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The ASMETA framework

Paolo Arcaini1, Angelo Gargantini2, Elvinia Riccobene1, and Patrizia Scandurra2

1 Dip. di Tecnologie dell’Informazione, Università degli Studi di Milano, Italy
{paolo.arcaini,elvinia.riccobene}@unimi.it

2 Dip. di Ing. dell’Informazione e Metodi Matematici, Università di Bergamo, Italy
{angelo.gargantini,patrizia.scandurra}@unibg.it

1 Introduction
The use of formal methods, based on rigorous mathematical foundations, is essential for
system development. However, some skepticism exists against formal methods mainly
due to the lack of tools supporting formal development, or to the tools’ loosely coupling
that does not allow reuse of information. The integration and interoperability of tools is
hard to accomplish, so preventing formal methods from being used in an efficient and
tool supported manner during the system development life cycle.

The ASMETA (ASM mETAmodeling) framework3 [4,10] is a set of tools around
the Abstract State Machines (ASMs). These tools support different activities of the
system development process, from specification to analysis, and are strongly integrated
in order to permit reusing information about models during several development phases.

ASMETA has been developed [4,11,13] by exploiting concepts and technologies of
the Model-Driven Engineering (MDE), like metamodeling and automatic model trans-
formation. The starting point of the ASMETA development has been the Abstract State
Machine Metamodel (AsmM) [12], an abstract syntax description of a language for
ASMs. From the AsmM, by exploiting MDE techniques of automatic model-to-model
and model-to-text transformation, a set of software artifacts (concrete syntax, parser, in-
terchange format, API, etc.) has been developed for model editing, storage and manip-
ulation. These software artifacts have been later used as a means for the development of
new more complex tools, and the integration within ASMETA of already existing tools,
so providing a powerful and useful tool support for system specification and analysis.

After briefly introducing the ASM formal method and its potentiality as system en-
gineering method, we present the ASMETA toolset which provides basic functionalities
for ASM models creation and manipulation (as editing, storage, interchange, access,
etc.) as well as advanced model analysis techniques (validation, verification, testing,
review, requirements analysis, runtime monitoring, etc.).

A suitable set of ASM benchmark examples will be selected for the demo purposes
in order to show all the potentialities of the ASMETA framework over different charac-
teristics of the ASM models (parallelism, non determinism, distributivity, submachine
invocations, etc.)

2 Abstract State Machines
The Abstract State Machine (ASM) method is a systems engineering method that guides
the development of software and embedded hardware-software systems seamlessly from

3 http://asmeta.sourceforge.net/
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requirements capture to their implementation. Within a single precise yet simple con-
ceptual framework, the ASM method supports and uniformly integrates the major soft-
ware life cycle activities of the development of complex software systems. The pro-
cess of requirements capture results into constructing rigorous ground models which
are precise but concise high-level system blueprints (“system contracts”), formulated
in domain-specific terms, using an application-oriented language which can be under-
stood by all stakeholders. From the ground model, by stepwise refined models, the ar-
chitectural and component design is obtained in a way which bridges the gap between
specification and code. The resulting documentation maps the structure of the blueprint
to compilable code, providing explicit descriptions of the software structure and of the
major design decisions, besides a road map for system (re-)use and maintenance.

Even if the ASM method comes with a rigorous scientific foundation [5], the prac-
titioner needs no special training to use the ASM method since Abstract State Ma-
chines are a simple extension of Finite State Machines, obtained by replacing unstruc-
tured “internal” control states by states comprising arbitrarily complex data, and can
be understood as pseudo-code over abstract data structures. The states of an ASM are
multi-sorted first-order structures, i.e., domains of objects with functions and predicates
(boolean functions) defined on them, while the transition relation is specified by “rules”
describing the modification of the functions from one state to the next.

The notion of ASMs formalizes simultaneous parallel actions of a single agent, ei-
ther in an atomic way, Basic ASMs, or in a structured and recursive way, Structured or
Turbo ASMs. It also supports a generalization where multiple agents interact in paral-
lel in a synchronous/asynchronous way, Synchronous/Asynchronous Multi-agent ASMs.
Appropriate rule constructors also allow non-determinism (choose or existential quan-
tification) and unrestricted synchronous parallelism (universal quantification forall).

A complete mathematical definition of the ASMs can be found in [5], together with
a presentation of the great variety of its successful application in different fields such as:
definition of industrial standards for programming and modeling languages, design and
re-engineering of industrial control systems, modeling e-commerce and web services,
design and analysis of protocols, architectural design, language design, verification of
compilation schemas and compiler back-ends, service-oriented applications, etc.

The ASM method allows a modeling technique which integrates static (declarative)
and dynamic (operational) descriptions, and an analysis technique that combines vali-
dation and verification methods at any desired level of detail. The ASMETA framework
makes the application of this modeling technique practically feasible.

3 The ASMETA tool-set
Concrete syntax and other language artifacts To write ASM models in a textual
and human-comprehensible form, a platform-independent concrete syntax, AsmetaL, is
available, together with a text-to-model compiler, AsmetaLc, to parse AsmetaL mod-
els and check for their consistency w.r.t. the AsmM metamodel OCL constraints. It is
also possible to save ASM models into an XMI interchange format, and Java APIs are
available to represent ASMs in terms of Java objects4.

4 All these software artifacts have been developed in a generative manner from the AsmM meta-
model, by exploiting MDE techniques of automatic model-to-model/text transformations.
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Simulator Simple model validation can be performed by simulating ASM models with
the ASM simulator AsmetaS [9] to check a system model with respect to the desired be-
havior to ensure that the specification really reflects the user needs. AsmetaS supports
invariant checking to check whether invariants expressed over the currently executed
ASM model are satisfied or not, consistent updates checking for revealing inconsistent
updates, random simulation where random values for monitored functions are provided
by the environment and interactive simulation when required inputs are provided inter-
actively during simulation.

Scenario-based validation A more powerful validation approach is scenario-based
validation by the ASM validator AsmetaV [6]. AsmetaV is based on the AsmetaS sim-
ulator and on the Avalla modeling language; this last provides constructs to express ex-
ecution scenarios in an algorithmic way as interaction sequences consisting of actions
committed by the user actor to set the environment, to check the machine state, to
ask for the execution of certain transition rules, and to enforce the machine itself to
make one step (or a sequence of steps) as reaction of the actor actions.

AsmetaRE Use cases are commonly used to structure and document functional re-
quirements, and should be used for validating system requirements. The AsmetaRE [14]
automatically maps use case models – written by the tool aToucan5 according to the ap-
proach Restricted Use Case Modeling (RUCM) [15] – into ASM models written in
AsmetaL. The result of such model-to-text transformation is an executable ASM speci-
fication that serves as basis to perform requirements validation by the ASMETA toolset.
In particular, an ad-hoc transformation allows also the generation of Avalla scenarios
from use cases for scenarios-based validation with the AsmetaV tool.

Model review Model review is a validation technique aimed at determining if a model
is of sufficient quality; it allows to identify defects early in the system development,
reducing the cost of fixing them. The AsmetaMA tool [2] permits to perform automatic
review of ASMs; it looks for typical vulnerabilities and defects a developer can intro-
duce during the modeling activity using the ASMs.

Model checking Formal verification of ASM models is supported by the AsmetaSMV
tool [1]; it takes in input ASM models written in AsmetaL and maps these models into
specifications for the model checker NuSMV. AsmetaSMV supports both the declara-
tion of Computation Tree Logic (CTL) and Linear Temporal Logic (LTL) formulas.

Runtime verification Runtime verification is a technique that allows checking whether
a run of a system under scrutiny satisfies or violates a given correctness property. CoMA
(Conformance Monitoring by Abstract State Machines) [3] is a specification-based ap-
proach (and a supporting tool) for runtime monitoring of Java software. Based on the
information obtained from code execution and model simulation, the conformance of
the concrete implementation is checked with respect to its formal specification given
in terms of ASMs. At runtime, undesirable behaviors of the implementation, as well as
incorrect specifications of the system behavior are recognized.

ATGT Model-based testing aims to use models for software testing. One of its main ap-
plications consists in test case generation where test suites are automatically generated

5 http://www.sce.carleton.ca/˜tyue/
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from abstract models of the system under test. The ATGT tool [8] is available for testing
of ASM models. ATGT implements a set of adequacy criteria defined for the ASMs [7]
to measure the coverage achieved by a test set and determine whether sufficient testing
has been performed. To build test suites satisfying some coverage criteria, it implements
a technique that exploits the capability of a model checker to produce counterexamples,
and it uses the model checker SPIN for the automatic test case generation.
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Tool-based Teaching of Formal Methods
(an extended abstract for a poster presentation)

Shin NAKAJIMA

National Institute of Informatics
also The Graduate University for Advanced Studies (SOKENDAI)

Tokyo, Japan
nkjm@nii.ac.jp

1 Backgrounds

As software-intensive systems constitute the social infrastructure, their safety
and reliability are the major concerns in software industry. In Japan, for example,
some major IT companies have gotten together to conduct feasibility studies of
formal methods [1] to achieve their goals. The number of engineers to learn
formal methods is increasing, which implies a strong need for easy-to-access
educational materials.

The engineers usually learn a specific method/language to have a particular
impression on the formal methods in general, which may hinder them from a
proper understanding of the subject matter. Most of the educational materials
today focus on a particular method/technique to present an in-depth explanation
of each. Some books bundle a collection of several key methods from viewpoints
of either theory with indications of mathematical logic (cf. [3]) or practice with a
lightweight touch (cf. [4]). They have placed emphasis on the differences between
these methods to highlight the novelty of individual approaches.

As formal methods constitute a distinct area in software science and technol-
ogy, they have some common cores with them. The core concepts are expected
to be available in the form of educational materials. Some existing materials (cf.
[5]) start with the basics of mathematical logic to explain advanced topics on the
current up-to-date formal techniques. Although the approach is quite right in
view of tranditional ways to present the subject matter, mathematical logic is a
double-edged sword. It is a precise and concise language to define core concepts
of formal methods; it plays a role of meta-language. All the rigor in specification
and analysis in formal methods inherits from that of mathematical logic. These
characteristics, at the same time, hinder the readers from the educational mate-
rials unless they are patient enough to be accustomed to mathematical logic.

An alternative approach to learning of the common cores is desirable. One
may find such materials [2] in computer programs to be used as references. A wide
variety of concepts in programming is concretely presented by expressing them
in Scheme language. The textbook skips mathematical notations usually used
in defining the semantics of programming languages. Furthermore, readers can
experiment with Scheme snippets to learn the concepts without losing precision
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or conciseness. A new teaching method in a similar flavor is needed to learn
durable ideas in formal methods.

2 Teaching with Alloy

The notion of abstractions plays a key role in software or computing [8]. It
has simultaneously been argued that it it not easy to learn how to make ab-
stractions without having concrete representations. Automated tools for formal
analysis have been found to be successful in modeling software. We can deepen
our understanding of it at an adequate level of abstraction through the iterative
process of writing and analysis [6].

