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Abstract: There are several tools and methods to quantify light pollution due to direct or reflected
light emitted towards the sky. Unmanned aerial vehicles (UAV) are still rarely used in light pollution
studies. In this study, a digital camera and a sky quality meter mounted on a UAV have been used
to study the relationship between indices computed on night images and night ground brightness
(NGB) measured by an optical device pointed downward towards the ground. Both measurements
were taken simultaneously during flights at an altitude of 70 and 100 m, and with varying exposure
time. NGB correlated significantly both with the brightness index (−0.49 ÷ −0.56) and with red
(−0.52 ÷ −0.58) and green band indices (−0.42 ÷ −0.58). A linear regression model based on
the luminous intensity index was able to estimate observed NGB with an RMSE varying between
0.21 and 0.46 mpsas. Multispectral analysis applied to images taken at 70 m showed that increasing
exposure time might cause a saturation of the colors of the image, especially in the red band, that
worsens the correlation between image indices and NGB. Our study suggests that the combined use
of low cost devices such as UAV and a sky quality meter can be used for assessing hotspot areas of
light pollution originating from the surface.

Keywords: light pollution; artificial light at night; unmanned aerial vehicle; sky quality meter; remote
sensing; night-time lights; photometry; image analysis

1. Introduction

The excessive use of night illumination causes light pollution. Despite the use of
systems that cut off part of the upward emissions, light pollution is increasing [1]. Moreover,
the use of more efficient lighting technology (e.g., LED) might have a negative rebound
effect, such as the temptation of investing cost savings produced by this technology in new
illumination systems even if they are not necessary [2]. Light pollution has several negative
consequences on the quality of the night sky that might limit star visibility [3,4], and on
terrestrial and marine species [5–14] including plants [15–20] and humans [21–23].

Monitoring light pollution is a key issue and a difficult task to perform due to the
low intensity of the signal and its spatial variability. Several approaches are available from
satellite remote sensing for spatial variation [24–27], to ground measurement with meters
(e.g., SQM and TESS-W) used in stationary monitoring networks [28–33] and moving
campaigns [25,34], and DSLR cameras for assessing light pollution variability above a
specific location [35–39]. Some studies have highlighted limitations due to the spectral
characteristics of sky quality meters (SQMs) that make the conversion from magnitude
to radiance difficult [40], the ageing of the system that might affect measurements [41]
and differences in the angular response on sky-brightness measurements [42]. Despite
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these limitations, this sensor is still widely used in the scientific community and it is
currently used for monitoring light pollution both by scientific institutions and regional
services [29–33,43].

This information is coupled in models that are used to produce maps of light pollution
such as the World Atlas of Light Pollution [44]. Actually, both satellite images and modeled
maps have a good but limited spatial resolution for characterizing urban and peri-urban
areas that are characterized by a high spatial variability of artificial light at night. Most of
these studies are based on ground-based measurements from the point of view of the human
eye, while a few of them, apart from studies based on satellite images or photographs from
the International Space Station [26,45], have tried to study artificial light diffusion based
on observations from the sky. For instance, such a perspective could be of interest in the
assessment of an outdoor lighting installation in terms of upward light emissions and the
consequent light pollution. However, the partial obstruction of artificial light due to urban
features, such as trees and buildings, might affect the reliability of this information as a
consequence of the anisotropic diffusion of artificial light. The effect of anisotropy has been
considered in a correlation study between satellite images and lighting systems [46] and in
a case study aimed to quantify this effect in a case study [47].

Unmanned aerial vehicle (UAV) systems, also known as drones, are now very popular
tools for monitoring the environment in scientific disciplines such as agriculture [48],
forestry [49], coastal and beach dynamics [50], marine litter accumulation along the
coast [51–53] and even in citizen science projects [54,55]. However they are still poorly used
in light pollution studies. Light pollution occurs due to scattering of the direct component
of outdoor lighting emitted towards the sky and the reflected component by lit surfaces.
Although these emissions should be quantified during the design of outdoor lighting, there
is not yet a recognized standard either for the methodology or the instrumentation for the
assessment of light pollution [56]. Drones have been suggested as tools for monitoring
and assessing light pollution from the air [26,57,58]. However, issues such as the cost of
equipment, the limited payload that can be carried by the drone and the range of a single
flight still limit the use of such systems in this research field. Indeed, legal restrictions on
the height of flight and the short temporal autonomy limit the possibility of monitoring
large areas. On the other hand, low altitude flight enables the capture of high resolution
information on the spatial variability of ground brightness. Some studies have compared
the use of ground-based measurements with digital cameras, airborne measurements with
satellite images and detailed airborne measurements with UAV images for the assessment
of light pollution from different points of view [59]. UAV nocturnal images combined with
VIIRS satellite images have also been used to estimate population density [60]. Bouroussis
and Topalis [56] proposed the use of a digital camera mounted on a drone for assessing
lighting installations from different points of view in the three dimensional space, taking
advantage of the UAV’s capability to easily program trajectories of any form and point of
acquisition along the route. Some attempts to compare the information of aerial images
taken by UAVs and measures of light pollution have already been made. In a previous
study, the effect of a single and isolated luminaire, with and without a mask for upward ra-
diation cutoff on the surrounding environment, was assessed by recording the illuminance
on the ground and at a 14-m level, by using an illuminance meter mounted on a drone and
a mobile one on the ground [61].

