

Submitted to:
2nd Workshop on
PROGRAM COMPREHENSION
July 8-9, 1993
Europa Palace Hotel, Capri, Naples-Italy

*Charon: a tool for code redocumentation
and re-engineering

Oreste Signore - Mario Loffredo

CNUCE - Institute of CNR - via S. Maria, 36 - 56126 Pisa

Abstract

The maintenance of applications constitutes the most relevant issue of the overall life

cycle activities. CASE tools claim to be effective in producing efficient and error free

software, but usually the maintainer doesn’t want to produce new application systems,

but just to modify the existing ones. Re-engineering appears to be a suitable way of

getting the advantages of the automated CASE tools, without facing the costs involved

in a complete redevelopment of the existing systems, whose specifications are

sometimes obsolete and no more corresponding to the actual version of the software.

In this paper, a totally automatic approach towards the reconstruction of the software

documentation and possible code re-engineering is presented.

We move from the source code by using a static code analyser and capture information

pertinent to higher level design phases that are subsequently imported into the ADW

CASE tool.

Keywords: Software reverse engineering - Maintenance - Software
documentation - CASE Tools

* This work has been partially supported by Progetto Finalizzato Sistemi Informatici e Calcolo

Parallelo of C.N.R.

 - 1 -

*Charon: a tool for code redocumentation
and re-engineering

Oreste Signore - Mario Loffredo

CNUCE - Institute of CNR - via S. Maria, 36 - 56126 Pisa

Abstract

The maintenance of applications constitutes the most relevant issue of the overall life cycle
activities. CASE tools claim to be effective in producing efficient and error free software, but
usually the maintainer doesn’t want to produce new application systems, but just to modify the
existing ones. Re-engineering appears to be a suitable way of getting the advantages of the
automated CASE tools, without facing the costs involved in a complete redevelopment of the
existing systems, whose specifications are sometimes obsolete and no more corresponding to
the actual version of the software.
In this paper, a totally automatic approach towards the reconstruction of the software
documentation and possible code re-engineering is presented.
We move from the source code by using a static code analyser and capture information
pertinent to higher level design phases that are subsequently imported into the ADW1 CASE
tool.

1. Introduction

It is well known that the most relevant part, up to 95% according to some estimates
([1]), of the EDP departments activities is dedicated to the maintenance of applications.
In particular, we have to outline that in the latest years the maintenance is enhancing in
order to delete errors, meet new requirements, improve both design and performance,
interface new programs, modify data structures and formats, test new hardware and
software techniques.
However, it must be noted that maintenance interventions may alter the features of the
original software applications, and may therefore substantially contribute to their
degrade. In fact, alterations to the data structures, the documentation out of date, the
turn over of the personnel in charge of the project (and it is well known that in many
cases only the people involved are aware of the real features of the application), make
the application system itself less reliable and maintainable, error prone, difficult and
expensive to be modified. Application systems presenting poor or even inexistent
documentation cause further problems during the maintenance work because the user
has to rebuild the knowledge before making any change. In addition, old technology or
poor quality code based systems show other problems (low performance, limited
integration with other systems, difficulty to test) which decrease the productivity.
This situation faces the development of new application systems and the adoption of
the modern CASE tools, which are claimed to be the most effective way of developing
new applications, at lower costs and at a higher quality level ([2], [3], [4], [5]). As a

* This work has been partially supported by Progetto Finalizzato Sistemi Informatici e Calcolo

Parallelo of C.N.R.
1 ADW is a CASE tool implemented by KnowledgeWare (USA) for the OS/2 environment, selected

by IBM as one of the International Alliance products for the AD/Cycle platform.

 - 1 -

consequence, there is a tendency towards the implementation of tools that can help in
understanding, improving and managing existing systems, even if implemented in non
CASE environments, in order to recover existing software portfolio and manage it by
using CASE techniques.
In this paper, the authors present an automatic approach towards the reconstruction of
the software documentation and the re-engineering of code; we collect data from the
source code which are, subsequently, manipulated and imported in a CASE tool, thus
rebuilding information pertinent to higher level design phases and giving the possibility
of implementing of a new engineering phase.