We needed to borrow this idea of lightweight formal methods to design the
course materials. We particularly adapted Alloy [7] for three main reasons.

– The logic behind Alloy, i.e., first-order relational logic with a built-in transi-
tive closure operator, is adequate to represent most concepts in the subject
matter.

– Alloy adapts its syntax similar to what is familiar to software engineers.
Mathematical logic is sugared-wrapped.

– Descriptions in Alloy can be analyzed automatically, which can provide quick
feedback to users.

Note that analysis with Alloy is incomplete (Section 5.3 in [7]). The tool employs
a bounded analysis method to achieve automation. There are certainly formulas
that are not properly handled; such cases result in spurious alarms. We, however,
decided to use Alloy and not interactive theorem provers, although the latter
fully covered first-order logic. This is because automated analysis is preferable
for software engineers who do not have much knowledge of mathematical logic.
They can use such an automated tool even when they are not familiar with proof
techniques. Certainly, much care should be taken in teaching sessions to point
out the limitations with bounded analysis.

3 Overview of Contents

We had in mind the statement ”light is right, long is wrong” in designing the
course. This meant that the overall course was not long, but took a semester,
and that the presentation made use of lightweight formal analysis with Alloy.
Table 1 summarizes the contents of a textbook that provides the educational
materials we propose.

The textbook consists of four parts. Chapters 1 and 2 constitute the first
part, which is an introduction to the materials. The second part of the textbook
consists of Chapters 3 and 4 together with an Appendix. It explains the common
core in model-oriented formal methods [9] because of their historical importance.
They include the state-based style of specifications and the notion of refinements
in these languages.
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Chapter Contents
Chapter 1 Introduction to Formal Methods
Chapter 2 A Quick Tour of Alloy
Chapter 3 State-based Specification
Chapter 4 Refinement
Chapter 5 Class Diagram with OCL
Chapter 6 State Transition Diagram and Logic Model-Checking
Chapter 7 Program Verification and Automated Test Generation
Appendix History of Model-Oriented Formal Methods

with 153 references listed

Table 1. Table of Contents

The third part contains Chapters 5 and 6. We should discuss the relation-
ship between (classical) formal methods and object-oriented design methods.
Furthermore, we need a basic understanding of logic model checking and state-
transition systems. The final part, Chapter 7, focuses on checking of sequential
programs written, for example, in C language. It is of practical importance to
know how software model-checking and specification-based testing are done since
such tools become available for use in industry. The materials are intended to
avoid making these technologies as black-box.

4 Initial Assessment

Classroom Experience The proposed materials were originally developed for
a series of graduate-level lectures at SOKENDAI. The series have been offered
every each year since 2009. We obtained some feedback from enrolled students
who were part-time and held positions in industry although the number of them
is small. They were interested in learning new software technologies such as for-
mal methods, but did not have enough background knowledge in mathematical
logic.

Firstly, it was easier for them to use Alloy instead of mathematical logic to
study the subject matter. The laboratory work to experiment with Alloy tool
motivated them to gain access to the reading materials. It provided them with
good opportunities to look at the originals of classical papers.

Secondly, more discussion was needed on limitations with the scope-bounded
analysis of Alloy since it was a little difficult to determine whether a given for-
mula had resulted in a spurious alarm. There was always a kind of trade-off
between automated analysis and the background knowledge needed for conduct-
ing hand proofs with some mechanical support if any.

Furthermore, several seminars were organized for the audiences from indus-
try, each focusing on a particular topic taken from the materials. The view
discussed in the fourth part particularly motivated them to understand the core
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technology differently than they had before. It was considered that program
verification and testing shared nothing in common. The methods of automated
verification and test-case generation shared a common underlying mechanism
of SAT/SMT or CSP. All the problems were presented in the form of Alloy
snippets.

Although the teaching experience was limited so far, it can be considered to
be an initially positive sign to deem that the materials were effective.

Peer Reviews While assembling the materials into book form, we asked for a
few peer reviews. Two main comments are listed below.

– The book is so concise that students who are complete novices will find it
difficult to understand without lectures.

– It is suitable for those who are already familiar with at least one single formal
method to broaden their knowledge of the subject matter.

These comments are consistent with our plans of using the materials in face-
to-face teaching sessions and making them available to who are expected to be
leading engineers in their projects.

5 Concluding Remarks

The materials have been made public in a textbook in Japanese. We also ex-
pect further feedback on the materials gathered from teaching sessions at other
institutes in the future.
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Abstract. The Overture project is aimed at developing an open plat-
form to supply tool support to formal VDM models of systems. This
paper presents the recent developments of the Overture project and sup-
plies an overview of recent initiatives building on top of Overture as a
platform.

1 Introduction

The Vienna Development Method (VDM) is one of the most mature formal
methods [3] and has its focus on the development and analysis of a system
model expressed in a formal language. The VDM language allows developers to
verify the consistency of a model and its correctness with respect to an exist-
ing statement of requirements through the use of a range of analytic techniques,
from testing to mathematical proof. Currently, VDM has three language dialects:
(1) VDM-SL [5] supporting the modeling of the functionality of sequential sys-
tems; (2) VDM++ which supports object-oriented modeling and concurrency [4];
and (3) VDM-RT focused on real-time distributed systems [9]. Overture is built
around an extensible open-source platform which from a tool perspective con-
sists of two integrated main parts: an IDE based on the Eclipse framework and
the tool VDMJ [1]. VDMJ is a small, relatively fast, open source tool written in
Java that provides core support for VDM, such as a parser, a type checker, an
interpreter, a debugger and a proof obligation generator. This paper provides a
report on the current state of Overture and as such is to be considered as an
update of [6]. The Overture tool and its components is introduced in Section 2.
Section 3 contains a presentation of new tool support built on the Overture
platform.

2 The Overture Tool: Architecture and Features

The Overture tool uses a plug-in architecture comprising the core VDM com-
ponents and the components that hook into the Eclipse framework. While the
relations between these components are fairly complex the principal components
all depend on the Abstract Syntax Tree (AST) produced as a result of parsing a
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Fig. 1: Overture Tool Components

model. The current state of the Overture tool is illustrated in Figure 1, with the
core AST at the center surround by the current and envisioned Overture com-
ponents. The following presents an overview of the Overture components which
all are integrated with the IDE consisting of different perspectives for working
with and analyzing VDM models.

Overture Parser and AST: The parser is a recursive decent parser written
in Java that accepts plain textual input and outputs an AST which all plug
ins can access. The parser integrates with the Overture IDE and generates
warnings used to highlight syntax problems.

Type Checking: Static type checking of a models type structure is performed
automatically as the model is developed in the editor. Errors will be reported
on type errors and warnings are generated for unused variables, unreachable
code, etc. Statically an expression is considered type correct if an assignment
of a value yields a result of the correct type. Incorrect assignments related to
type invariants will be caught by the VDM run-time dynamic type checking.

Proof Obligation Generation: The formality of VDMs semantics enables the
automated generation of a set of logical assertions that must be true for a
specific model in order to ensure that it is dynamically type correct and
semantically consistent. These are called proof obligations and in Overture
they are generated for a range of properties linked to the internal consistency
of a model, e.g. consistency of results with post conditions and termination
of recursive functions.

Interpreter/debugger: The interpreter allows for simulations by enabling the
execution of VDM models. The interpreter keeps track of code coverage
during the execution of a model such that the visited and unvisited parts of
the model can be color highlighted in the editor. The built-in debugger enable
breakpoints to be used for inspecting locals, state variables, call stacks and
running threads as well as a step-wise evaluation of a models expressions.
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Combinatorial Testing: Combinatorial testing is the automatic generation
and execution of test cases, based on regular expressions defined in trace
definitions added to a VDM model. The expression describes possible se-
quences of operation calls and inputs from which tests can be generated.
This is integrated in the IDE through a perspective [7].

Bi-directional UML mapping: A bi-directional mapping exists which en-
ables a connection between models and UML diagrams defined in the XMI
format. Mappings can be made between UML class diagrams and the object-
oriented VDM++ models, in addition to UML sequence diagrams and VDM
trace statements [8].

Realtime Log Viewer: VDM-RT allows for the definition of a virtual architec-
ture of CPUs, buses and the relation between them. Based on the execution
of a VDM-RT model a graphical visualization can be created, showing the
internal events (operation request, message, thread swapping etc.).

External Executable Code: Overture defines two interfaces that enable com-
munication with external executable code [10]. The External Call Interface
enables VDM models to call external code defined in Java libraries, while the
Remote Control Interface oppositely allows Java code to control the VDMJ
interpreter and execute VDM expressions in an executing model.

3 Building on top of the Overture Platform

Originally Overture was built specifically as a platform to support only one
VDM dialect, but this was later extended to all dialects. Since, it has developed
and the openness of the platform has been used by stakeholders to expand the
functionality and scope of use. Figure 2 shows how Overture has been expanding
in two directions: (1) the DESTECS path has added an additional tool alongside
Overture; and (2) the CML path has built on top of the existing functionality
and moved the tool into a new domain.

Fig. 2: Current Expansion Overture Tool

DESTECS The DESTECS project1 is aimed at developing tool support for
doing co-simulation between continuous time models and discrete event mod-
els [2]. The purpose is to aid the multidisciplinary development of embedded

1 Design Support and Tooling for Embedded Control Software:
http://www.destecs.org
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real-time control systems in order to build more dependable systems. In the
project, Overture has been extended to establish a link between discrete-event
controllers defined in VDM and continuous-time models created in the tool 20-
sim2 using differential equations and the Bond graph notation.

CML CML is a formal notation focused on the complexities found in Systems
of Systems (SoS). CML is developed as part of the COMPASS project3 which is
aimed at developing methods and tools to support the construction and analysis
of models of SoS. CML is based on a combination between VDM and CSP and
Overture is used as the foundation out of which the COMPASS tool will develop.
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Abstract. Hybrid automata are a powerful formalism for modeling and
verifying hybrid systems, that combine continuous and discrete behavior.
A common problem for hybrid systems is the good parameters problem,
which consists in identifying a set of parameter valuations guaranteeing
a certain good behavior of a system. We introduce here HyMITATOR,
a tool for efficient parameter synthesis for hybrid automata, providing
hybrid systems with a quantitative measure of their robustness.

Keywords: Hybrid automata, Verification, Parameter synthesis, Robustness

1 Motivation and History

Hybrid systems combine discrete and continuous behavior. This corresponds for
instance to the discrete control logic and continuous physical variables in an
embedded system. Hybrid automata are a popular and powerful model for such
systems, where the continuous variables evolve according to ordinary differential
equations in each control mode.