In other studies, city light dynamics through the night were monitored in urban areas,
by using a digital camera mounted on a drone for acquiring aerial images of the night
illumination of the area, while ground-based measurements on the same area were recorded
by SQM devices mounted on shopping carts [62] or cars [63]. Sometimes, comparisons
between aerial images and SQM measurements were made by using indices calculated on
the red-green-blue component of the images [63]. Even though sky quality meters were
designed to measure diffused light on the sky by astronomers, they have also been used to
measure ground brightness in other studies [25]. However, to the best of our knowledge,
the use of SQM for estimating light pollution from drones has not been performed yet.
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The aim of this study is to present a low cost system for monitoring light pollution
that is composed of an unmanned aerial vehicle equipped with a digital camera and an
optical sensor for measuring the surface brightness of an area. This system is used to
investigate the surface brightness variability in a real context. A small urbanized area was
monitored with flights at different altitudes, with a digital camera and an optical sensor
(sky quality meter or SQM) oriented downwards to the nadir. Night images in RAW format
and SQM measurements were taken simultaneously on the selected area. The first aim of
the study was to investigate if SQMs, which are devices designed to measure the diffused
brightness of the sky, can also be used to monitor the brightness of ground surfaces from
different altitudes (SQM measurements taken from the sky are referred to here as “night
ground brightness” or NGB). Image indices and NGB measurements, used as proxies of
the brightness due to the light emitted by luminaires and reflected by the ground, were
compared to assess the relationship between these two types of information. We assume
that brighter areas on the images are a reliable indicator of hotspot areas of light pollution
directed upward. Therefore, we used indices calculated on the images as a proxy for the
light emitted towards the sky and compared them with measurements taken by the SQM.
Overall, the study is designed to provide useful information and recommendations for
more extensive future assessment of the capability of low cost devices mounted on a UAV
for identifying light pollution sources from the sky. Moreover, SQMs or optical sensors
with similar characteristics, specifically designed for their use on UAV, could be tools that
easily provide information on the spatial distribution of surface brightness—which in turn
can be used to identify areas characterized by higher levels of upward light emission.

2. Materials and Methods
2.1. Study Area

Our study area was located in a countryside and residential area in the province of
Pisa, Italy (Figure 1). The study area was approximately a rectangle, with an area size of
about 1 hectare. This area includes houses, roads and green areas. The public illumination
system of this area is mainly composed of HPS amber lights (n = 16) and only a few white
lights (n = 3). The studied area is an urbanized area surrounded by countryside with a
sudden transition between dark and lit areas at the borders. We chose this area because it is
characterised by different levels of surface brightness and its dimensions were suitable for
the limitations imposed by the flight autonomy of the drone, which was further limited by
the presence of the SQM on board.
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2.2. UAV Characteristics

We used a Phantom 4 PRO V.2, a commercial UAV suitable for this type of application,
thanks to the good resolution of the camera, the compactness of the aircraft, the flight
stability and the possibility of carrying a light sensor (Figure 2).
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Figure 2. Sky quality meter (SQM) mounted on the unmanned aerial vehicle (UAV).

It has a titanium and magnesium alloy structure, increasing the strength of its frame
and reducing its weight; together with a good battery capacity (5870 mA). These features
allow a flight time of up to approximately 30 min. It has a gimbal three-axis stabilized
camera with a 1-inch 20-megapixel CMOS sensor, capable of shooting up to 4 K/60 fps
video and photo bursts, at up to 14 fps.

The camera’s field of view is 84◦, with 24 mm equivalent focal length, and diaphragm
f/2.8 to f/11 with autofocus from 1 m to infinity. The mechanical shutter speed ranges from
8 to 1/2000 s, while with the electronic shutter speed ranges from 1/2000 s to 1/8000 s. ISO
range for stills images is 100 to 3200 in auto, and 100 to 12,800 in manual. For video shot in
automatic mode it is the same, while for manual mode videos it is up to 6400. Three image
sizes are available: 3:2 (5472 × 3648), 4:3 (4864 × 3648), and 16:9 (5472 × 3078), providing
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output in different formats: JPEG, DNG (RAW), and JPEG + DNG. The pixel depth of the
RGB components in the DNG (RAW) format is 16 bits, which provides a higher dynamic
range than the 8-bit depth of the JPEG format used in other studies [62]. While commercial
cameras have been used to measure light pollution previously, it is acknowledged that
accurate calibration is needed to obtain precise values. This is still a complex task which is
camera dependent, and there is not yet a recognized standard for this procedure [39,63–65].
In this study, we did not calibrate the drone camera; however, we used the RAW format
that is recommended by other studies [39,65–67] since it provides more reliable information
than JPEG format which is compressed.