2. The re-engineering

Up to the end of the last decade, users who intended to enhance the features or the
performances of their software, had only two alternatives: leave all the software
unchanged, or face the costs of a complete re-development. A new alternative, which is
presently object of a relevant research effort, is available since the beginning of this
decade: the re-engineering ([6], [7]). The re-engineering gives the possibility of
updating the technology the application system is based upon, without incurring
relevant management costs.
More precisely, the software re-engineering consists in the analysis of an existing
software, for the sake of giving a more readable structure to it or, perhaps, in order to
represent its structure in an alternative form, thus allowing a new, different
implementation. This process is normally accomplished in two successive steps: first of
all, we analyse the system, capturing information about its components, afterwards, we
operate a restructuring, thus getting a more standardised form. In some cases, it could
happen that the user intends to operate a transformation of the existing application,
either because a different language or a different data management system are to be
used, or because an interface towards a different tool must be implemented. In these
cases, we can clearly identify two different phases, as depicted in fig. 1. In the first
phase we operate a reverse engineering (RE) where we abstract the characteristics of
the product that we have to reconfigure. Subsequently, we operate a forward
engineering (FE) process, which is in charge of implementing the new product.

 - 2 -

ANALYSIS RESTRUCTURING

abstraction
Product

 New
product

Old
product

 Analyzed
product product

Structured

 R E F E
PHYSICAL LEVEL

LOGICAL LEVEL

Fig. 1 - The re-engineering process

The reverse engineering phase is the focus of the re-engineering process. Starting from
any life cycle level and with the automatic tools' support, such process does not aim at
modifying system objects, but only at improving comprehension by generating and
synthesising independent implementation abstractions.

3. Related work

Recently, the software engineering market has been enriched by the appearance of
many reverse engineering and re-engineering tools. These tools allow to solve partially
the problem of recovering the design of existing systems by capturing information that
are explicitly represented in the source code.
BACHMAN/Data Analyst is part of the BACHMAN Product Set, an integrated
collection of CASE tools for maintaining and developing IBM mainframe applications.
This tool permit to reconstruct the E-R model by examining COBOL, IMS, PL/1 data
structures and by extracting, via BACHMAN/DBA, information from DB2 or SQL/DS
catalog. Thus we can modify the old application at a high level (analysis) and, then,
generate a new application by executing a forward engineering step.
In other words, Bachman Product Set enables the maintainer to make an almost
completely automatic re-engineering cycle even if it is limited to the system data
architecture.
Cscope, for the UNIX environment, is an interactive tool that makes possible to
abstract information from a program by cross-referencing various source code entities.
TIBER (Techniques and Instruments to Build Encyclopedias of Redevelopment
engineering) is a set of methods, techniques, instruments and know-how through which
existing COBOL applications are redocumented, reorganised and restructured inside
the ADW repository named “Encyclopedia”.
TIBER analyse COBOL source code, JCL, TP maps (CICS or IMS/DC) and DDL and
produce a system documentation composed by relational metamodel, record layouts,
structure charts, action diagrams and video maps.

 - 3 -

Therefore, such tool can be considered more as a re-systemisation tool rather than a re-
engineering one because the number and the quality of the output documents is strictly
related to the programming language of the source code analysed.
Furthermore, we want to outline a re-engineering case study towards the IEW2 CASE
tool. This experience consists in an environment which supports the re-engineering of
Pascal programs at the design level starting from the information abstracted by the
static analyser ATOOL ([8]).