In [4], we proposed the inverse method for timed automata, a subclass of hy-
brid systems whose variables (named clocks) all have constant rates equal to 1.
Different from CEGAR-based methods, this original semi-algorithm for param-
eter synthesis is based on a “good” parameter valuation (also named point) π0

instead of a set of “bad” states. This method synthesizes a constraint K0 on the
parameters such that, for each parameter valuation π satisfying K0, the trace
set (i.e., the discrete behavior) of A under π is the same as for A under π0. This
preserves in particular linear time properties. This also provides the system with
a criterion of robustness, in the sense that the resulting constraint gives a quan-
titative measure of the allowed “drift” such that the discrete behavior of the
system is not impacted. By iterating the inverse method on all integer points
within a bounded reference parameter domain, we get a set of constraints (or
tiles) such that, for each parameter valuation in each such tile, the time-abstract
behavior is the same: this gives a behavioral cartography of the system [5].

A basic implementation named IMITATOR (for Inverse Method for Inferring
Time AbstracT behaviOR) has first been proposed, under the form of a Python
script calling HyTech. The tool has then been entirely rewritten in IMITA-
TOR2.0 [3], under the form of a standalone OCaml program making use of the
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Parma Polyhedra Library (PPL) [8]. A number of case studies containing up
to 60 timing parameters could be efficiently verified in the purely timed frame-
work. The latest version (2.5) includes stopwatches and arbitrary updates, and
has been applied to several classes of scheduling problems [6].

The inverse method and the behavioral cartography have been extended to
hybrid systems in [11]. Due to the strong syntactic and algorithmic differences
between timed automata and hybrid automata, the work of [11] had to be im-
plemented in an experimental “fork” of IMITATOR2.0, and not in the main
version. We present in this paper HyMITATOR, a now mature extension of that
prototype, performing parameter synthesis on hybrid systems.

2 Implementation and Features

HyMITATOR takes as input a network of hybrid automata synchronized on
shared actions. The input syntax, inspired by HyTech, allows the use of analog
variables (such as time, velocity or temperature), rational-valued discrete vari-
ables, and parameters (i.e., unknown constants). The dynamics of the analog
variables is described by ordinary differential equations. The tool directly sup-
ports linear dynamics, while affine dynamics can be approximated with arbitrary
precision.

The core of the program is written in the object-oriented language OCaml,
and interacts with PPL. Exact arithmetics with unbounded precision is used. A
constraint is output in text format; furthermore, the set of traces computed by
the analysis can be output under a graphical form (using Graphviz).

HyMITATOR implements the following algorithms for hybrid systems:

Full reachability analysis Given a model, it computes the set of symbolic
reachable states.

Predicate Abstraction Safety verification can alternatively be performed us-
ing a counterexample-guided abstraction refinement loop. The abstract state
space is constructed w.r.t. a set of linear predicates [1].

Inverse method Given a model and a reference parameter valuation π0, it
computes a constraint on the parameter guaranteeing the same time-abstract
behavior as under π0 [4,11].

Behavioral cartography Given a model and a bounded parameter domain for
each parameter valuation, it computes a set of constraints [5,11].

HyMITATOR uses several algorithmic optimizations, some of which have ini-
tially been developed for IMITATOR. In particular, the efficient merging tech-
nique presented in [7] has been successfully extended to the hybrid case: we
merge any two states sharing the same discrete part (location and value of the
discrete variables) and such that the union of their constraint on the analog
variables and parameters is convex. This optimization preserves the correctness
of all our algorithms; better, the constraint output by the inverse method in that
case may be weaker, i.e., covers a larger set of parameter valuations.

For affine hybrid systems, further optimizations are needed. Due to the linear
over-approximation by partitioning the state space, a lot of additional branch-
ing is introduced, which renders the inverse method ineffective. To solve this
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(c) Behavioral cartography

Fig. 1. Examples of graphics output by HyMITATOR

problem, the algorithm has been extended as described in [11]. Basically, the
partitioning is performed locally, and partitions belonging to the same discrete
state are merged by taking their convex hull.

The post image computation can be costly for hybrid automata. To over-
come this problem, an abstraction technique for the verification of simple safety
properties (non-reachability of bad states) has been presented in [1]. Based on
a set of linear predicates, reachability is performed on the abstract state space
induced by these predicates. Refinement can be performed by discovering sepa-
ration planes. While the original method is based on flow-pipe construction, we
adapted the algorithm to the linear approximation by state space partitioning.

The behavioral cartography has been adapted to the framework of hybrid
systems. Different from timed automata, hybrid automata do not restrict coef-
ficients appearing in clock constraints to be integers, and allow variables to be
compared with any rational value. For this reason, instead of considering only
integer points as starting points for the inverse method, an arbitrary rational
step size can be used for each parameter dimension in HyMITATOR. This gives
more accurate results, by reducing the size of the possible “holes” not covered
by any tile of the cartography.

HyMITATOR (with sources, binaries and case studies) is available on its
Web page: http://www.lsv.ens-cachan.fr/Software/hymitator/.

3 Applications

HyMITATOR can be used for the parametric verification of hybrid systems.
An application to sampled data hybrid systems has been presented in [11]. As
a special case, such systems can be parametrized over the initial states. Then,
a single run satisfying a desirable reachability property can be generalized to
a larger set of initial states. As an example, Figure 1(a) shows the enlarged
reachable states of a single run for the room heating benchmark from [9]. This also
proves the robustness of the system w.r.t. the tested property. Figure 1(b) shows
an over-approximation of the reachable states for the navigation benchmark [9],
proving that all trajectories will eventually enter the green target zone.
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Another problem that can be addressed using HyMITATOR is test coverage.
In order to ensure the quality of an implementation of a hybrid system, a set of
tests is generated which is then applied to the system. However, since the state
space of hybrid systems is infinite in general, it is hard to decide when enough
tests have been performed. Using the inverse method, a tile (dense set of points)
around each test point is generated which entails the same discrete behavior.
This means that any point in this tile can be considered covered. Figure 1(c)
shows the coverage of a parameter rectangle for the room heating benchmark.

4 Related Work

One of the first powerful model checkers for analyzing hybrid automata is
HyTech [12]. Unfortunately, it can hardly verify even medium sized examples
due to exact arithmetics with limited precision and static composition of au-
tomata, quickly leading to memory overflows. The tool PHAVer [10] improves on
the computation of the reachable states by using efficient over-approximations.
Techniques similar to those in PHAVer have also been implemented in HyMI-
TATOR, with additional algorithmic improvements. The work in [2] presents an
analysis on Simulink models which shares similar goals with our approach.
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An Example of Hybrid System: The Bouncing Ball

vx

vy

q0

q1 q2

vx = v0

safe crash

bounce

v0

Parameterized Hybrid Automata

!Hybrid Automata (HA): Set of variables, actions, locations (with
an activity and an invariant), and discrete transitions (with
jumps).

!Parameterized Hybrid Automata: HA augmented with a set of
timing parameters (unknown constants)

!Example: Water Tank

pump is on

ẇ = 1
ṫ = 1
w ≤ M

pump is off

ẇ = −2
ṫ = 1
w ≥ m

stop pump

ẇ = 1
ṫ = 1
t ≤ delay

start pump

ẇ = −2
ṫ = 1
t ≤ delay

error

true

t = 0 ∧
m ≤ w ≤ M

w = M/
stop / t ′ = 0

t = delay/
off

w = m/
start / t ′ = 0

t = delay/
on

w > max/
overflow

w < min/
underflow

[Halbwachs et al., 1997]

The Parameter Synthesis Problem

w

time
min

m

M

max

delay < delay

pump is on

stop pump

pump is off

start pump

error

stop

off

start

underflow

!How to choose min, max, m, M and delay, such that always
min < w < max?

Synthesis problem: “find values for the timing parameters such
that the system behaves well”.

Parameter Synthesis for Hybrid Automata

! Inverse Method [Fribourg and Kühne, 2011]
!Given a HA and a reference valuation π0 for the parameters, synthesize a
constraint K0 guaranteeing the same time-abstract behavior as for π0

π0
s0 s1

s2

s3 s4

s5

s6

s2
s5

!K0 obtained by iterative removal of states incompatible with π0

!Behavioral Cartography [André and Fribourg, 2010]
!Performs a tiling of the parametric space, and partition it between good and
bad tiles w.r.t. a given property

K1
K2

K3

K4 K5

π1
π2

π3

π4
π5

m

M

0 5 10
0

5

10 Example of “good” constraint for the
water tank:
M + delay ≥ m ∧ m ≥
min + 2 · delay ∧ max ≥ M + delay

Features of HyMITATOR

!Algorithms of Parameter Synthesis for Hybrid Systems
! Implements the inverse method and the behavioral cartography
! Includes local partitioning with linear over-approximations
!Makes use of predicate abstraction techniques
! Features an efficient merging technique [André et al., 2012]

!User-friendly Features
!Numerous options for analysis
!Graphical output
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! Implementation [André and Kühne, 2012]
! Implemented in OCaml, using the Parma Polyhedra Library

Try it!

!Distributed under the GNU General Public License
!www.lsv.ens-cachan.fr/Software/hymitator/
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Abstract. We introduce a debugger component as an extension of Core-
ASM to simplify validation of (complex) ASM specifications. As a basis,
we map well-known debugging concepts of imperative programs to the
ASM context. The architecture of our debugger is described and some
background information to the implementation is given. We conclude by
summarizing the current functionalities of our debugger and outlining
further development prospects.

Keywords: Abstract State Machines, CoreASM, Debugging

1 Introduction

Creating and editing different kinds of specifications are key tasks that have to
be done throughout the system development process. An accepted executable
formalism for the specification of hard- and software systems are Abstract State
Machines (ASMs) [1]. ASMs have been used to describe, verify and validate
complex formal languages, especially their semantics, e. g. Java and its virtual
machine [6] or comprehensive parts of the Unified Modeling Language [5].

A major problem of complex specifications is their maintainability and com-
prehensibility. In case of ASMs, several methodologies and tools have been devel-
oped to support defining, editing, validating, and verifying ASM specifications.
These tools differ in their support of ASM concepts and focus on specific appli-
cation issues [1]. One of these tools is CoreASM. Amongst others, it provides a
flexible plugin architecture and an interpreter for ASMs [2].

Debugging is a common method to “identify and remove errors from (com-
puter hardware or software)” 1 and to comprehend specifications. Our approach
is to extend CoreASM with a debugging component so that multi-agent ASM
specifications can be revised more easily.

In Sect. 2, we clarify our notion and capabilities of debugging ASMs and give
a brief overview of existing tools and their concepts for debugging of ASMs. We
then explain how debugging concepts for imperative programs can be mapped to
concepts for debugging ASM specifications. In Sect. 3, we briefly show existing
debugging features of CoreASM before we describe our extension of CoreASM.
In Sect. 4, we summarize the current status of our extension and outline our
next steps and future work.
1 definition of debug from http://oxforddictionaries.com/definition/debug
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2 Debugging Abstract State Machines

According to [4], we consider debugging as an interactive process, where a run-
ning instance of a program can be stepwise observed and the program execution
can be controlled by the user. This observation provides opportunities to com-
prehend and deeply understand the program and finally revise it, if necessary.

Debugging of ASMs has been addressed formerly by the tools ASMGofer and
Xasm [1]. Both tools enable you to control an ASM execution by starting, paus-
ing, resuming, and stopping. They offer break conditions to automatically pause
an ASM execution. If the execution is paused, both tools allow to investigate the
status of ASM functions. CoreASM itself does not support debugging as defined
in the previous paragraph, which has been indicated as an open issue [2].