The gimbal can vary its tilt between +30◦ and −90◦. This allows it to capture photos
perpendicular to the direction of flight. It was equipped with an HD video transmission
device capable of reaching a maximum range of 7 km. The correct position management
was obtained thanks to two satellite tracking systems: GPS and GLONASS. The use of
UAVs for 3D mapping of the terrain or sites has the advantage of accessing utilities, such
as waypoint mapping to identify the surveyed area and flight path planning and control,
provided by third-party applications. A remote controller allowed a pilot to manage the
flight of the UAV; a smartphone (or tablet) could be connected to the remote controller to
view the camera, read the telemetry and enable automatic functions. The maximum speed
was 72 km/h and the maximum control range was 7 km from the pilot.

2.3. Light Pollution Sensor Mounted on the UAV

A model SQM-LU-DL Sky Quality Meter (SQM) by Unihedron (http://unihedron.
com/, accessed on 21 April 2022) was attached to the rear side of the UAV via a bracket that
contains the SQM’s power supply battery (Figure 2). The SQM measures surface brightness
in magnitude/arcsec2 (mpsas). Normally this sensor is oriented upward towards the zenith
and measures night sky brightness. In this study, the sensor is directed downward and
perpendicularly to the ground, thus measuring the brightness of the luminaires and of
the lit surfaces, which we refer to in this work as night ground brightness (NGB). We
used the radiometric calibration of the SQM made by the manufacturer as in many other
studies [25,28–33,63,68–70], even though some studies performed their own radiometric
calibration [42,71].

Setting the SQM in the rear position produces an unbalanced flight attitude, but this
is compensated by a sufficient level of thrust due to the power of the motors, and also
offers the advantage of not hindering the visibility of the camera. The take-off was only
performed in manual mode to compensate for the unbalance, which is not foreseen by the
system in automatic mode. Subsequently, the flight can continue in automatic mode. In the
future we plan to develop a more optimized support system for maintaining the correct
flight attitude.

2.4. Device Settings

We chose two flight levels with altitudes of 70 and 100 metres, which gave us ground
sampling distances of 1.92 cm and 2.74 cm respectively. Orthophotos were taken with
the digital camera set to ISO 400 and an aperture of f/2.8. Other general settings were:
mechanical shutter disabled, front led off, gimbal lock. The flight was managed in both
manual and automatic modes, with the aim of maintaining a minimum overlap of 70%.

All flights were conducted over a segregated area devoid of people at that time. Three
flight campaigns (six flights) were conducted over three nights with clear sky conditions
(Table 1). The first two were conducted, respectively, at an altitude of 70 and 100 m on
3 April 2021 (A1, A2) and 23 April 2021 (B1, B2), setting the camera at a shutter speed of
1/6.25 s (160 ms), while the third flight was conducted at 70 m altitude using two different
shutter speeds of
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Table 1. Date, altitude, camera settings and number of images of each flight and night sky brightness
(NSB) at the beginning and end of each flight measured in a dark location near the study area by
pointing the sky quality meter to the zenith.

Dataset Night Altitude (m) Number of
Images Camera Setting NSB (mpsas)

(Begin–End)

A1 3 April 2021 70 14
fn = 2.8,

exp = 1/6.25 s,
ISO = 400

19.08–19.05

A2 3 April 2021 100 19
fn = 2.8,

exp = 1/6.25 s,
ISO = 400

19.05–19.00

B1 23 April 2021 70 23
fn = 2.8,

exp = 1/6.25 s,
ISO = 400

19.09–19.11

B2 23 April 2021 100 25
fn = 2.8,

exp = 1/6.25 s,
ISO = 400

19.11–19.19

C1 15 June 2021 70 25
fn = 2.8,

exp =
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2.5. Image Acquisition and Processing

The images were acquired in RAW mode, transferred to a PC and processed using
AGISOFT METASHAPE Professional V. 1.6.1. Through this software we constructed the
orthomosaic of the selected area. We derived the coordinates of the lampposts from Google
Maps and we used them as marker points to geographically reference the orthomosaic map.

