

noticing that each camera works in a free run mode and, thus, their frames209

are not temporally synchronized, i.e. acquired exactly at the same time in-210

stant. The second executable (MultiBagReader) opens the bags, divides the211

RealSense pipelines to have single streams in each pipeline, and then reports212

all the acquired frames to a global temporal reference, thus performing soft-213

ware synchronization. The software features a user interface for both writing214

and reading modules, as shown in Figure 4. The open-source code of the215

software is available on GitHub (https://github.com/ispstiima/SensorBox).216

217

3.3. Sensor Synchronization and Calibration218

The association of heterogeneous data requires temporal and spatial cali-219

bration. For time synchronization, a timestamp-based approach was adopted,220

whereby each sensor observation was marked with a timestamp. In addition,221
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Figure 3: Schematic of the image acquisition software.

to register all sensor data with respect to a common reference frame, spatial222

calibration was performed to estimate the relative position and orientation of223

the sensors with respect to each other. Spatial calibration was performed by224

construction, considering that all the sensors are located in the sensor box225

at fixed positions. This proved to be sufficiently accurate for the purpose226

of this work, although optimization strategies, such as the one proposed by227

the authors in [22], can be also adopted to further improve the registration228

accuracy.229

4. Multi-view 3D Mapping230

The data acquired by the sensor suite are processed to build a multi-view231

map of the traversed environment, following multiple stages. First, data from232

GPS, IMU and T265 sensors are fused by an EIF to generate pose estimates.233

Successively, the point clouds obtained by each of the three RGB-D cameras234

are assembled into a unique map, using the EIF pose estimates and the235

known relative poses between the sensors. The map can be then converted236

into a 3D mesh representation for efficient storage and inspection, as well as,237

for import in a dedicated simulation environment, as will be described later238

in Section 5. In more detail, with reference to Figure 1, let us introduce the239

reference frames denoted with the following subscripts:240

• sb: Sensor Box frame (Figure 1, a-6)241

• w: East-North-Up world frame (Figure 1, a-8)242

9



(a)

(b)

Figure 4: User interface of the multi-view camera system: (a) interface for data acquisition
and storage (MultiBagWriter); (b) interface for reading stored image databases (MultiBa-
gReader).
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• cam: Camera Frame (Figure 1, a-5)243

• s: Reference frame for the s-th sensor (RTK-GPS, T265, IMU).244

Furthermore, quantities of interest are presented here to facilitate the245

understanding of the mapping reconstruction process:246

• pB−A(t) ∈ R1,3: position vector of reference frame A at time t expressed247

in reference frame B248

• qB−A(t) ∈ C1,4: quaternion orientation of reference frame A at time t249

expressed in reference frame B. Note that only quaternions are denoted250

in bold.251

For the reader’s convenience, basic concepts on quaternion analysis ap-252

pear in the Appendix. The interested reader is referred to the literature (e.g.,253

[23]) for more details.254

The mapping algorithm proceeds according to the following three steps:255

1. Pose estimation: position and orientation of the sensor box can be
estimated from different sensors (RTK-GPS, T265, IMU) and fused
within an EIF. In general, the sensor s can provide information about
its position and orientation expressed either in the world frame or with
respect to its initial pose. In the former case, Equations (1) give the
sensor box orientation qw−sb and position pw−sb in the world frame,
knowing qs−sb and psb−s

qw−sb(t) = qw−s(t)qs−sb

[pw−sb(t), 0] = [pw−s(t), 0]− qw−sb(t)[psb−s, 0]
(1)

If the sensor provides ps0−s(t) and qs0−s(t) with respect to its initial
condition s0, Equations (2) compute pw−sb and qw−sb

qw−sb(t) = qw−sb0qsb0−s(t)qs−sb

[pw−sb(t), 0] = qw−sb0qsb−s[ps0−s(t), 0]qs−sbqsb0−w−
+ qw−sb(t)[psb−s, 0]+

+ [pw−sb0 , 0]

(2)