2.1 From debugging of imperative programs towards debugging of
ASM specifications

In order to enable fine grained control to debug an ASM execution, an execution
step has to be defined. Whereas a step in an imperative program means setting
the program counter from the current instruction to the following instruction,
a step in terms of ASMs means evaluating the machine’s program (or Agent
programs) and applying the resulting update set to the current state of the
ASM. Thus, we use this definition as a debugging step. We do not yet take into
account microsteps, which are hidden inside a turbo ASM step (cf. [1], p.174).

A breakpoint is a clearly defined point in a program, where the execution
stops if this point of the program is reached. We consider different kinds of
breakpoints: (line) breakpoints, watchpoints, and method breakpoints.

In an imperative program, a (line) breakpoint is reached if the program
counter hits a statement (contained in the line of code) which is marked by a
breakpoint. In an ASM, a (line) breakpoint is reached, if the marked statement
causes an update that is contained within the ASM’s update set at the end of
the current step. Thereby, it is possible that multiple breakpoints are reached at
the same time, which is not possible in an imperative program.

A watchpoint in an imperative program marks a declaration of a variable.
The watchpoint is hit if this variable is modified or read in the current step.
In an ASM, we define a watchpoint as a breakpoint marking either a universe
declaration or a function declaration. This includes variable declarations, which
are functions of arity zero. The breakpoint is reached if a marked universe or
function is changed by any update of the current update set.

Method breakpoints in an imperative program mark the head of a method
declaration and are reached if this method is invoked. In ASMs we have macro
rules instead of methods, so a method breakpoint marks the head of an ASM
rule. Instead of stopping the ASM execution when invoking the rule, the break-
point is reached if at least one statement inside the rule’s body causes an update
which is contained in the current update set.

Another debugging concept for imperative programs is called “watch ex-
pression”. A watch expression is a well formed expression of the programming
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language. It can be defined as part of the debugging environment so that its cur-
rent result can be evaluated during the program execution. We define a watch
expression in ASMs as either a function name or a function name including
parameters. The values of all locations of the given function or the value of the
given location can be observed at each update step of the ASM.

A Modification allows to change a function at a given location when the
execution is paused.

3 Architecture and implementation

CoreASM implements different aspects of multi-agent ASM using a flexible plu-
gin based architecture. For example, both, basic ASM and turbo ASM, are im-
plemented as separate plugins.

For the purpose of simple debugging, CoreASM offers the plugin DebugInfo-
Plugin. It allows adding output statements, which are assigned to user defined
channels, to a specification. By configuring a set of channels it can be defined
which debug info statements are considered for output during the execution.

Additional information, like the current status of an execution, its selected
agents, and the current update, can be displayed on the console, but stepwise
execution is not possible.

We enhance debugging functionalities of CoreASM using the Eclipse Debug
Project (EDP)2 to implement the concepts introduced in Sect. 2.1. As a basis
for debugging we introduce a stepping mode. This mode forces the interpreter to
execute exactly one update step and pause the execution afterwards. The user
can toggle between the stepping mode and the running mode.

Since our implementation is based on EDP, it is possible to run ASM spec-
ifications in debug mode and provide a debug perspective with views to manage
breakpoints, to inspect and modify variables, and to define and inspect expres-
sions. Furthermore, breakpoints can be set or removed directly within the editor.
Entries that have been changed in the current step are highlighted to simplify the
inspection of updates. The current number of steps and the currently selected
agents are displayed at the top of the variables view by default.

In addition to the EDP views, we provide an update view showing all updates
of the current update set for a user defined set of agents. Every entry of the
update view provides information about the statement which causes the update,
its source file and line number, and its executing agent. Inside the update view,
all entries of updates matching a breakpoint are highlighted by a special symbol
to ease inspection.

The implementation extends the engine driver to enable control of the Core-
ASM program executions. The Control API of CoreASM provides the informa-
tion about the current status of the interpreter [3]. This information is used to
update the views of our CoreASM debugger after each step.

An ASM specification running in debug mode considers all types of break-
points (cf. Sect. 2.1) and automatically pauses if any breakpoint is reached.

2 http://www.eclipse.org/eclipse/debug/index.php
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4 Conclusion and future work

This work provides the basis for a systematic investigation of complex ASM
specifications and opens opportunities to revise them. Our debugger extends
CoreASM mainly by using the EDP (cf. Sect. 3) which is an integral part of the
Eclipse environment.

Since “Traditional debugging models [...] do not suite ASMs.” [2] we propose
an adaptation of imperative debugging concepts for the state machine domain
of ASMs (cf. Sect. 2.1). In particular, the user interface provided by EDP was
adapted and extended to visualize changes of the state of an ASM execution. A
new view provides a list containing all updates of a step and allows direct access
to its corresponding ASM statements.

Although the debugger is already helpful, there are plenty of possibilities for
further extensions. Some ASM constructs are not yet supported: our current
definition of a step neglects sequential steps. Derived functions and local rules
cannot be debugged, because they do not cause updates which could be observed
via the interpreter. We are working on a way to support these constructs.

Additionally, we plan to introduce a history that enables stepping backwards
to compare states of an ASM execution, show their differences, and to trace rule
calls of specific agents. Furthermore, a record and replay functionality could be
used to eliminate non-determinism (e. g. choose or the selection of agents for a
specific step) in order to enable debugging of an ASM specification repeatedly
under the same conditions.

More information about our project and its current status can be found at our
website http://www.uni-ulm.de/en/in/pm/research/projects/coreasm.

Acknowledgments Thanks to Roozbeh Farahbod for answering numerous ques-
tions, trying out the tool, and suggesting some further improvements.
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Debugging Abstract State Machine Specifications

Introduction

Although debugging is an integral part of the implementation 

of software, it is just roughly supported by current Abstract State 

Machine (ASM) tools.

In order to simplify the validation of (complex) ASM specifications 

we extend CoreASM [Farahbod2009] by a debugger.

An Extension of CoreASM

Contact

Fig. 1 The stepping 
mode button of the 
CoreASM control bar

[Farahbod 2009] R. Farahbod. CoreASM: An Extensible Modeling Framework 

& Tool Environment for High-level Design and Analysis of Distributed 

Systems. PhD thesis, Simon Fraser University, Burnaby, Canada, 2009.

[Farahbod, Gervasi et al. 2004] R. Farahbod, V. Gervasi, U. Glässer, and G. 

Ma. CoreASM Plug-In Architecture. In Rigorous Methods for Software 

Construction and Analysis, pages 147-169, 2009.
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Architecture and Implementation

Architecture and implementation of our debugging component are 

based on the EDP as a basis for user defined integrated Eclipse 

debuggers. 

The Control API of CoreASM provides information about the 

current status of the interpreter [Farahbod, Gervasi et al. 2004].

We prepare the conceptual basis for the implementation of 

the debugger through the transfer of concepts of debugging of 

imperative programs to concepts of debugging ASM 

specifications. 

Therefore, we characterize the following debugging concepts in 

terms of ASM: a debugging step, a line breakpoint, a watchpoint, 

a method breakpoint, a watch expression, and modification of 

data.

Fig. 2 The standard debug control 
of Eclipse

Functionalities

• the control mode "stepping" for the interpreter

• capabilities to debug CoreASM programs based

on the Eclipse Debug Project (EDP)

• line breakpoints

• watchpoints

• rule breakpoints (cf. method breakpoints)

• watch expressions

• variables view

• expressions view

• breakpoint view

• extensions that go beyond EDP

• updates view

• agent filter for updates view

An Example of Using the CoreASM Debugger

As an example, we debug a slightly modified version of the 

CoreASM sample specification "Dining Philosophers".

A debug execution of CoreASM can be controlled either by 

using the extended CoreASM controls (Fig. 1) or by using 

the standard eclipse debug control (Fig. 2).

The updates of the last execution step are presented within 

the update view (see Fig. 3). Green highlighted entries  

indicate an update which is currently hit by a breakpoint. 

A filter  can be used to focus on a specific agent (see Fig. 4). 

Fig. 3 New updates view for CoreASM
Fig. 4 Agent filter menu of the updates view

The variables view (Fig. 5) and the 

expressions view  (Fig. 6) can be 

used to examine the current state of 

the CoreASM execution.

Fig. 5  The variables view 
presenting the current state of 
the CoreASM execution

Fig. 6  The expressions view of 
Eclipse

Fig. 7 Editor component with indicators for corresponding breakpoints 
and the last update of the current update set

The main component of CoreASM is the editor (Fig. 7). 

• A watchpoint (see Fig. 7, l. 43) interrupts the interpretation if 

the marked function at any given location has been 

changed during the current execution step.

• A method breakpoint (rule breakpoint; Fig. 7, l. 45) is hit if 

any update is caused by any statement within the 

rules' body.

• A line breakpoint (Fig. 7, l. 47) causes the interpreter to 

pause if a statement of the marked line triggers an update 

within the current update set.

• The line containing the last update in the current update 

set is marked by an indicator (blue arrow; see Fig. 7, l. 49).
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The Variability Model Checker VMC

Maurice H. ter Beek
ISTI–CNR, Pisa, Italy

1 Introduction

We demonstrate an experimental tool for modelling and analysing (behavioural)
variability in product families modelled as Modal Transition Systems (MTSs) [8].
A product family is a compact way for describing different products through their
commonalities and variabilities (often defined by features). An MTS is a Labelled
Transition System (LTS) distinguishing optional (may) and mandatory (must)
transitions [1]. In [6], MTSs were recognized as a formal method for describing the
possible operational behaviour of a family’s products. The standard derivation
methodology for obtaining a product from an MTS modelling a product family is
as follows: include all (reachable) must transitions and a subset of the (reachable)
may transitions. Each selection is a product (i.e., an LTS). Unfortunately, MTSs
cannot model all common variability constraints. The solution adopted in [2, 3]
is to enrich an MTS description with a set of constraints defining which of the
standardly derivable products should be considered as acceptable valid products.
In [2], an appropriate variability and action-based branching-time temporal logic
to formalize these constraints is defined, while [3] contains an algorithm to derive
all and only LTSs describing valid products. This methodology is implemented
in VMC and in this paper we demonstrate how to use VMC by means of the
following simple and intuitive case study from [2, 3].

2 Case Study: A Product Family

A family of coffee machines has the following initial list of informal requirements:

1. Initially, a coin must be inserted: either a euro, exclusively for European
products, or a dollar, exclusively for Canadian products;

2. After inserting a coin, the user has to choose whether (s)he wants sugar, by
pressing one of two buttons, after which (s)he may select a beverage;

3. The choice of beverage (coffee, tea, cappuccino) varies, but all products must
offer coffee while only European products may offer cappuccino;

4. Optionally, a ringtone may be rung after delivering a beverage. However, a
ringtone must be rung in all products offering cappuccino;

We model all valid product behaviour by the MTS of Fig. 1(l) and the additional
constraints: (i) euro and dollar are alternative; (ii) dollar excludes cappuccino;
(iii) cappuccino requires ring a tone. Note that constraint (iii) cannot invalidate a
product ringing a tone before delivering cappuccino; the behavioural description
of a product (family) as provided by an LTS (MTS) must impose such orderings.