2.6. Relationship between UAV Image Indices and Night Sky Brightness

To compare the surface brightness of the scene captured by the UAV with the measures
collected by the SQM, we used SQM response characteristics (relative radiance, referred to
as rr) as reported in [72]. According to this study, the SQM has a maximum sensitivity in
an FOV of 10◦ (rr between 0.5 and 1), while rr reduces to 10% for FOV between 10◦ and
20◦ and almost zero for angles higher than 20◦ (Figure 3). Therefore we considered the
footprint of the SQM equal to the FOV of 20◦ centered on the point where the SQM took
the measurement at 70 m and 100 m, also corresponding to the center of each orthophoto.
This resulted in respective circles of 23.9 m and 34.2 m radius on each orthophoto (Figure 3).
Then, for each pixel in the orthophoto we computed rr using the Formula (1) corresponding
to the curve reported by Cinzano [72]:

rr = exp(−22.448 ∗ (arctan(Dp/H))2) (1)

where H is the flight height, Dp is the distance of the pixel from the center of the image and
22.448 is a constant value set for obtaining the best approximation of the rr graph [72].

For each pixel of the orthophoto, we computed: red (R), green (G), blue (B) components
and the brightness (I) taking into account the spectral sensitivity of the human eye that
varies among the color bands (high in the green, low in the red and very low in the blue).
Brightness (I) was calculated using, as weights of the RGB components, the luminous
efficiency function by Poynton [73]:

I = 0.2125 ∗ R + 0.7154 ∗ G + 0.0721 ∗ B (2)
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for each orthophoto according the following formulas:
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2.7. Statistical Analysis

Kendall rank correlation analysis between NGB and indices calculated on the or-
thophoto was performed on each dataset (A1, A2, B1 and B2). Linear regression models
were calculated between NGB and the four indices for each dataset (A1,A2, B1,B2). The
dataset where each model fit best was used as a training set (A2 in our study). Therefore we
obtained four linear models for each index (Is, Rs, Gs, Bs). These models were then applied
to estimate NGB values for the other three datasets (A1, B1, B2) that were used as validation
sets. Estimated NGBs (Lis, Lrs, Lgs, Lbs) are computed by the following formula:

Lis = ai + bi ∗ Is (7)

Lrs = ar + br ∗ Rs (8)

Lgs = ag + bg ∗ Gs (9)

Lbs = ab + bb ∗ Bs (10)

where ax and bx coefficients are calculated on the training set (A2).
The performance of the linear regression model was calculated by evaluating mean

error (ME) and root mean square error (RMSE) between estimated NGB (Lis, Lrs, Lgs, Lbs)
and measured NGB values (Lo). For instance, ME and RMSE on Is were computed as:

ME =
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All the analyses were conducted using R and Microsoft Excel.

2.8. Analysis of Orthophoto in Multispectral RGB

To appreciate the dynamic range of the images, distribution of pixels in multispectral
RGB was analyzed. Red, green and blue digital numbers were normalized for the number
of levels of the information (n = 65,536). For brightness (I), red (R), green (G) and blue (B)
bands of each image, we calculated the percentage of pixels below the detection level (e.g.,
I = 0, Q0), the first quartile (e.g., 0 < I ≤ 0.25, Q1), the second quartile (e.g., 0.25 < I ≤ 0.50,
Q2), the third quartile (e.g., 0.50 < I ≤ 0.75, Q3), the fourth quartile (e.g., 0.75 < I < 1, Q4)
and the saturated pixels (e.g., I = 1, QS). Then the pixel distribution was assessed on night
images taken at the 70-metre altitude with different exposure times: A1 and B1 at 1/6.25 s,
C1 at
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3. Results
3.1. Night Ground Brightness (NGB) Measurements and Indices of Luminous Intensity

The NGB measurements taken during all the flight campaigns are presented in Figure 4.
In the study area, the NGB varied between 13.9 mpsas in the brightest area and 17.3 mpsas
in the darkest one. Thus, the brightest area was 21 times brighter than the darkest one. The
lowest average NGB value of a flight was recorded during the 70-metre height flight (A1)
in the first campaign (14.6 mpsas) (Figure 4). The average NGB values were slightly lower
during flights at 70 m height (14.7 mpsas) than 100 m height (14.9 mpsas).

The values of the image indices are always negative due to the logarithm function
applied to values varying between 0 and 1. The average Is varied between −1.73 and −1.65
for the flight with 1/6.25 s exposure time and increased with increasing exposure time to
0.25 for
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blue band was very low (Bs = −2.70).



Remote Sens. 2022, 14, 2052 9 of 19

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 20 
 

 

of levels of the information (n = 65536). For brightness (I), red (R), green (G) and blue (B) 
bands of each image, we calculated the percentage of pixels below the detection level (e.g., 
I = 0, Q0), the first quartile (e.g., 0 < I ≤ 0.25, Q1), the second quartile (e.g., 0.25 < I ≤ 0.50, 
Q2), the third quartile (e.g., 0.50 < I ≤ 0.75, Q3), the fourth quartile (e.g., 0.75 < I < 1, Q4) 
and the saturated pixels (e.g., I = 1, QS). Then the pixel distribution was assessed on night 
images taken at the 70-metre altitude with different exposure times: A1 and B1 at 1/6.25 s, 
C1 at ¼ s and C2 at ½ s. 