4. Charon3: an integration with a CASE tool

Charon is a tool implementing a re-engineering cycle which has a C program, where
EXEC SQL statements are embedded, as source and has a different version of the same
program, written in COBOL/CICS/DB2 environment, as target.
The reverse engineering step is performed by the static C code analyser C-TOOL4, the
forward engineering one is executed by the ADW COBOL code automatic generator;
we are committed to convert the first tool output into the second one proper objects.
C-TOOL evaluates some structural and dimensional metrics and produces the nesting
tree and control graph of the program. In addition, the embedded SQL statements are
extracted. At the same time, all information about relations accessed by the SQL
statements are exported from the catalog and stored in some supporting tables (IBM
Query Manager).
Files and tables contents are processed, and information relevant for the design and
analysis phases are collected and stored in an appropriate format, compatible with the
import/export format of the ADW. Such information are also inserted in the SQL
supporting tables, making possible the implementation of the presented approach in
other development environments (StP, Bachman).
After the creation of an empty encyclopedia related to the project and the subsequent
import phase of the Charon output, the user finds the extracted information represented
by most of the diagrams of the Analysis and Design workstation.

2 IEW (Information Engineering Workbench) is the MS-DOS version of ADW.
3 Charon is a son of Erebus who in Greek myth ferries the souls of the dead over the Styx.
4 C-TOOL is a tool developed by the CRIAI (Consorzio Campano di Ricerca per l' Informatica e l'

Automazione Industriale), and has been modified for this worrk in order to intercept the SQL
statements. We acknowledge our colleagues from CRIAI for their kind support.

 - 4 -

CODE
C/SQL COBOL/DB2

CODE

C-TOOL ADW

 OUTPUT
C-TOOL

 INPUT
ADW

CHARON

Fig. 2 - The re-engineering cycle implemented by Charon

In fact, as far as the data architecture is concerned, the user can access Relational DB
Design, Data Structures, Data Types, SQL Statements of the design level, and Entity-
Relationship Diagram, Entity Attributes Description of the analysis level.
Concerning the processes architecture, two diagrams of the design level are available:
Structure Chart and Action Diagram. They describe respectively the program
decomposition in a modules hierarchy and the logic of a module. Therefore the user can
modify, add or delete data, so starting a complete redevelopment of the project, with an
obvious improvement of the overall software quality.
Starting from the information extracted and imported in the ADW/DWS module,
Charon also proceed to reconstruct the database conceptual model which belongs to the
upper level (AWS).
In Appendix 1 a list of these diagrams and a more detailed description of their
functionalities is presented.

5. Reverse engineering through C-TOOL

C-TOOL involves two procedures, subsequently executed, which can analyse a
syntactically corrected C program:

• ANADIM, which records on the SQL_STAT file all the EXEC SQL commands

being in the source C code and their positions;

• ANASTRU, which produces the program Call Graph, the Nesting Tree and the

Control Flow Graph.

 - 5 -

 The first graph represents the program decomposition into modules (procedures and
functions) also including the main program. An edge exists between two nodes N1

and N2 if N1 calls N2 in the program.

 The Nesting Tree describes the program as a tree in which terminal nodes
correspond to the simple instructions (assignment, read, write, call, return) and the
intermediate nodes correspond to the control structures: sequence, alternative,
repetition. An edge exists between two nodes N1 and N2 if N1 includes N2 in the

program.
 The last representation diagram shows the control flow between all the program

components. The nodes are of the same type of the Nesting Tree ones. An edge
exists between two nodes N1 and N2 if N2 can follow N1 in a program execution.

 These diagrams are presented in a table form in the following files: OUT2, GRAPH
and NESTING.

6. The ADW I-CASE workbench

ADW, as most of the CASE tool supporting systems development, is based on the
software life cycle Waterfall Model concepts and methodologies. It is modular and
includes four workstations, i.e. Planning, Analysis, Design, Construction, which reflect
the upper four levels of that model. The user can manage the information, stored in a
repository, the "Encyclopedia", by using some structured analysis and design
techniques as SADT, DFD, Modular Decomposition, PDL, etc.. In addition, other
important characteristics of the ADW information engineering CASE tool consist in the
possibility of keeping continuously and automatically the consistency even between a
large number of diagrams and of easily navigating through such diagrams.
We‘ll import in the ADW/Encyclopedia the information included in a set of ASCII files
which can be divided into three groups: “.EXP” files, ”.ENC” files and “MASC” files.