3 Encoding and Analyzing Product Families with VMC

VMC [8] is part of a family of on-the-fly model checkers developed at ISTI–CNR
over the last two decades for verifying logic formulae in an action- and state-
based branching-time temporal logic derived from the family of logics based on
classic CTL, including FMC [7], UMC [4], and CMC [5].

VMC in particular is derived from FMC. Beyond interactively exploring an
MTS, model checking properties over an MTS, and visualizing the interactive
explanations of a verification result, VMC furthermore allows the generation of
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Fig. 1. MTSof coffee machine family (l) and an apparently validEuropean product (r) as
generated by VMC; dashed edges labelled may(·) are may transitions, the others must

all valid products (according to the given constraints) of an MTS describing a
product family and the verification of properties over each valid product.

VMC accepts as input a textual process-algebraic encoding of an MTS and a
set of constraints of the form ALTernative, EXCludes, REQuires, and IFF (hid-
ing their logic formalization given in [2]). The distinction among may and must
transitions is encoded in the resulting LTS by typing action labels corresponding
to may transitions as may(·). The MTS in Fig. 1(l) modelling the coffee machine
family from the case study was generated by VMC from the following encoding
(the associated set of constraints is only taken into account for product generation):

T1 = may(euro).T2 + may(dollar).T2 net SYS = T1
T2 = sugar.T3 + no_sugar.T4
T3 = coffee.T5 + may(cappuccino).T6 + may(tea).T7 Constraints {
T4 = coffee.T8 + may(cappuccino).T9 + may(tea).T10 euro ALT dollar
T5 = pour_sugar.T8 dollar EXC cappuccino
T6 = pour_sugar.T9 cappuccino REQ ring_a_tone
T7 = pour_sugar.T10 ring_a_tone ALT no_ring
T8 = pour_coffee.T13 }
T9 = pour_coffee.T11 + pour_milk.T12
T10 = pour_tea.T13
T11 = pour_milk.T13
T12 = pour_coffee.T13
T13 = may(ring_a_tone).T14 + may(no_ring).T14
T14 = take_cup.T1

The variability logic defined in [2] can be directly encoded in the logic accepted by
VMC by considering the typed actions. This latter logic contains the classic box
and diamond modal operators [ ], 〈 〉, the classic existential and universal state
operators E,A (quantifying over paths), and action-based versions of the CTL
until operators W, U (resulting also in an action-based version of the ‘eventually’
operator F ). Using VMC it is thus possible to specify and verify properties which
are surely preserved in all products by checking them over the family MTS:
(1) The MTS guarantees that if a euro or dollar action occurs, afterwards for all

standardly derivable products it is eventually possible to reach action coffee.

[may(euro) or may(dollar)] E [true {not may(∗)}U {coffee} true]

This formula prohibits a path leading to coffee to contain any (i.e. ∗) may transi-
tion (beyond the initial one). Asked to model check it over the MTS of Fig. 1(l),
VMC reports it holds and offers the possibility to explain this result (cf. Fig. 2).
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Fig. 2. Explanation of model checking Property 1 over MTS of Fig. 1(l) in VMC

4 Generating and Analyzing Valid Products with VMC

Beyond generating all valid products (LTSs), VMC thus allows browsing them,
verifying whether they satisfy a certain property (logic formula), and understand-
ing why a specific valid product does (not) satisfy the verified property. To do so,
VMC allows to open for each product a new window with its textual encoding.

Suppose we generate all valid products in VMC and then check for each one:
(2) If it is possible to obtain a sugared cappuccino, then it is also possible to

obtain an unsugared cappuccino.

(EF 〈sugar〉 〈cappuccino〉 true) implies EF 〈no_sugar〉 〈cappuccino〉 true

Property 2 does not hold for all valid products, revealing ambiguous constraints:
the one of Fig. 1(r) satisfies all constraints but offers cappuccino only with sugar.
A way to solve such ambiguity is to refine actions by explicitly distinguishing su-
gared from unsugared ones and to extend the constraints accordingly (cf. Fig. 3).

T1 = may(euro).T2 + may(dollar).T2
T2 = sugar.T3 + no_sugar.T4
T3 = sugared_coffee.T5 + may(sugared_cappuccino).T6

+ may(sugared_tea).T7
T4 = unsugared_coffee.T8 + may(unsugared_cappuccino).T9

+ may(unsugared_tea).T10
T5 = pour_sugar.T8
T6 = pour_sugar.T9
T7 = pour_sugar.T10
T8 = pour_coffee.T13
T9 = pour_coffee.T11 + pour_milk.T12
T10 = pour_tea.T13
T11 = pour_milk.T13
T12 = pour_coffee.T13
T13 = may(ring_a_tone).T14 + may(no_ring).T14
T14 = take_cup.T1
net SYS = T1

Constraints {
euro ALT dollar
sugared_tea IFF unsugared_tea
sugared_cappuccino IFF unsugared_cappuccino
dollar EXC sugared_cappuccino
sugared_cappuccino REQ ring_a_tone
ring_a_tone ALT no_ring }

{may(euro)} {may(dollar)}

{sugar}{no_sugar}

{sugared_coffee}{may(sugared_cappuccino)}{may(sugared_tea)}

{unsugared_coffee}{may(unsugared_cappuccino)}{may(unsugared_tea)} {pour_sugar}{pour_sugar}{pour_sugar}

{pour_coffee}

{pour_coffee}{pour_milk}

{pour_tea}

{may(ring_a_tone)} {may(no_ring)}

{pour_milk}{pour_coffee}

{take_cup}

Fig. 3. MTS of a refined coffee machine family: input (l) and output (r) of VMC
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From this refined family/MTS, VMC generates the 10 valid products/LTSs
depicted in Fig. 4 (listing moreover which of the optional actions they contain),
over which VMC can subsequently model check whether all European products
offer both sugared and unsugared cappuccino by means of the formula written in
Fig. 4 (recall that cappuccino is an optional feature, even for European products).

Fig. 4. All valid products/LTSs of the family/MTS of Fig. 3 as generated by VMC
and the result of model checking a variant of Property 2 over all valid coffee machines

By clicking on a product, VMC displays it in a new window for further analysis.
Likewise, VMC can verify whether all valid products offer both sugared and un-

sugared coffee; indeed, it states that the following formula holds for all 10 products:

[euro] ((EF 〈sugared_coffee〉 true) and EF 〈unsugared_coffee〉 true)

The reader is invited to use VMC: the case study is available from the examples.

5 Getting Acquainted with VMC

VMC’s core contains a command-line version of the model checker and a product
generation procedure, both stand-alone executables written in Ada (easy to com-
pile for Windows/Linux/Solaris/MacOSX) and wrapped with a set of CGI scripts
handled by a web server, facilitating a graphical html-oriented GUI and integra-
tion with other tools for LTS minimization and graph drawing. Its development
is ongoing, but a prototype version is used at ISTI–CNR for academic purposes.
VMC is publicly usable online [8] and its executables are available upon request.

Acknowledgements. To P. Asirelli, A. Fantechi, and S. Gnesi for joint research
that led to VMC and to F. Mazzanti and A. Sulova for the development of VMC.
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1 Introduction

One of the goals of the UK research project SafeCap3 (Overcoming the railway
capacity challenges without undermining railway network safety) is to provide
railway engineers with a formal modelling framework for analysing safety and
capacity of railway systems. To this end, we have proposed a “natural modelling”
approach for specifying railway networks in CSP||B [4], and we are developing
the capability to model track plans of increasing complexity. We have considered
a simple closed track circuit with points, the ‘Mini-Alvey’ [2]. We have further
considered the ‘Double Junction’ example [3], which includes a track crossing,
adjacent points, more complex route locking and open connections. Once we have
a model then we are in a position to formulate and verify safety and liveness
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Fig. 1. Information flow.

properties. Introducing more detailed behaviour, such
as points in transition, manual release of routes,
multi-aspect signalling and more complex driving
rules is currently in development. Our approach uses
the case studies to drive the development of patterns
comprising a generic style for railway modelling.

In our approach, the railway models are as close as
possible to the domain model, providing traceability
and ease of understanding to the domain expert. This
leads to a natural separation between the global mod-
elling of the tracks in B, and the CSP encapsulation of
the local views of the individual trains following the
driving rules. In this poster we illustrate the mod-
elling approach through the Mini-Alvey case study,
and see how the model provides verification through
model checking or informative counter example traces
if verification fails.

2 The railway domain

Railways consist of (at least) four, physically different entities: see Figure 1. The
Controller selects routes for trains and sends requests of routes to the Interlock-
ing. The interlocking monitors the Track equipment and sends out commands to

3 SafeCap’s web site: http://safecap.cs.ncl.ac.uk.
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Fig. 2. Mini-Alvey.

control it with respect to the route requests and a pre-defined control table. The
track equipments consists of elements such as signals, points and track circuits:
signals can show green or red (the yellow aspect of a signal is not modelled at
this level of abstraction since we are only interested in whether a train is autho-
rized to enter a section); points can be in normal position (leading trains straight
ahead) or in reverse position (leading trains to a different line) and track circuits
detect if there is a train on a track. Finally, Trains have a driver who determines
their behaviour.

Railways are built according to a Track plan. Figure 2 depicts a prominent
example referred to in the literature as the Mini-Alvey track plan [5, 6]. This
plan shows various tracks (TAB, TAC, TAD, . . . ), signals (S8, S12, S14), and
points (P201, P202). This plan is accompanied with a control table describing
conditions under which signals at the beginning of every route4 can show proceed.
For example, signal S12 for the route between S12 and S8 can only show proceed
if point P202 is in normal (straight) position and tracks TAZ, TAB and TBA are
clear. When a signal shows proceed, points on the corresponding route are locked
to prevent trains from derailment. They are released according to the Release
tables associated with each point. For example, locked P201 for route 8B from
S8 to S12 will be released if TAC is occupied. In such a railway system, we
are interested in verifying Safety properties. This means no collision (one train
moving into another) and no derailment (points moving under trains, trains
moving onto points from the wrong direction, trains travelling too fast).

3 A CSP||B model

The architecture of our model5 is depicted in Figure 3. The CTRL component is
a CSP description which is used to describe the driving rules of trains in order
to control their movement (such as never pass a red signal) and enable the Con-
troller to issue route requests. The Interlocking component is a B-machine which

4 A route is a (directed) path which leads from one signal to the next signal.
5 CSP||B Mini-Alvey model download: http://www.csp-b.org/mini-alvey.zip.
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Fig. 3. CSP||B Architecture

describes the general principles of an interlock-
ing such as considering route requests by follow-
ing the conditions of a control table to deter-
mine whether or not the requests are granted
and monitoring the state of points and signals
and the locations of trains. This component is
generic and does not depend on a particular
track plan. Conversely, other components are for
modelling a specific track plan. ClosedContext
declares track equipment such as tracks, signals
and points. ClosedTopology describes the con-
nections between tracks as well as the position
of signals and points in the track plans. Then,
ControlTable and ReleaseTable encode the corresponding components from the
track plan. The CSP||B technical descriptions can be found in [2].