3. Results 
3.1. Night Ground Brightness (NGB) Measurements and Indices of Luminous Intensity 

The NGB measurements taken during all the flight campaigns are presented in Fig-
ure 4. In the study area, the NGB varied between 13.9 mpsas in the brightest area and 17.3 
mpsas in the darkest one. Thus, the brightest area was 21 times brighter than the darkest 
one. The lowest average NGB value of a flight was recorded during the 70-metre height 
flight (A1) in the first campaign (14.6 mpsas) (Figure 4). The average NGB values were 
slightly lower during flights at 70 m height (14.7 mpsas) than 100 m height (14.9 mpsas). 

The values of the image indices are always negative due to the logarithm function 
applied to values varying between 0 and 1. The average Is varied between −1.73 and −1.65 
for the flight with 1/6.25 s exposure time and increased with increasing exposure time to 
0.25 for ¼ s (−1.54), and 0.42 for ½ s (−1.43) (Figure 4). The light coming from the surface 
was mainly composed on average by the red band (Rs = −1.41) since the lamps of the stud-
ied area were mainly amber lights, followed by the green band (Gs = −1.67), while the blue 
band was very low (Bs = −2.70). 

 
Figure 4. Boxplot of NGB in magnitude/arcsec2 (mpsas) and of image indices Is, Rs, Gs and Bs for 
set of images taken at 1/6.25 s at 70 m (A1) and 100 m (A2) height on 3 April 2021, at 1/6.25 s and at 
70 m (B1) and 100 m (B2) height on 23 April 2021 and at 70 m height and ¼ s (C1) and ½ s (C2) time 
exposure on 15 June 2021. 

Figure 4. Boxplot of NGB in magnitude/arcsec2 (mpsas) and of image indices Is, Rs, Gs and Bs for
set of images taken at 1/6.25 s at 70 m (A1) and 100 m (A2) height on 3 April 2021, at 1/6.25 s and at
70 m (B1) and 100 m (B2) height on 23 April 2021 and at 70 m height and

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 20 
 

 

of levels of the information (n = 65536). For brightness (I), red (R), green (G) and blue (B) 
bands of each image, we calculated the percentage of pixels below the detection level (e.g., 
I = 0, Q0), the first quartile (e.g., 0 < I ≤ 0.25, Q1), the second quartile (e.g., 0.25 < I ≤ 0.50, 
Q2), the third quartile (e.g., 0.50 < I ≤ 0.75, Q3), the fourth quartile (e.g., 0.75 < I < 1, Q4) 
and the saturated pixels (e.g., I = 1, QS). Then the pixel distribution was assessed on night 
images taken at the 70-metre altitude with different exposure times: A1 and B1 at 1/6.25 s, 
C1 at ¼ s and C2 at ½ s. 

3. Results 
3.1. Night Ground Brightness (NGB) Measurements and Indices of Luminous Intensity 

The NGB measurements taken during all the flight campaigns are presented in Fig-
ure 4. In the study area, the NGB varied between 13.9 mpsas in the brightest area and 17.3 
mpsas in the darkest one. Thus, the brightest area was 21 times brighter than the darkest 
one. The lowest average NGB value of a flight was recorded during the 70-metre height 
flight (A1) in the first campaign (14.6 mpsas) (Figure 4). The average NGB values were 
slightly lower during flights at 70 m height (14.7 mpsas) than 100 m height (14.9 mpsas). 

The values of the image indices are always negative due to the logarithm function 
applied to values varying between 0 and 1. The average Is varied between −1.73 and −1.65 
for the flight with 1/6.25 s exposure time and increased with increasing exposure time to 
0.25 for ¼ s (−1.54), and 0.42 for ½ s (−1.43) (Figure 4). The light coming from the surface 
was mainly composed on average by the red band (Rs = −1.41) since the lamps of the stud-
ied area were mainly amber lights, followed by the green band (Gs = −1.67), while the blue 
band was very low (Bs = −2.70). 

 
Figure 4. Boxplot of NGB in magnitude/arcsec2 (mpsas) and of image indices Is, Rs, Gs and Bs for 
set of images taken at 1/6.25 s at 70 m (A1) and 100 m (A2) height on 3 April 2021, at 1/6.25 s and at 
70 m (B1) and 100 m (B2) height on 23 April 2021 and at 70 m height and ¼ s (C1) and ½ s (C2) time 
exposure on 15 June 2021. 

s (C1) and

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 20 
 

 

of levels of the information (n = 65536). For brightness (I), red (R), green (G) and blue (B) 
bands of each image, we calculated the percentage of pixels below the detection level (e.g., 
I = 0, Q0), the first quartile (e.g., 0 < I ≤ 0.25, Q1), the second quartile (e.g., 0.25 < I ≤ 0.50, 
Q2), the third quartile (e.g., 0.50 < I ≤ 0.75, Q3), the fourth quartile (e.g., 0.75 < I < 1, Q4) 
and the saturated pixels (e.g., I = 1, QS). Then the pixel distribution was assessed on night 
images taken at the 70-metre altitude with different exposure times: A1 and B1 at 1/6.25 s, 
C1 at ¼ s and C2 at ½ s. 