Apart from qsb−s = q−1
s−sb, initial position and orientation of the sensor256

box in the world frame (pw−sb0 and qw−sb0) are needed to compute pw−sb257
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and qw−sb. In Equations (2) notation [p, 0] indicates the quaternion258

with zero real part corresponding to position vector p.259

Please note that in both Equations (1) and (2) quaternion multiplica-
tion is omitted for ease of notation.
The predictive model used to implement the EIF is expressed by Equa-
tions (3)

p̃t+1|t = p̃t|t + ṽt|t ·∆t

[ṽt+1|t, 0] = [ṽt|t, 0] + (q̃t|t[asb, 0]q̃
−1
t|t − [g, 0]) ·∆t

q̃t+1|t = ∥(q̃t|t +
∆t

2
· q̃t|t[ωsb, 0])∥

(3)

where position p̃, velocity ṽ, and quaternion q̃ describe the state of260

the sensor box over time expressed in the w frame. Subscript t + 1|t261

denotes predicted value and t|t indicates posterior value corrected with262

measurements. Expression ∥q∥ represents quaternion normalization.263

Angular velocity ωsb and linear acceleration asb are measurements pro-264

vided by the IMU and expressed in the sb frame, and g denotes gravity265

acceleration in the world frame.266

2. Point cloud assembly The pose estimates are then used to transform
and assemble the point clouds provided by each RGB-D camera in its
own frame. Denoting with Pcam ∈ R3,1 a generic point of the point
cloud in the camera frame cam and with Tcam ∈ R4,4 the homogeneous
transformation matrix from frame cam to frame sb, Equation (4) ex-
presses Pcam in the sb frame as Psb.

[Psb
T , 1]

T
= Tcam[Pcam

T , 1]
T

(4)

The homogeneous transformation matrix Tsb from the sensor box frame
to the inertial frame can be obtained by Equation (5) using the pose
estimated by the EIF

Tsb =

[
rotm(q̃t|t) p̃Tt|t
[0, 0, 0] 1

]
(5)

where rotm(q) ∈ R3,3 returns the rotation matrix uniquely assigned to
quaternion q. Finally, 3D points can be transformed from the sb to the
w frame using Equation (6)

[Pw
T , 1]

T
= Tsb[Psb

T , 1]
T

(6)
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Figure 5: Gazebo simulation environment composed of a vineyard row and a mobile robot.

3. Map merging. Assembled point clouds gathered by the three cam-267

eras and transformed in the world frame are then merged together and268

downsampled (voxel grid size= 0.01 m).269

5. Simulation Environment270

The possibility to simulate robots in outdoor environments under differ-271

ent conditions is of paramount importance in agricultural robotics. In this272

regard, the most famous simulator framework used by the robotic commu-273

nity is Gazebo [2]. Gazebo is an open-source simulator born in 2002 for274

robotics. After over 15 years of development, Gazebo is undergoing a signifi-275

cant upgrade and modernization. Today, Gazebo is part of Ignition, which is276

a collection of open-source software libraries designed by Open Robotics to277

simplify the development of high-performance applications. Creating Gazebo278

models means creating SDF (Simulation Description Format) files to define279

SDF Model Objects. The primary element composing an SDF file is the link.280

A link contains the physical properties of one body of the model. Each link281

may have many collision and visual elements. Usually, these two elements282

define the 3D mesh file describing the 3D surface of the object. Gazebo re-283

quires that mesh files be formatted as STL, Collada, or OBJ, with Collada284

13



and OBJ preferred formats.285

In this work, the point cloud map, obtained as described Section 4, is modeled286

using a meshing algorithm, which allows one to generate a mesh-based repre-287

sentation for map import in the Gazebo simulation environment, according288

to the following steps:289

• Downsampling: to downsample the obtained dense map is a not290

mandatory task that enables to speed up the mesh reconstruction pro-291

cess and improves the outcome of the whole process. To accomplish292

this task, the samples are generated according to a Poisson-disk distri-293

bution [24];294

• Normals computation: the knowledge of the normals is necessary to295

reconstruct the surface of the elements composing the map. Normals296

are computed on the basis of the 10 closest points;297

• Surface reconstruction: this step regards the reconstruction of the298

surface starting from the set of points and normals. In this case, the299

Ball Pivoting algorithm is used [25] to compute a triangle mesh. It is300

based on the principle that three points form a triangle if a ball of a301

user-specified radius touches them without containing any other point;302

• Texture mapping: the texture mapping is build by triangle-by-triangle303

parametrization;304

• Color transfer: this step concerns the process of projecting a 2D305

image to a 3D model’s surface for texture mapping, the so called UV306

mapping. Once a UV map is available, the color can be transferred to307

the reconstructed surface;308

• Save the mesh: finally, the mesh is ready to be exported in a suitable309

format.310

Thus, thanks to the created mesh files, it is possible to develop a Gazebo SDF311

model object describing the reconstructed vineyard row. As an example,312

Figure 5 showcases a mobile robot crossing a vineyard row developed by313

following the procedure described above.314
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Figure 6: Robotic platform used for in-field testing equipped with the multi-sensor box.
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Figure 7: Google Earth view of the four paths estimated by EIF in a commercial vineyard,
San Donaci, Apulia Region, Italy (40°27’16.2”N 17°54’30.6”E).