4 Verification

Our CSP||B models can be verified using ProB [1] which supports B models that
are controlled by CSP controllers. In this section we illustrate the use of ProB
to verify safety properties of a railway system, represented as invariants on the
Interlockingmachine. For example, we capture the notions of no-collision and no-
derailment in the invariant pos : TRAIN !! TRACK on the pos function. This
constrains no more than one train on any track circuit, and also that no train
is on nullTrack, since nullTrack "∈ TRACK . ProB verifies that this invariant is
preserved in our model.

In the following, we consider two faulty scenarios in order to explore how the
modelling and analysis exposes errors in the design. In each case ProB discovers
violations of the invariant:
CSP||B model with faulty clear tracks: Suppose the control table is adjusted
to contain the mistake that TAB is omitted from the tracks which should be
clear to grant route 8B . Then the following trace is produced automatically as
a counter-example:

〈enter .albert .TAB , enter .bertie.TAE , request.B8.true,
nextSignal .bertie.green,move.bertie.TAE .TAZ ,nextSignal .bertie.none,
move.bertie.TAZ .TAB〉

This leads to a collision of albert and bertie on TAB.
CSP||B model with faulty points in control table: If the control table
contains a mistake on the directions of points, e.g., P202 is normal (straight)
position for route 14A. Then the check yields the following counter-example trace
showing the derailment of bertie:

〈enter .albert .TAB , enter .bertie.TBA, request.A14.true,
nextSignal .bertie.green,move.bertie.TBA.nullTrack〉

This demonstrates a violation of the safety requirement no-derailment.
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5 Conclusion

This poster presents our approach to modelling in the railway domain. The
“hybrid nature” of railways (namely, that some railway aspects can be directly
expressed in an event-based approach while other aspects are more suited for a
state-based approach) allows us to construct natural railway models in CSP||B,
which are immediately understandable to the railway experts and analysable by
current verification technologies.

We are developing our approach by applying it to more complex track de-
signs, with more detailed behaviour and driving rules. We are also extending
this approach in order to include the time aspect into railway models which will
allow the study of both safety and capacity in an integrated way, to address the
goals of the SafeCap research project.

Acknowledgement: The authors would like to thank S. Chadwick and D. Taylor
from the company Invensys Rail for their support and encouraging feedback;
and also Erwin R. Catesbeiana for keeping us on track.

References

1. M. Leuschel and M. Butler. ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transf., 10(2):185–203, Feb. 2008.

2. F. Moller, H. N. Nguyen, M. Roggenbach, S. Schneider, and H. Treharne. Combining
event-based and state-based modelling for railway verification. Technical Report
CS-12-02, Department of Computing, University of Surrey, 2012.

3. F. Moller, H. N. Nguyen, M. Roggenbach, S. Schneider, and H. Treharne. CSP‖B
modelling for railway verification: the double junction case study. Technical Report
CS-12-03, Department of Computing, University of Surrey, 2012.

4. S. Schneider and H. Treharne. CSP theorems for communicating B machines. Formal
Asp. Comput., 17(4):390–422, 2005.

5. A. Simpson, J. Woodcock, and J. Davies. The mechanical verification of solid-state
interlocking geographic data. In Formal Methods Pacific ’97. Springer, 1997.

6. K. Winter and N. Robinson. Modelling large railway interlockings and model check-
ing small ones. In 26th ACSC. Australian Computer Society, Inc., 2003.

34



35
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Abstract. Network and distributed systems typically consists of a large
number of actors that act and interact with each other in a highly dy-
namic environment. Due to the number of involved actors and their
strong dependence on mobility and interaction, performance and de-
pendability issues are of utmost importance for this class of systems.
StoKlaim is a stochastic extension of Klaim specifically thought to fa-
cilitate the incorporation of random phenomena in models for network-
aware computing. Properties of StoKlaim systems can be specified by
means of MoSL (Mobile Stochastic Logic). This is a stochastic logic that,
together with qualitative properties, permits specifying time-bounded
probabilistic reachability properties. MoSL is also equipped with opera-
tors that permit describing properties resulting from resource production
and consumption. SAM (Stochastic Analyser for Mobility) is an auto-
matic tool supporting stochastic analysis of StoKlaim specifications.
SAM can be used for: executing interactively specifications; simulating
stochastic behaviours; model checking MoSL formulae.

1 Introduction

Network and distributed systems typically consist of a large number of actors
that act and interact with each other in a highly dynamic environment. Many
programming and specification formalisms have been developed that can deal
with issues such as (code and agent) mobility, remote execution, security, privacy
and integrity. Important examples of such languages and frameworks are, among
others, Obliq [5], Seal [6], ULM [4] and Klaim (Kernel Language for Agents
Interaction and Mobility) [7, 3].

Performance and dependability issues are of utmost importance for “network-
aware” computing, due to the number of involved actors and their strong de-
pendence on mobility and interaction. Spontaneous computer crashes may easily
lead to failure of remote execution or process movement, while spurious network
failures may cause loss of code fragments or unpredictable delays.

Correctness in network and distributed systems, as well as their safety guar-
antees, is not a rigid notion “either it is correct or not” but has a less absolute
nature: “in 99.7% of the cases, safety can be ensured”’.

To facilitate the incorporation of random phenomena in models for network-
aware computing a stochastic extension of Klaim [7, 3], named StoKlaim, has
been proposed in [8]. Klaim is an experimental language for distributed sys-
tems that is aimed at modelling and programming mobile code applications,
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i.e., applications for which exploiting code mobility is the prime distinctive fea-
ture. In StoKlaim, every action has a random duration governed by a negative
exponential distribution.

In [9], MoSL (Mobile Stochastic Logic), a logic that allows one to refer to
the spatial structure of the network for the specification of properties for StoK-
laim models as been proposed. MoSL is a stochastic logic (inspired by CSL [1,
2]) that, together with qualitative properties, permits specifying time-bounded
probabilistic reachability properties, such as “the likelihood to reach a goal state
within t time units while visiting only legal states is at least 0.92”. MoSL is
also equipped with operators that permit describing properties resulting from
resource production and consumption. In particular, state properties incorporate
features for resource management and context verification. Context verification
allows the verification of assumptions on resources and processes in a system at
the logical level, i.e. without having to change the model to investigate the effect
of each assumption on the system behaviour.

2 SAM: Stochastic Analyser for Mobility

SAM, Stochastic Analyser for Mobility1, is a command-line tool, developed in
OCaML, that supports the stochastic analysis of StoKlaim specifications.
SAM can be used for:

– executing interactively specifications;
– simulating stochastic behaviours;
– model checking MoSL formulae.

Running a specification SAM provides an environment for interactive execution
of StoKlaim specification. When a specification is executed, a user can select
interactively possible computations.

Simulating a specification To analyse behaviour of distributed systems specified
in StoKlaim, SAM provides a simulator. This module randomly generates pos-
sible computations. A simulation continues until in the considered computation
either a time limit or a deadlock configuration is reached.

Fixed a sampling time, each computation is described in term of the number
of resources (located tuple) available in the system during the computation. At
the end of a simulation, the average amount of resources available in the system
at specified time intervals is provided.

Model checking SAM permits verifying whether a given StoKlaim specification
satisfies or not a MoSL formula. This module, which implements the model
checking algorithm proposed in [9], use an existing state-based stochastic model-
checker, the Markov Reward Model Checker (MRMC) [11], and wrapping it in
the MoSL model-checking algorithm. After loading a StoKlaim specification

1 SAM website: http://rap.dsi.unifi.it/SAM/
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and a MoSL formula, it verifies, by means of one or more calls to MRMC, the
satisfaction of the formula by the specification.

Unfortunately, even simple StoKlaim specification can generate a very large
number of states. For this reason, the numerical model checking cannot always be
applied. To overcome the state explosion problem, a statistical model-checker has
been also implemented in SAM. The statistical approach has been successfully
used in existing model checkers [10, 12].

While in a numerical model checker the exact probability to satisfy a path-
formula is computed up to a precision ε, in a statistical model-checker the prob-
ability associated to a path-formula is determined after a set of independent
observations. This algorithm is parametrised with respect to a given tolerance
ε and error probability p. The algorithm guarantees that the difference between
the computed values and the exact ones are greater than ε with a probability
that is less than p.
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1 Introduction

Time is an integral aspect of computer systems. It is essential for modelling
a system’s performance and also affects its safety or security. Timed Csp [5]
conservatively extends the process algebra CSP with timed primitives, where
real numbers ≥ 0 model how time passes with reference to a single, conceptu-
ally global, clock. While there have been approaches for model checking Timed
Csp [1, 5], the simulation of Timed Csp was considered only recently [2, 6]. In
this poster, we highlight the architecture and a number of selected features of our
Timed Csp Simulator, which is a consolidated, mature version of the research
prototype presented in [2].

2 Architecture

Fig. 1. Timed Csp Simulator’s architecture

Timed Csp Simulator is an extension
of the CSP animator within the open
source tool ProB [3]. In Figure 1,
we illustrate the architecture of the
Timed Csp Simulator which consists
of four main components: a Parser, a
Timed Csp Interpreter, a Simulator
and a GUI. In principle, the simula-
tor works as follows: A Timed Csp
specification is analysed by the Parser
(written in Haskell) and translated to
a representation in Prolog. This rep-
resentation is passed into the Timed
Csp Interpreter (written in Prolog).
The Timed Csp Interpreter imple-
ments the “firing rules” of Timed
Csp’s operational semantics. Process
states and the implementation of firing rules are then used by the Simulator for
determining the set of actions available, the range of timed transitions as well as
their corresponding resultant states. Finally, users interact with the Simulator
through a GUI (written in Tcl/Tk) in order to control the simulation progress.
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3 Features

Timed Csp Simulator is characterised by the following features:
Rational time: Timed Csp Simulator restricts processes to rational time only.
This is reasonable as [4] proves that TimedCsp is closed under rational time, i.e.,
rational processes are closed under action transitions and rational delays. Prolog
supports proper rationals, i.e., rational time can be expressed. In practice, the
limitation to rational time turns out to be negligible. For instance, all examples
of Schneider’s book [5] can be dealt with in our simulator.
Separate firing rules: Although Timed Csp (as well as CSP) has a number of
operators which can be treated as syntactic sugar, e.g., Wait d = Stop !d Skip,
we follow the design of ProB where each supported (untimed or timed) operator
has its own implementation of the corresponding firing rule. This results in a
simulation without change of representation, where ProB can highlight in the
specification text which process parts represent the current state.
Extensive set of operators: Compared to the language as given in [5], Timed
Csp Simulator supports an extra set of untimed operators such as conditionals,
untimed timeout and indexed external choice. To this end, we extend Timed
Csp’s operational semantics in [4].
Computing upper bounds of timed transitions: Based on the simulation
theorem provided in [4], Timed Csp Simulator calculates the largest time step
possible for a Timed Csp process in a recursive way. Consider, for instance, the
process T = (P !e Q) !f R with 0 < e < f and untimed processes P ,Q and
R. In T , the process P is enabled within the time interval [0, e). A time step of
length e (and a τ -transition) leads to the new state Q !f−e R, where P is not
enabled anymore. Thus, the largest time step possible in T is e.
Automatic animation: Timed Csp Simulator supports two animation strate-
gies, where the user selects the number of steps to be performed. Random: At
each step of the animation, the simulator randomly selects an event or time step
available from the interface.Maximal progress: At each step of the animation,
the simulator selects an event or time step available from the interface in the
following priority: (1) randomly select an external event, (2) select the internal
event (3) select the maximal time step from a bounded interval, (4) randomly
select a time step if arbitrary time steps are possible.
Backward compatibility: Timed Csp Simulator is backwards compatible for
untimed CSP specifications. There are two ways to enable the Timed-CSP Simu-
lator in ProB while opening specifications from files. Explicit: Files are named
with the extension “.tcsp”, or Implicit: Files (ended with the extension “.csp”)
contain any timed operator of delay event prefix, wait, timed timeout and timed
interrupt.