3. Results 
3.1. Night Ground Brightness (NGB) Measurements and Indices of Luminous Intensity 

The NGB measurements taken during all the flight campaigns are presented in Fig-
ure 4. In the study area, the NGB varied between 13.9 mpsas in the brightest area and 17.3 
mpsas in the darkest one. Thus, the brightest area was 21 times brighter than the darkest 
one. The lowest average NGB value of a flight was recorded during the 70-metre height 
flight (A1) in the first campaign (14.6 mpsas) (Figure 4). The average NGB values were 
slightly lower during flights at 70 m height (14.7 mpsas) than 100 m height (14.9 mpsas). 

The values of the image indices are always negative due to the logarithm function 
applied to values varying between 0 and 1. The average Is varied between −1.73 and −1.65 
for the flight with 1/6.25 s exposure time and increased with increasing exposure time to 
0.25 for ¼ s (−1.54), and 0.42 for ½ s (−1.43) (Figure 4). The light coming from the surface 
was mainly composed on average by the red band (Rs = −1.41) since the lamps of the stud-
ied area were mainly amber lights, followed by the green band (Gs = −1.67), while the blue 
band was very low (Bs = −2.70). 

 
Figure 4. Boxplot of NGB in magnitude/arcsec2 (mpsas) and of image indices Is, Rs, Gs and Bs for 
set of images taken at 1/6.25 s at 70 m (A1) and 100 m (A2) height on 3 April 2021, at 1/6.25 s and at 
70 m (B1) and 100 m (B2) height on 23 April 2021 and at 70 m height and ¼ s (C1) and ½ s (C2) time 
exposure on 15 June 2021. 

s (C2) time
exposure on 15 June 2021.

3.2. Relationship between Indices on UAV Images and SQM Measurements

Kendall rank correlation (tau) between NGB measurements and the indices was always
significant with Is, Rs and Gs and never significant for Bs (Table 2). The highest value was
tau = 0.58 for Rs and Gs in B1 (Table 2). Tau between NGB measurements and Is ranged
between 0.49 (A1) and 0.56 (B1, A2). Tau between NGB and color bands was slightly higher
for green (tau between 0.52 and 0.58 for Gs) and red color (tau between 0.42 and 0.58 for Rs)
and lower for blue color (tau between −0.14 and 0.04 for Bs) (Table 2). The rank correlation
with G and R color bands depends on both the spectral sensitivity of the camera, which
is higher for the G component [39], and on the color of the lamps, which in our study site
were mainly amber lights.

According to the coefficient of determination (R2) obtained by linear regression models
between NGB and Is, Rs, Gs and Bs, the best fit was found in A2 (Table 2). Therefore, A2
was selected as a training set for computing linear regression relationships between NGB
and Is and the other RGB indices. The fitted linear regression models are represented in
Figure 5 and by the following formulas:

Lis = 12.805 − 1.578 ∗ Is (N = 19, R2 = 0.87, p < 0.01) (13)
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Lrs = 12.404 − 1.599 ∗ Rs (N = 19, R2 = 0.86, p < 0.01) (14)

Lgs = 12.080 − 1.536 ∗ Gs (N = 19, R2 = 0.88, p < 0.01) (15)

Lbs = 6.683 − 2.918 ∗ Bs (N = 19, R2 = 0.22, p < 0.05) (16)

Table 2. Kendall rank correlation (tau) and coefficient of determination according to linear regression
analysis (R2) between sky quality meter (NGB) measurements and Is, Rs, Gs and Bs indices calculated
respectively on RAW images taken by UAV at 70 m and 100 m above the ground. Significance levels
were reported for p < 0.05 (indicated by *) and p < 0.01 (indicated by **).

Index Date Set Distance N. Images tau R2

Is 3 April 2021 A1 70 14 −0.49 * 0.76 **
Rs 3 April 2021 A1 70 14 −0.42 * 0.72 **
Gs 3 April 2021 A1 70 14 −0.53 ** 0.77 **
Bs 3 April 2021 A1 70 14 0.04 0.05
Is 3 April 2021 A2 100 19 −0.56 ** 0.87 **
Rs 3 April 2021 A2 100 19 −0.56 ** 0.86 **
Gs 3 April 2021 A2 100 19 −0.56 ** 0.88 **
Bs 3 April 2021 A2 100 19 −0.14 0.22 *
Is 23 April 2021 B1 70 23 −0.56 ** 0.57 **
Rs 23 April 2021 B1 70 23 −0.58 ** 0.57 **
Gs 23 April 2021 B1 70 23 −0.58 ** 0.58 **
Bs 23 April 2021 B1 70 23 −0.08 0.33 **
Is 23 April 2021 B2 100 25 −0.53 ** 0.53 **
Rs 23 April 2021 B2 100 25 −0.51 ** 0.5 **
Gs 23 April 2021 B2 100 25 −0.52 ** 0.55 **
Bs 23 April 2021 B2 100 25 0.01 0.03
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Figure 5. Linear regression between NGB measurements in magnitude/arcsec2 (mpsas) and Is (a), Rs
(b), Gs (c) and Bs (d) computed on RAW images of the training set A2.