6.1 - “.EXP” files

They contain records representing all the program information entities as objects
(OI.EXP), associations between objects (AI.EXP) and properties of objects and
associations (PI.EXP for the short properties and TI.EXP for the long textual
properties).
The records of the OI.EXP file have three fields: the first one is for a token (Instance
token) which uniquely identifies an object in the project encyclopedia, the second one is
for the type of the object (Type code) and the third one is for the name (Instance name)
given to the object by the user.
The records of the AI.EXP file have four fields: the first one is for the instance token of
the association, the second one is for the type code, the third one is for the instance
token of the source object of the association and the last one is for the instance token of
the target object.
The properties files include records with the same structure, but the last field in TI.EXP
file is longer than the related one in the PI.EXP.
The first field of the records is for the instance token of the object or the association
which the property is related to, the second one is for the type code of the property, the

 - 6 -

third one is for the row number of the textual properties (Repetition number) and the
last one is for the value of the property (Property value).
In the following, the ADW internal representation of a relationship between two classes
is depicted.

teach

is taught by
class teacher

Objects
10000000003,10007,”teacher “
10000000004,10007,”class “

Associations
20000000022,20044,10000000004,10000000003

Short properties
20000000022,30034,00000,”is taught by “
20000000022,30037,00000,”teach “
20000000022,30035,00000,”1 “
20000000022,30036,00000,”1 “
20000000022,30035,00000,”M “
20000000022,30036,00000,”M “

Long textual properties
10000000004,30076,00001,”A_group_of_students_which_study_”
10000000004,30076,00002,”the_same_arguments ”

6.2 - “.ENC” files

They include the description of the program modules Action Diagrams. Each row in a
“.ENC” file contains a record having nine fields:

• the first one identifies the type of diagram simple instruction or control structure,
• the subsequent eight fields concern the diagram layout;
• the last field is for the description of the particular action executed.

In the following, the ADW internal representation for an Action Diagram is showed:

$ADTEXT$3.00ENGLISH
T 0000000*SECTION P1-READ-CUSTOMER - WE READ THE CUSTOMER RECORD
 0000100**USING EITHER THE CUSTOMER-NO OR THE CUSTOMER-NAME
B 0000000If CNAME-CUSTOMER-NO NOT = 0
 0000000AND CNAME-CUSTOMER-NO NOT = SPACES
 0000000MOVE CNAME-CUSTOMER-NO TO OPG01-CUSTOMER-NO
D 0000004Customer&oi0003D9%FIND KEY OPG01 USING CUSTOMER-NO
C 0000000Else
 0000000MOVE CNAME-CUSTOMER-NAME TO OPG01-CUSTOMER-NAME
D 0000004Customer&oi0003DA%FIND KEY OPG01 USING CUSTOMER-NAME
E 0000000ENDIF
B 0000000If OPG01-STATUS = SPACES
 0000000MOVE CORRESPONDING OPG01 TO CNAME

 - 7 -

X20000000EXIT
C 0000000Else
 0000000MOVE ‘CUSTOMER NOT FOUND’ TO CNAME-ERROR-MESSAGE
X20000000EXIT
E 0000000ENDIF
G 0000000

6.3 - “MASC” files

These files are used when transferring information from the workbench construction
level to the extern, but in our application they hold the masks of the tables SQL DML
commands.
These templates are called by the modules through an option named “Using call” and
include two groups of records:

• the first group takes into account the general information of the accessed table;
• the second one specifies the SQL command.