6. In-field Testing315

The multi-sensor system is mounted and integrated on a tracked robot316

developed at the Politecnico of Bari, and it is tested in field conditions, as317

shown in Figure 6. Dedicated tests are performed in a commercial vineyard318

in San Donaci, Apulia region, Italy. Specifically, the robot is guided to follow319

closed-loop trajectories around different crop rows while gathering the sensor320

data. The data were then processed offline to recover the 6DoF path and the321

3D map of the environment.322

In this section, first, the localization performance of the proposed system is323

analyzed in terms of accuracy and repeatability. Then, the mapping results324

are discussed.325

6.1. Localization performance326

Four closed-loop runs are considered, performed along two different crop327

rows of about 120 m length, referred to as Test 1 to Test 4 in the following.328

They belong to two field campaigns carried out in September and Octo-329

ber 2021, respectively, during different times of the day. Three localization330

sources are compared, namely RTK-GPS only, T265 only and EIF. A pro-331

jection in Google Earth view of the trajectories reconstructed by EIF for the332

four paths is shown in Figure 7. Numerical results for all runs are collected333

in Table 1, showing the discrepancy in the East-North-Up (w) frame between334

the starting and ending points of the trajectory, expressed in terms of 3D Eu-335

clidean distance (D), 2D Euclidean distance in the motion plane (DEN) and336

altitude distance (DU), and the standard deviation of altitude measurements337

(σU) along the entire path.338

The robot path as estimated by each localization source is reported in339

Figure 8 for Test 1. In this test, pose estimates using only RTK-GPS (Fig-340

ure 8 (a)) are consistent as long as RTK correction is available. The starting341

and ending points are close to each other and the altitude estimate is stable342
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Table 1: Comparison of different localization sources along four robot paths (Test 1 to
4): discrepancy in the East-North-Up frame between the starting and ending points of
the trajectory expressed in terms of 3D Euclidean distance (D), 2D Euclidean distance
in the motion plane (DEN ), altitude distance (DU ), and standard deviation of altitude
measurements (σU ) along the entire path.

Test Source D[m] DEN [m] DU [m] σU [m]
RTK-GPS 1.501 1.511 0.026 0.451

1 T265 1.276 1.275 0.046 2.425
EIF 1.514 1.513 0.032 0.228
RTK-GPS 0.579 0.579 0.013 0.452

2 T265 5.909 4.921 3.270 2.199
EIF 0.579 0.579 0.011 0.209
RTK-GPS 1.852 1.517 1.063 0.370

3 T265 7.264 5.811 4.359 1.440
EIF 1.833 1.484 1.077 0.355
RTK-GPS 1.290 1.073 0.717 0.670

4 T265 5.341 4.760 2.424 1.497
EIF 0.739 0.356 0.647 0.428

except when the connection to the base GPS is lost and the RTK correction343

is missing (red diamonds in Figure 8 (a)). Figure 8 (b) shows the path as344

reconstructed by the T265 proprietary visual-inertial SLAM algorithm in its345

own frame and successively transformed in the world frame. Compared to346

RTK-GPS path, the distance between starting and ending points estimated347

by the T265 camera is 15.6% smaller in terms of East-North coordinates348

(DEN) but 77% larger in terms of altitude (DU). Low accuracy of vertical349

displacement estimates leads to large standard deviation of altitude mea-350

surements (σU), which for T265 is of 2.43 m, about 5 times larger than the351

one obtained by RTK-GPS. Figure 8(c) shows the path reconstructed by the352

EIF. The EIF uses linear acceleration and angular velocity measures to make353

state predictions using the model described by equations (3), and corrects its354

predictions using measures of RTK-GPS (world position and velocity), IMU355

(world orientation) and T265 (relative position and orientation). The EIF356

estimates a difference between starting and ending points 0.18% larger than357

the RTK-GPS in terms of East-North position and 23% larger in terms of358

vertical displacement. However, the standard deviation of altitude measures359
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(a)

(b)

(c)