The best estimate of the observed NGB (Lo), using Is as a proxy, was obtained
in the training set (A2) with RMSE equals 0.21 mpsas, while RMSE varied (between
0.41 and 0.46 mpsas) for the other sets (Table 3). The RMSE was slightly lower at 100 m
than 70 m (0.41 mpsas in B2 vs. 0.45 and 0.46 mpsas in B1 and A1). Therefore, according
to our results, the predictive capability of the linear relationship was different for dif-
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ferent flight heights. In particular, the performance was better in both flights when the
distance of the sensor from the ground was 100 m. Among the color band indices, Gs
(RMSE = 0.20–0.45 mpsas) performed slightly better than Rs (RMSE = 0.22–0.49 mpsas),
while Bs showed the worst performance (RMSE = 0.48–0.89 mpsas). According to ME, NGB
was slightly overestimated for A1 of 0.08 mpsas for Is and underestimated (−0.08 mpsas
and −0.10 mpsas, respectively, for B1 and B2). Negative average values of ME for B1
and B2 (for all indices apart from Bs) indicate that the formula calibrated on A2 tended
to underestimate NGB in those datasets. This result suggests that actual environmental
conditions present during flights should be taken into account.

Table 3. Mean error (ME) and root mean square error (RMSE) for the estimation of observed NGB
using the fitted regression formulas for RAW images on the training set (A2, first UAV flight at 100 m
height) and the three validation sets (A1 and B1, first and second flight at 70 m height and B2, the
second flight at 100 m height).

Error Set Is Rs Gs Bs

A1 0.08 0.11 0.07 0.00
ME (mpsas) A2 1 0.00 0.00 0.00 0.00

B1 −0.08 −0.08 −0.09 0.06
B2 −0.10 −0.17 −0.07 0.03

A1 0.46 0.49 0.45 0.89
RMSE (mpsas) A2 1 0.21 0.22 0.20 0.48

B1 0.45 0.45 0.45 0.57
B2 0.41 0.45 0.40 0.67

1 A2 training set.

3.3. Analysis of Orthophoto in Multispectral RGB

The multispectral RGB analysis showed that both surface brightness (Q0 = 1.5%) and
the color bands had a percentage of pixels below detection level varying between 10% (R
and G band) to 55% for the blue band (Figure 6). This result is in contrast with another
study that found no pixel below detection level [62], despite the higher dynamic range
provided by RAW images used in the present study against JPEG image resolution used
in Li et al. [63]. Most of the pixels are concentrated on low intensity values (>80% pixel
in the first quartile) as already reported in other studies [63]. The red component had a
higher percentage of pixels than the other bands for the higher classes of intensity (Q2–Q4
and QS).

We tried to reduce the Q0 percentage by acquiring orthophotos with longer time
exposures (Figure 7), but the increase of saturated pixels (QS) offset the benefit of reducing
Q0 pixels and weakened the relationship with NGB. In fact, the multispectral analysis
conducted on the images taken at 70 m height showed a decrease of underexposed pixels
and an increase of saturated ones as exposure time increased. Although saturated pixels
increased by a small fraction (e.g., from 0.33% at 1/6.25 s to 1.68% at
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Boxplot of percentage of pixels per class of intensity: R = 0 (Q0), R = 1 (QS) or R falling in the first
(Q1) the second (Q2), the third (Q3) and the fourth (Q4) quartiles for A1, A2, B1 and B2 (red boxes in
e–h). Boxplot of percentage of pixels per class of intensity: G = 0 (Q0), G = 1 (QS) or G falling in the
first (Q1), the second (Q2), the third (Q3) and the fourth (Q4) quartiles for A1, A2, B1 and B2 (green
boxes in e–h). Boxplot of percentage of pixels per class of intensity: B = 0 (Q0), B = 1 (QS) or B falling
in the first (Q1), the second (Q2), the third (Q3) and the fourth (Q4) quartiles for A1, A2, B1 and B2
(blue boxes in e–h).
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4. Discussion and Conclusions

This study evaluated the possibility of using an unmanned aerial vehicle (UAV)
equipped with an SQM and digital camera to estimate the brightness of ground surfaces.
The relationship between night ground brightness measurements (NGB) taken by the SQM
and RGB indices computed on RAW images taken with a digital camera were compared
and a linear relationship between them was investigated.