In the following, the mask of a SELECT command is presented:

67,OPG01CUSTOMER
 <table creator> <table creation date>
83,MLOPG01A100000CUSTOMER
83,MLOPG01B100000OPS DB.CUSTOMER
83,MLOPG01C100000DB200TSTOPCUSTSP
83,MLOPG01P100000TV
87,MLOPG01R100000CUSTOMER-NO *SELECT
31,MLOPG01R100001B 0000001EXEC SQL
54,MLOPG01R100002B 0000000SELECT CUSTOMER_NO
53,MLOPG01R100003 0000000 , CUSTOMER_NAME
54,MLOPG01R100004 0000000 , STREET_ADDRESS
28,MLOPG01R100005E 0000000
61,MLOPG01R100006B 0000000INTO :OPG01-CUSTOMER_NO
60,MLOPG01R100007 0000000 , :OPG01-CUSTOMER_NAME
61,MLOPG01R100008 0000000 , :OPG01-STREET_ADDRESS
28,MLOPG01R100009E 0000000
55,MLOPG01R100010 0000000FROM OPCUST_TABLE
57,MLOPG01R100011B 0000000WHERE CUSTOMER_NO =
58,MLOPG01R100012 0000000 :OPG01-CUSTOMER_NO
28,MLOPG01R100013E 0000000
31,MLOPG01R100014E 0000001END-EXEC

6.4 - The import process

The Charon output information must be transferred in the ADW environment according
to three way of importing (Fig. 3).
The “.EXP” files are imported by running the Encyclopedia Data Transfer option of
the File menu of the Encyclopedia Services task in any workstation.

 - 8 -

The “.ENC” files must be copied in the ADW subdirectory associated to the empty
encyclopedia.
The “MASC” files are transferred by starting the Transfer option of the File menu of
the Code Generator task in the Construction workstation (CWS).

 Dat a
t ransfer

 Consolidat ion
 File

OI.EXP

AI.EXP

Objects

Associations

Properties

Texts

PI.EXP

TI.EXP

MASC

.ENC

Charon
 output

ADW Empty
EncyclopediaTransfer

Obj., Prop.,
 Assoc.

Obj., Prop.,
 Assoc.

Load

 IMPORT
PROCESS

Obj., Prop.,
 Assoc.

Put in the subdir.
related to the enc.

Fig. 3 - The data flow of the Adw empty encyclopedia populating.

7 - The conversion tool (Charon)

The conversion from the source program into the ADW tool occurs in several steps, as
may be seen from Fig. 4. In more detail, the sequence of the actions is the following:

• Step 1

 - 9 -

1a) Create the “.EXP” files records in order to represent the logical relational
model and the data structure of the relational tables (keys, data types, formats).

1b) Create and open “MASC” files for coding the general features of the tables
(physical name, SQL type, space name).

• Step 2

 Reconstruct the Structure Chart.

• Step 3
 Generate the E-R model by observing the contents of the “.EXP” files and QM

tables.

• Step 4
4a) Represent the modules procedural logic, including the accesses to the database

and the calls to other modules.
4b) Transform the EXEC SQL statements into masks to be inserted into “MASC”

files. The statements which are not supported by ADW are inserted as
comments.

 - 10 -

C-TOOL

SQL

STAT
OUT2 GRAPH NESTING

DB

QM

".EXP" "MASC" ".ENC"

PC MF

1a. Relat ions
At t r ibut es
St ruct ures

2. S-C
3. E-R

1 a

1 b

1b. Table nam e
 DBSpace
 T or V
4a. SQL Masc

4b. A-D

2 4 b
4 a

Cat alog
dat a

3

source

Fig. 4 - The four steps in Charon

Conclusions and future developments.