Figure 8: Localization results for Test 1: (a) from RTK-GPS only; (b) from T265 camera
only; (c) after EIF fusion of RTK-GPS, IMU and T265 measurements. In (a), red diamonds
are overlaid in two different zones without RTK coverage due to connection loss.
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is 0.22 m for the EIF, i.e., 49% smaller than the one provided by RTK-GPS,360

suggesting an overall improvement in position estimate when fusing mea-361

surements with the EIF. This improvement is due to the fact that the RTK362

corrections are not available when connection is lost with the base GPS,363

whereas the EIF adjusts the position estimates for these instants using pre-364

dictions with IMU data and short-term measures of the T265 camera when365

the covariance of position and velocity provided by the GPS grows.366

When considering a second run along the same row (Test 2), similar results367

are obtained (see Figure 9 and the corresponding row in Table 1) in terms368

of σU which attests to 0.45 m for RTK-GPS, 2.20 m for T265 camera and369

0.21 m for EIF. The discrepancy between starting and ending points (D) for370

T265 is higher than the one obtained from RTK-GPS indicating that visual371

inertial odometry should be only used for short-term displacement estima-372

tion. Again, the use of EIF allows for a reduction of σU of 53% with respect373

to GPS and of 90% with respect to T265, while preserving loop closure ac-374

curacy.375

The localization results for a path along a different crop row (Test 3) is re-376

ported in Figure 10. In this case, the T265 results in a substantially degraded377

estimation, and EIF mainly relies on GPS leading to σU of 0.35 m. On the378

contrary, Figure 11 refers to an example where the quality of GPS signal is379

poor in several parts of the trajectory (Test 4). Again, EIF is able to com-380

pensate for the GPS outages mainly relying on T265 information showing381

better performance for all the metrics.382

6.2. Mapping383

For each geo-referenced position, the corresponding multi-view data can384

be recovered. As an example, Figure 12 shows the robot path (Test 1)385

overlaid over Google Earth view with three pinpointed positions, whereas386

the corresponding multi-view output is displayed in Figure 13.387

Point clouds are collected and assembled in the w frame using estimates388

of both absolute position and orientation of the sensor box. In Figure 14, the389

EIF observer output is used to merge point clouds collected by the frontal390

camera. Figure 15(a) shows, instead, about 20 m of merged point clouds391

from all cameras using 6DoF odometry provided by the EIF. This map can be392

processed to extract high-level information about the crop, such as vegetation393

indexes and morphological information. As an example, Figures 15(b) and394

(c) show the map of Figure 15 (a) augmented with Green-Red Vegetation395

Index (GRVI) and crop elevation information, respectively.396
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Figure 9: Localization results for a second run along the same path of Figure 8 (Test
2) from RTK-GPS only (solid grey line), T265 only (dashed black line) and EIF (solid
black line). Start and stop positions for EIF trajectory are denoted by green and red dot,
respectively.

Figure 10: Localization results for Test 3 from RTK-GPS only (solid grey line), T265
only (dashed black line) and EIF (solid black line). Start and stop positions for EIF
trajectory are denoted by green and red dot, respectively. In this test, the T265 estimate
is substantially degraded and the EIF mainly relies on GPS.
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Figure 11: Localization results for Test 4 from RTK-GPS only (solid grey line), T265 only
(dashed black line) and EIF (solid black line). Start and stop positions for EIF trajectory
are denoted by green and red dot, respectively. In this test, EIF is able to compensate
poor GPS signal quality based on T265 information.

Figure 12: EIF-derived path overlaid on Google Earth view for Test 1. Three successive
positions of the robot are pinpointed. For these positions, the corresponding visual data
are shown in Figure 13.
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Figure 13: Output of the multi-view camera system for three robot locations along the
path (Test 1): (first row) color images, (second row) depth images obtained from IR stereo
reconstruction and (third row) multi-view 3D point cloud.

Figure 14: Mapping results (Test 1): upper view of the terrain map reconstructed by
the central camera. The robot trajectory estimated by the sensor fusion approach is also
overlaid.

Accurate localization information is essential to assemble subsequent point397

clouds acquired by the D435 cameras and build the environment map. This398

can be clearly seen in Figure 16, where two different 6DoF localization sources399

are compared. In detail, Figure 16(a) shows a group of point clouds badly400

assembled with synced data of GPS for position and IMU for orientation401

when RTK correction are missing. Figure 16(b) is obtained using the EIF402

for the same time span, clearly showing the improvement in point cloud403

assembling.404
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(a)

(b)

(c)

Figure 15: Closeup of the multi-view map for Test 1 (first 20 m): (a) RGB, (b) GRVI and
(c) elevation map. In (b), green points refer to vegetation, whereas blue points correspond
to non-vegetated parts. Lighter green denotes higher GRVI values. In (c), a jet colormap
is used to represent point height with respect to ground.
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(a)

(b)

Figure 16: Mapping results (Test 1): closeup of loop closure before (a) and after (b) EIF
correction.