4 Example

In order to illustrate the use of Timed Csp Simulator, we apply it to the well-
known level crossing example [5]. This system consists of three components: a
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gate to block the traffic crossing the railway when a train is approaching, a
controller to monitor the approach of trains and to instruct the gate to rise or
lower appropriately, and a train passing by the crossing. Figure 2 presents the

GATE = down.command
100→ down → confirm → GATE

! up.command
100→ up → confirm → GATE

TRAIN = train.near → near .ind
300→ enter .crossing

20→
leave.crossing → out .ind → TRAIN

CONTROLLER = near .ind → down.command → confirm → CONTROLLER
! out .ind → up.command → confirm → CONTROLLER

CROSSING = CONTROLLER ‖C GGATE
SYSTEM = TRAIN ‖T C∪GCROSSING

Fig. 2. Timed Csp’s model of the level crossing.

Timed Csp’s model of the level crossing as developed in [5]. It is straight forward
to write this specification in the concrete syntax of Timed Csp Simulator.

In the following, we show two simulations of the level crossing example which
highlight the rational time only and automatic animation features of Timed Csp
Simulator. In Figure 3, we present a timed trace which includes two consecutive

Fig. 3. A trace of two consecutive rational timed evolutions.

timed evolutions. The first timed evolution lasts for 4
15 time unit while the second

for 26
15 time unit. After the two timed evolutions, the global time reaches 30

15 time
unit which is automatically converted into the simpler representation of 2 time
units.

In the second simulation, rather than manually choosing an available ac-
tion at each step of the simulation, we use the automatic animation feature
to quickly generate a long timed trace of the level crossing. Figure 4 shows a
timed trace generated by an animation of 15 transitions, following the maximal
progress strategy. This timed trace illustrates the operation of the crossing as a
train passing by. When the train approaches the crossing (by train.near), the
controller requests the gate to move down (by down.command). The gate per-
forms the action down and replies with a confirmation (by confirm) back to the
controller. After the train has entered and exited the crossing, the controller is
notified (by out .ind) so that it will instruct the gate to rise. At the end of this
timed trace, the global time is 320 time units.

Timed Csp Simulator comes with an comprehensive test suite, derived from
the fundamental algebraic laws of Timed Csp. A typical example is P !5 (Q !3

R) = (P !5 Q) !8 R, with P = a → Stop,Q = b → a → Stop, and R = c →
Stop. Here, we check that simulations of the lhs are possible for the rhs and
vice versa. Though these processes are not of much practical use, they highlight
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Fig. 4. A trace generated by automatic animation.

tricky features of the Timed Csp semantics and provide an argument that Timed
Csp Simulator implements it correctly.

5 Conclusion

We have presented our tool Timed Csp Simulator, which is an extension of
the CSP animator within ProB. We discussed architecture and features of the
simulator. Besides simulating examples given in [5], we extensively use our tool
within the SafeCap project3 in order to explore how the change of signalling
rules affects railway capacity. The ProB team has checked our implementa-
tion and made it available at http://www.stups.uni-duesseldorf.de/ProB/
index.php5/Download. In the future, we plan to complete the simulator and to
apply our tool within further application domains.

Acknowledgement We thank Erwin R. Catesbeiana (Jr.) for inspiring us to
invest the extra time unit.
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Demo: The Margrave Tool for Policy Analysis
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Margrave3 is a flexible and expressive tool for analyzing policies. Policies
abound in today’s society: access-control policies, healthcare policies, routing
and firewall policies all influence our daily lives. As these policies grow more
complex and intertwined, maintaining existing policies and authoring new poli-
cies that interact properly with others becomes more challenging. A policy mis-
configuration can remain undetected until its consequences emerge, resulting in
embarrassment, loss of business, or even physical danger.

Run-time policy testing is one possible defense against these dangers. How-
ever, testing cannot cover all possible scenarios. Static analysis techniques allow
the off-line exploration of policy behavior, and are often able to make guarantees
about all potential inputs. These techniques are known to be useful when de-
signing systems, but they are also valuable for analyzing and comparing existing
systems. Thus, tools that use static analysis – like Margrave – are a useful com-
plement to traditional testing. Policies lend themselves to many different types
of static analysis. For instance:

Policy Emulation: “What if...?” The most basic kind of analysis is emu-
lation of a policy. Given a request, what will the policy do? This analysis allows
test-cases to be run against a policy without creating a separate testing environ-
ment. Example: Tim’s doctor wants to access his medical history from the year
2005. Is she permitted to do so?

Property Verification: “Is this always true?” Policy authors may have
a set of goals that they want their policy to meet. Property verification allows
such goals to be rigorously checked across all possible requests, without ever
invoking the policy. Example: A patient’s employer should never be allowed to
access the patient’s medical history. Is that goal satisfied by the policy?

Property-Free Verification: “What changed?” Many policy authors
have no formal specification that describes their goal, but can recognize when a
policy does not meet their intuitive expectations. In such situations, property-
free verification techniques such as the following “change-impact analysis” are
especially useful. A user may be performing maintenance on their policy, and
want to know in what situations the new policy renders different decisions than
the old policy. Model-finding is especially suited to property-free verification;
concrete models that illustrate policy behavior can aid in finding bugs as well as
in discovering unspoken requirements. Example: Does the newly modified policy
correctly stop employers from reading employee medical records? Are there any
unforeseen side effects of the changes?

3 www.margrave-tool.org
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Rule Responsibility: “Why did this happen?” When investigating pol-
icy behavior, it is useful to know which rules are actually responsible for the
decision(s) rendered. This type of analysis is especially important when working
with an existing policy, which may have been maintained in an ad-hoc man-
ner. Example: If the prior goal fails, and there are cases where an employer can
access employee medical records, which policy rules are responsible for granting
that permission?

Policy Analysis in Margrave

Margrave takes the model-finding approach: given a query over a set of policies,
Margrave produces an exhaustive set of scenarios that explain how the policies
can meet the behavior described in the query. Users can explore these scenarios
to gain further insight into their policies. This outlook is similar to Alloy’s.
Policies and queries correspond to a specification, and we provide models for
that specification. Indeed, we use the Kodkod [TJ07] model finder as our engine,
just as Alloy does. However, Alloy is a general-purpose model-finding tool, while
Margrave is designed to focus sharply on issues of policy-analysis. Our tool
provides several features that are specifically designed to make policy-analysis
easier.

– Margrave queries can be expressed either in our sql-like query language or
via an API for the Racket [FP10] programming language. The Racket API
allows users to write scripts that invoke Margrave queries or use Margrave
as part of their larger programs.

– Margrave has an interactive interface that encourages iterative explo-
ration of policy consequences. Users may write new queries that incorporate
the results of prior queries, as well as re-use query results programmatically.
The tool itself is embedded in the DrRacket ide for ease-of-use and to lever-
age the features of an ide when writing queries. Figure 1 illustrates this
process.

– Margrave queries may refer to specific policy rules. For instance, one can
write a query to find the set of rules that never apply. Moreover, Margrave
can be instructed to provide rule-responsibility information in each model
it shows. This information indicates which rules matched or applied for each
request. While this sort of information could be useful in general model-
finding, when debugging a policy it is especially helpful to know which rules
are responsible for a decision, or how they override one another.

– Margrave’s query language has explicit support for change-impact analy-
sis. The models that Margrave returns for change-impact describe the action
of all policies involved in the query. Moreover, Margrave permits change-
impact queries over sets of policies that interact with one another. For ex-
ample, one might ask whether a new perimeter firewall policy permits any
traffic that the old policy denied, and is not caught by departmental fire-
walls.

2
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– For most common queries, Margrave guarantees that its model-finding is
complete. For more information on this, see our paper [NDFK12], which
will be presented at this year’s ABZ conference.

Fig. 1. The Margrave Tool: Refining a Previous Query

Applications

Margrave is designed to apply to a wide range of policy types, rather than only
(for instance) access-control. Moreover, a particular type of policy may be writ-
ten in a plethora of different languages. In spite of the disparity in concrete
syntax, policy languages can typically be expressed in relatively simple frag-
ments of first-order logic. Margrave provides an expressive intermediate policy
language that encompasses the above languages and more; formally our language
is equivalent in expressive power to non-recursive Prolog with negation.

Margrave has built-in support for several real-world policy languages includ-
ing the majority of the access-control language xacml and a significant fragment
of Cisco’s ios configuration language. We do not treat certain xacml features
(such as in-line Java code) or stateful inspection in ios. Margrave analyzes Cisco
ios configurations by partitioning each configuration into its component policies,
allowing users to phrase queries about both the firewall and routing behavior
of a device. The details of our ios analyses can be found in our 2010 lisa pa-
per [NBD+10].

Our notion of policy is expressive enough to allow Margrave to reason about
other languages that xacml subsumes, e.g. role-based access-control, and other
router configuration formats such as iptables scripts. Prospective users with
policies whose language we do not explicitly support may either translate them
into our intermediate policy language or use Margrave’s Racket api. The api
allows policies as well as queries to be created within a program, encouraging
the tool’s use in automated scripts.

3
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Perspective

Policy analysis is an important application for model-finding technology. Demon-
strating concrete examples of policy behavior allows policy authors to see the
consequences of a change before it is made. Although Margrave’s model-finding
approach is similar to Alloy’s, it provides several features designed specifically
for policy analysis. For instance, Margrave’s completeness guarantees add confi-
dence that the concrete examples shown really do cover all possible requests to
the policy.

Related Work Readers interested in the relationship to other tools are encour-
aged to look at our technical papers [NBD+10, Nel10, FKMT05] on Margrave,
which all have thorough and extensive related work sections.