In many cases, software quality improvement may require a redevelopment of the
application system. When a software development methodology and CASE tools have
been adopted as an enterprise standard, recovering the existing software, and
documenting it according to these standards may constitute a consistent improvement.
It is obvious that understanding the semantics of the original programs is a key point.
As a matter of fact, the re-engineering and the adoption of CASE tools, especially in
large scale projects, may produce relevant advantages, namely consistency, easy
maintenance and clean documentation ([9]). The consistency with the enterprise
standards may in fact assure the complete integration of the various subsystems, and
reduce the maintenance effort. In fact, the maintenance personnel will no more be
forced to operate maintenance interventions on the source code, with the consequence

 - 11 -

of being tied to a particular set of programs whose code they are aware of, but can
operate on higher level specifications, leaving to the CASE tool the burden of the
generation of the code. Needless to say, this style of work assures that the
documentation will be kept up to date.
In this paper, Charon, a tool for the redocumentation and re-engineering of code, has
been discussed. It converts the information extracted from a C program by the static
code analyser C-TOOL in ASCII records and inserts them in three different typed sets
of files.
The files are subsequently imported in the ADW CASE tool environment in order to
populate a repository related to the project, thus the user can find the extracted
information represented by most of the diagrams of the Analysis and Design level, that
is:

• for the representation of general information:
• Object List
• Object Details Window

• for the modelling of data architecture:
• Database Relational Diagram
• Data Structure Diagram
• Data Type Window
• DB2 General Information Window
• Entity-Relationship Diagram
• Entity Type Description
• SQL Action Diagram

• for what concern processes:
• Structure Chart
• Module Action Diagram

The main advantage offered by the automatic translation operated by Charon is that,
after the reverse engineering phase, we can operate directly on the high level
specifications of the software, getting all the benefits claimed by the CASE tools.
Furthermore, the user can rely on all of the ADW and supporting database manager
report writers in order to produce a textual documentation. The integration of the
analysed code with the enterprise wide standards can be considered as a benefit too.
With the rebuilding of E-R model, we create a system knowledge at a as high as
possible level so that all the ADW capabilities will be exploited.
In this way, if we wish to make some relevant changes to the database structure, we
shall easily act on the E-R schema and, then, obtain a normalised relational form by
running the Relational Translator task. At that point, according with a bottom-up
approach, the user will be able to generate the remaining documentation of the
workbench upper levels.
If, on one side, Charon can be considered as a test case explaining and making real
software engineering capabilities, on the other one, it can be considered as a reference
for those who are going to modify software application packages, perform environment
conversions, generate code from prototypes.
Secondly, Charon complete the C-TOOL reverse results by providing, in some tables,
information about database relations, fields, relationships and module calls of the
source code, and, in ASCII files, the procedural logic description of each module.

 - 12 -

However, it should be stressed that the approach followed in Charon requires that the
user will conform to some specific design methodology (e.g. the Yourdon Constantine
Structured Analysis).
In addition, some code characteristics can’t be recovered (SQL dynamic commands,
modules formal parameters and input/output conversations) because their conversion
from a C environment to a COBOL one is very difficult to make in a completely
automatic way.
Perhaps, it would need a human intervention even if the manual approach, more
flexible and friendly, could be too much heavy in the re-engineering of high complexity
systems. This considerations suggest that it would be worthwhile to consider the
possibility of integrating the positive aspects of the two different approaches.
In order to improve Charon, thus enhancing the set of convertible information and the
collaboration with the final user, we have to face the following problems:

• testing the existence of the relationships between relations when examining the SQL

commands;
• creating another ADW diagram, Screen Layout, and producing CICS code for the

activation of video maps which correspond to the I/O commands in the C code;
• enhancing the Structure Chart diagram by considering the recursivity;
• representing modules formal parameters and converting their C types in COBOL

ones in order to allow the generation of the Data Flow Diagram in the Analysis level
(AWS);

• implementing an enriched user interface.

References

[1] Software Re-engineering Symposium, organised by SYSTECH Systems

Technology Institute (Rome, 12-14 February 1990)
[2] Martin J.: Recommended diagramming standards for analysts and programmers.