7. Conclusions405

In this paper, the development, implementation and testing of a multi-406

view RGB-D sensing device is presented. The system is intended to be407

mounted on an agricultural ground robot for in-field proximal monitoring408

of high-value crops. A multi-view mapping approach to combine information409

from multiple visual and localization sensors and produce a high-resolution410

3D reconstruction of agricultural environments is described. It is based on an411

EIF algorithm to fuse information from RTK-GPS, IMU and visual-inertial412

SLAM to obtain an accurate estimation of the vehicle position in the field.413

Then, on the basis of localization data, subsequent point clouds reconstructed414

by the RGB-D sensors during robot motion can be assembled to generate a415

high-resolution map of the surveyed environment. Results of dedicated tests416

performed in a commercial vineyard are presented, showing the effectiveness417

of the proposed system for in-field data gathering in an automatic and non-418

invasive way.419

Future work will include the processing of the maps using supervised or un-420

supervised classification methods to generate semantic representations of the421
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environment, which can be used to improve vehicle autonomy and safety. Re-422

search will focus on the integration of output maps into Farm Management423

Information Systems (FMIS) to enable map-based control of agricultural ap-424

plications and machinery. In this respect, future efforts will be devoted to425

address the real-time challenge by using the multi-view maps for online nav-426

igation of autonomous agricultural vehicles. Furthermore, methods for iden-427

tification and mapping of anomalies, such as weeds, as well as the extraction428

of geometric measurements, such as plant volume/height estimates, will be429

integrated to enable precision farming practices. This would also improve430

the cost-benefit ratio of the sensor suite.431
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Appendix457

Quaternion representations are convenient for composition of rotations
and coordinate transformations. The unit quaternion q = [qx, qy, qz, qw], is
uniquely mapped to a rotation matrix R and describes the transformation
between two reference frames as a rotation of a certain angle θ around the
direction vector n⃗ following Equation A.1.

q = [nxsin
θ

2
, nysin

θ

2
, nzsin

θ

2
, cos

θ

2
] (A.1)

Denoting with s1 and v⃗1 respectively the scalar and vector part of quaternion
q1 = [v⃗1, s1] = [v1x, v1y, v1z, s1], and with s2,v⃗2 the scalar and vector part of
quaternion q2, the operation of quaternion product can be expressed as

q2q1 = [s2v⃗1 + s1v⃗2 + v⃗2 × v⃗1, s2s1 − v⃗2 · v⃗1] (A.2)

where quaternion product symbol has been omitted for readability, whereas
v⃗2 · v⃗1 denotes dot product between vectors v⃗1 and v⃗2 and finally v⃗2 × v⃗1
denotes cross product between the two vectors. Quaternion product is a
non-commutative operation and returns a quaternion that represents the
orientation obtained after the sequence of transformations q1 and then q2.
The norm of a quaternion q is denoted as ∥q∥2 = q2x + q2y + q2z + q2w. The
conjugate of quaternion q = [v⃗, s] is represented as q∗ = [−v⃗, s], while its
inverse q−1 = q∗√

∥q∥2
. For a unit quaternion we have ∥q∥2 = 1 so its conjugate

coincides with its inverse. All quaternions describing orientation in 3-D space
are unit quaternions. The normalized quaternion denoted as ∥q∥ = q√

∥q∥2

has a unit norm and each of its components are divided by
√
∥q∥2. Let

us denote with qB−A the quaternion describing orientation of frame A with
respect to frame B written in frame B, its inverse is q−1

B−A = qA−B. Then,
composition of rotations can be obtained in a convenient form as

qC−A = qC−BqB−A (A.3)
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Consider the position vector p⃗A in frame A, then its projection in reference
frame B can be obtained as

[p⃗B, 0] = qB−A[p⃗A, 0]qA−B (A.4)

Finally, denoting with ω⃗B(t) the angular velocity of moving frame B in its
reference frame A, the derivative of the quaternion qA−B(t) expressed in the
inertial frame A can be computed as

dqA−B(t)

dt
=

1

2
qA−B(t)[ω⃗B(t), 0] (A.5)
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