Current and Future Work We are working to expand both the languages and
policy formalisms that Margrave explicitly supports. Current work on Margrave
involves, for instance, the uarbac formalism of Li and Mao [LM07] and the
break-glass policies discussed by Marinovic et al. [MCMD11]. We are also work-
ing on ways to better present the models Margrave produces, and better integrate
those models with the original policies.
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Traceability within a system description is a challenging problem of require-
ments engineering [1]. In particular, formal models of the system are often based
on informal requirements, but creating and maintaining the traceability between
the two can be challenging. In [2], we presented an incremental approach for pro-
ducing a system description from an initial set of requirements. The foundation
of the approach is a classification of requirements into artefacts W (domain prop-
erties), R (requirements) and S (specification) [3]. In addition, the approach uses
designated phenomena as the vocabulary employed by the artefacts. The central
idea is that adequacy of the system description must be justified, meaning that
W ∧ S ⇒ R. The approach establishes a traceability, and the resulting system
description may consist of formal and informal artefacts.

We created tool support for this approach by integrating Rodin [4] and
ProR [5]. Rodin is an Eclipse-based open tool platform for formal modelling in
Event-B [6]. ProR is a platform for requirements engineering that is also based
on Eclipse and part of the Eclipse Requirements Modeling Framework (RMF)1.

A seamless integration between ProR and Rodin is possible, as both are based
on Eclipse. The integration plug-in is installed into Rodin via an update site2.
We designed it with the goal to support the approach described in [2] and to ease
the integration of natural language requirements and Event-B. Supporting other
formalisms is possible in principle, and we are currently working on supporting
integration with classical B [7]. Figure 1 shows ProR installed inside Rodin.

The integration allows the identification of phenomena within natural lan-
guage requirements (Rodin already allows the identification of phenomena in
formal model artefacts); it supports the creation of traces between arbitrary
artefacts; and it tracks whenever the source or target of a trace changes by
marking it as “suspect” (allowing the re-validation of traces).

ProR already supports some features required for an integration. For in-
stance, ProR supports classifying informal and formal artefacts as W , R and S.
Other features had to be provided by an integration plug-in, as described below.

There are still some limitations, that we discuss in the conclusion. In the
following, we describe the specific features of the tool in more detail.

!! Part of this research has been sponsored by the EU funded FP7 project 214158:
DEPLOY (Industrial deployment of advanced system engineering methods for high
productivity and dependability).

1 http://eclipse.org/rmf.
2 The update site URL is http://www.stups.uni-duesseldorf.de/pror updates.
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Fig. 1. ProR running inside the Rodin Platform for Event-B modelling.

Tracing of phenomena used in artefacts Textual requirements are rendered
by colour-highlighting those text passages that correspond to phenomena (Fig-
ure 1). The user has to mark them by square brackets. In doing so, the text
passage is rendered in blue, otherwise in red, reminding the user that an un-
declared phenomena is used. In addition, unmarked, recognised phenomena are
highlighted as well to warn the user about a possible omission (Figure 2). The
marked phenomena are automatically synchronized with the model.

Fig. 2. The tool warns the user about a possible omission.

Annotated traces to modelling elements Manual creation of traces between
requirements and formal model elements is supported via drag and drop. Figure 1
shows how the right column “Link” of the specification editor summarizes the
number of outgoing (target) and incoming (source) traces. Details of the outgoing
trace can be switched on as shown in figure 3. Selecting an outgoing trace shows
the targets properties in the Property View. For instance, we see in figure 3 that
the trace target which is the event switch move is selected. Selecting the target
shows its attributes in the Property View, including the formal event itself. This
is a reference to the model, not a copy of the event. As a consequence, whenever
the formal model element changes, the reference also changes (and the trace
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will be marked as “suspect”, as described below). In addition, traces can be
annotated if additional information is necessary.

Fig. 3. The unveiled traces of an element. As the link target is selected, the link target’s
properties are shown in the Property View (the lower pane).

Change management to both the requirements and the formal model
Last, when traced formal model elements change, the trace is marked as “sus-
pect” by showing a small icon as demonstrated in figure 4. Two columns exist
for the source and the target of the trace, respectively. The user sees at a glance
which requirements or formal model elements need to be revalidated. This is par-
ticularly useful if the requirements document becomes large. By double-clicking
on the “suspect” icon, the user can mark the trace as “revalidated” and the icon
will be removed.

Fig. 4. A small icon indicates whenever the source (the requirement) or the target
(formal model element) needs to be revalidated.

Conclusion We believe that the integration between Rodin and ProR supports
the user in managing requirements in natural language and the corresponding
traces to formal model elements, as outlined by our approach described in [2].
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There are still some limitations, however. While all required data structures
exist, the tool would benefit from more sophisticated reporting. In particular, [2]
lists a number of properties of a correct system description. While the presence
of these properties does not guarantee correctness, their absence indicates a
problem. Reporting on the state of these properties would be valuable.

Furthermore, we believe that the integration is useful even beyond supporting
our approach. For instance, the capability of marking traces as “suspect” if the
source or the target change could be useful in many situations, even without the
use of formal methods.

Last, we believe that this integration brings two complimentary fields of
research, requirements engineering and formal modelling, closer together.
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During the requirements specification phase requirements and domain properties are first identified. 

The resulting classification into corresponding artefacts W (domain properties), R (requirements) and S 

(specification) and phenomena is the starting point for modelling and validation.

Annotated traces to modelling elements

Changemanagement

When traced formal model elements change, the trace is marked as “suspect” by 

showing a small icon.  Two columns exist for the source and the target of the trace, 

respectively.  The user sees at a glance which requirements or formal model elements 

need to be revalidated. This is particularly useful if the requirements document be-

comes large. By double-clicking on the “suspect” icon, the user can mark the trace as 

“revalidated’’ and the icon will be removed.

hen traced formal model elements change, the trace is marked as “suspect” by 

showing a small icon.  Two columns exist for the source and the target of the trace, 

respectively.  The user sees at a glance which requirements or formal model elements 

need to be revalidated. This is particularly useful if the requirements document be-

hen traced formal model elements change, the trace is marked as “suspect” by 

showing a small icon.  Two columns exist for the source and the target of the trace, 

Tracing of phenomena used in artefacts

In order to add a uses-trace for 

an phenomenon to an artefact 

the corresponding text passage 

is put in square brackets.

Red marked text passages 

reminds the user that an un-

declared phenomena is used.

Blue marked text passages 

are recongnized phenom-
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Classifying informal and formal artefacts

Support for classifying informal and for-

mal artefacts as W (domain properties), R 

(requirements) and S (specification).

Manual creation of traces between require-

ments and formal model elements is sup-

ported via drag and drop. The right column 

“Link” of the specication editor summarizes 

the number of outgoing (target) and incoming 

(source) traces. Selecting an outgoing trace 

shows the targets properties in the Property 

View. In addition, traces can be annotated if 

additional information is necessary.

Requirements Specification

Requirements Validation

Requirements Management

System Modelling

We see that requirements management as a continuation of modelling and validation in a later phase of 

a project lifecycle. The underlying assumption is that the development of a system description fully fin-

ished. The ongoing work includes change management and requirement evolution.

The objective of requirements validation is to validate the relationship between informal artefacts and 

formal constructs and to validate the adequacy of the specification elements. The validation relies on the 

model for tracing artefacts and phenomena and its use for tracing artefacts into formal model and

refinements.

The objective of system modelling is the formal modelling of a subset of the system description as 

well as the elaboration of the specification elements. Artefacts can be incorporated gradually into the 

formal model using refinement.

Introduction
Traceability within a system description is a challenging problem of requirements engineering [1]. In particular, formal models of the system are often based on informal requirements, but creating and maintaining the 

traceability between the two can be challenging. In [2], we presented an incremental approach for producing a system description from an initial set of requirements. The foundation of the approach is a classification of 

requirements into artefacts W (domain properties), R (requirements) and S (specication) [3]. In addition, the approach uses designated phenomena as the vocabulary employed by the artefacts. The central idea is that 

adequacy of the system description must be justified, meaning that W /\ S => R. The approach establishes a traceability, and the resulting system description may consist of formal and informal artefacts. We created 

tool support for this approach by integrating Rodin [4] and ProR [5]. We designed it with the goal to support the approach described in [2] and to ease the integration of natural language requirements and Event-B [6].

We demonstrate the usefulness of the tool by describing its features (marked with                              ) in a typical requirements engineering process. We distinguish the different activities of requirements elicitation, re-
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UML-B Modelling and Animation Tool
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UML-B [1] is a ’UML-like’ diagrammatic modelling environment for the
Event-B language [2]. UML-B has become established and is being used in a
number of industrial research and teaching scenarios. While an understanding
of Event-B and its verification is still required, UML-B isolates the modeller,
to some extent, from the Event-B models. For some users this is a plus point
but for others, who are more adept with formal modelling, a closer integration
between diagrams and text formats would be preferred. Therefore, we are devel-
oping a suite of alternative tools which, for now, we will collectively call iUML-B
(integrated UML-B). Whereas UML-B is a complete and separate model from
the generated target Event-B, iUML-B diagrams are embedded into an exist-
ing Event-B model and generate contributions to it. In iUML-B much of the
modelling is still performed using Event-B with the diagram contributing extra
information.

In this demonstration I show and contrast both approaches and highlight the
relative benefits of both so that the audience can decide for themselves which
approach they prefer. It is hoped to get feedback from the audience in this
respect.

Both UML-B and iUML-B are available as plug-ins for the Rodin platform
[3] that is established as the modelling and verification platform for formal sys-
tems modelling based on the Event-B notation. UML-B provides several different
diagrammatic notations: a project diagram showing the relationships between
machines and contexts, a Context diagram for describing the static aspects of a
system in an entitiy-relationship style, a Class diagram for describing the data
aspects of a model in a class-oriented style and a state machine diagram for
describing the behaviour of the model. iUML-B [4] currently includes a project
diagram plug-in and a state machine diagram plug-in. A new class diagram plu-
gin is being developed which will allow static and variable data to be modelled
in a common notation and tool.

The main advantages of using UML-B that are demonstrated are that,

1. it is quick to produce and alter models because a simple placement of a
diagram symbol generates many lines of Event-B text,

2. it is more concise because contextual information is often inferred from the
placement of items within diagrammatic model elements,

3. the diagrammatic representation provides a ready visualisation of the model,
4. the model can be communicated more easily (especially to Event-B illiter-

ates),
5. it is easier to experiment with different abstractions (and finding useful ab-

stractions can be hard).
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Fig. 1. Modelling with UML-B/iUML-B
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It is essential to validate formal models to ensure that a useful model has been
achieved. This, by definition, requires a stakeholder to examine the behaviour
of the model to provide a verdict on whether the model behaves as required. To
do this, we use the animation capabilities of the ProB [5] model-checker plug-in.
Since, with UML-B, we have a diagrammatic visualisation of the model, the task
can be made more approachable by animating the diagrams. The demonstration
shows this feature using our state-machine animation plug-ins [6]

Fig. 2. Animating with iUML-B/ProB
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