A basis for automation, Prentice-Hall Inc., Englewood Cliffs (1987)
[3] Martin F.M.: Second-Generation CASE Tools: A Challenge to Vendors, IEEE

Software (March 1988)
[4] Martin J.: CASE & I-CASE, Informatica 70 n.167 and n.168
[5] Lewis T.G.: CASE: Computer-Aided Software Engineering, Informa Tex Press

(1989)
[6] Chikofsky E.J., Cross II J.H.: Reverse Engineering and Design Recovery: A

Taxonomy, IEEE Software (January 1990)
[7] De Carlini U., Cimitile A.: Il reverse engineering nella analisi, documentazione,

manutenzione e validazione del software, Sistemi Informatici e Calcolo Parallelo:
progetto finalizzato CNR: risultati, stato delle ricerche e prospettive, Angeli
(1991)

[8] Lanubile F., Maresca P., Visaggio G.: An Environment for the reengineering of
Pascal Programs, Proceedings of IEEE Conf. on Software Maintenance,
Sorrento, August 1991, pp.23-30

[9] Signore O., Celiano F.: From a "well designed" database to AD/Cycle tools: a
reengineering experience, Proceedings of CASE and Applications Development

 - 13 -

in Practice, SHARE Europe (SEAS) Spring Meeting 1991, Lausanne,
Switzerland, April 8-12, 1991, pp. 1-8, ISSN 0255-6464

 - 14 -

Appendix 1.

A description of the diagrams the user can manipulate after the import process is
presented in the following.

The Object List lists all the encyclopedia objects which meet
some requirements (name, type, related level in the life cycle
model). It combines the report and diagram fashions.

The Object Details Window displays general information
about an object (name, type, creation date, last update date,
definition, comment).

The Entity-Relationship Diagram is the well-known Chen
diagram including the entities (fundamental, associative or
attributive) and the relationships between them.

The Entity Type Description describes for each entity the
attributes, with their types and cardinality constraints, the
relationships the entity is involved in and the keys.

The Database Relational Diagram models the database
according to the relational logic model. References between
relations display cardinalities and show which relation have
foreign keys that refer to the primary keys in other relations.

 - 15 -

The Data Structure Diagram highlights the properties of a
stored data. A data structure can be composed of any
combination of data elements or data groups. A data element is
an atomic unit containing no other structure; on the contrary,
data groups can include data elements and/or other data
groups. A data structure can describe the structure of a
relation, a file record, a segment and screen layout variable. In
the case we deal with, data structure describes relations
properties like primary and foreign keys, SQL data type,
mandatory clause, indexes, etc.

The Data Type Window defines the peculiar characteristics of
a global or local data type (SQL data type, COBOL format,
external and internal length, definition, comment).

The Structure Chart offers a graphic depiction of the external,
modular structure of a program. It details the hierarchy and
organisation of logic units (modules), the distribution of
functionalities among modules, and the data communication
between them.

Module

The Module Action Diagram details, in a graphic format, the
logic and the structure for a program module. It also
establishes the encyclopedia relationships between modules
and other design object types, such as screen layouts, relations,
segments, or other modules.

The DB2 General Information Window presents the
environmental parameters which are bind to a DB2 physical
representation of a relation such as DB2 database name, DB2
table space, table name, DDL subject type (table or view).

D M L

The SQL Action Diagram enables the generation of a generic
template for a SQL DML command. ADW/Construction
generates five different sets of generic DML statements, based
on the type you select: CURSOR, DELETE, INSERT,
SELECT and UPDATE. A sixth choice, EXPERT, allows to
write other DML statements.

 - 16 -

 - 17 -

	*Charon: a tool for code redocumentation
	and re-engineering
	*Charon: a tool for code redocumentation
	and re-engineering
	1. Introduction
	2. The re-engineering
	3. Related work
	4. Charon: an integration with a CASE tool
	5. Reverse engineering through C-TOOL
	6. The ADW I-CASE workbench
	6.1 - “.EXP” files
	6.2 - “.ENC” files
	6.3 - “MASC” files
	6.4 - The import process

	7 - The conversion tool (Charon)
	Conclusions and future developments.
	References
	Appendix 1.