Overall, results confirmed a highly significant Kendall rank correlation between the
NGB and brightness index (Is), as well as with red and green indices (Rs, Gs), while
no correlation was found with the index computed on the blue component (Bs). The
correlation with the color bands depends on the type of luminaires installed in the study
area. Indeed, our study area was mainly characterized by amber luminaires that have a
very low blue component.

The significant level of correlation between NGB measurements taken by SQM mounted
on a UAV suggests that the information, collected both at 70-m and 100-m flight altitudes,
can be used to identify surfaces that are relevant sources of light pollution.

The error using image indices for the estimation of NGB was relevant. Mean error
(ME) was still acceptable because it was always under or near 0.10 mpsas, while RMSE was
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always relevant. For instance, the NGB was estimated by Is with an RMSE between 0.21 and
0.46 mpsas. It is important to note that since the digital camera had not been calibrated, the
indices derived by the images do not provide exact quantification of luminous intensity [39].
However, the original values of the data acquired by the sensor (RAW), as opposed to the
compressed data (JPG), can be considered a good proxy of the brightness of each pixel.
Despite this limitation, the significant correlation between the image indices and NGB
indicates that the SQM can capture variations of surface brightness in the images. The lack
of calibration of the digital camera versus a more accurate instrument is a limitation of
this study. Improvements that can be obtained by calibrating the digital camera might be
investigated in future studies.

Linear regression analysis showed that indices computed on night images (brightness
index and color band indices connected to the color type of the luminaires) are a proxy of
night ground brightness (NGB). Conversely, NGB is a cumulative measure of the surface
brightness of the scene under the FOV of the SQM. However, it should be noted that the
fitted model might depend on the characteristics of the digital camera used. Therefore,
before using any digital camera, it is recommended to test the relationship between indices
calculated on orthophoto and NGB by using a calibration set of images. This relationship
is also affected by other factors, such as the optical properties of the atmosphere which
can alter the scattering of light, and can also depend on environmental and meteorological
factors other than cloudiness. Indeed, for the selection of the dates of monitoring, we
selected clear and moonless sky conditions in order to work under the most homogeneous
conditions possible. Since we performed this campaign during the spring season, which in
Tuscany is characterized by unstable conditions (frequent cloudiness and rain events), it
was very difficult to find nights that met all those criteria. Moreover, another constraint was
introduced by the fact that the drone flight conditions might be affected by strong winds.
In our case, we selected three dates that were characterized by similar sky conditions as
can be seen from the images taken by the Day-Night Band Satellite (Figure 8).
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Figure 8. Satellite night view of central-west Tuscany of the three flight campaigns 3 April 2021 (a),
23 April 2021 (b) and 15 June 2021 (c). Images are provided by VIIRS Day-Night Band Satellite, white
colors are the lights emitted from the Earth’s surface The study area is indicated by a red dot.

Even though the sky conditions were similar, we observed that on 23 April 2021, both
NSB and NGB values were slightly darker than the other two nights independently of the
altitude. This might be due to slightly different environmental conditions, since even a
low difference in atmospheric optical properties might be recorded by SQMs—which are
characterized by a sensitivity that allows for distinguishing between small differences in
surface brightness. The multispectral analysis highlighted the strong link between the color
of the lamps and the RGB level of the images. One limitation of the multispectral analysis
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is due to the presence of luminaires of almost only one color type (amber) in the studied
area. Further investigation on different luminaire types will be held in the near future.

Images taken at 70 m altitude with different exposure times showed that there is
not an optimal exposure time able to capture the full dynamic of the scene, even using
the RAW format that contained more detailed color information (65,536 levels) than JPG
(256 levels). After several trials, we chose to set the camera to 400 ISO, diaphragm fn = 2.8
and exposure time 1/6.25 s, because the correlation dropped quickly for longer exposures.
Using these settings, we obtained a high percentage of pixels below the detection level
of our camera (Q0), in contrast with other studies that found almost no pixels below the
detection level [63]. This difference might be due to camera systems that might have
different characteristics and performance. In any case, we tested different exposure times
to reduce the percentage of Q0 pixels, but increasing exposure time to
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s resulted in
a small reduction of the percentage of Q0 pixels and, at the same time, an increase of
the percentage of the saturated pixels, which had the cumulative effect of worsening the
correlation between NGB and image indices (from −0.56 to −0.28).

Our results highlight that coupling the camera with the sky quality meter can provide
information on both the intensity of light pollution and the multispectral component of
the luminaires in the study area. Indeed, the very high correlation between the brghtness
of the portion of the image under the FOV of the SQM and NGB suggests that SQM can
provide low cost and reliable information on the spatial variability of ground brightness
seen from the sky. Such brightness can be considered a proxy of upward light emission
towards the sky. RMSE for Is, Rs and Gs highlights a slightly better performance of the
linear regression model at 100 m height, which suggests the SQM might work better at a
higher distance from the ground since it has been designed to measure the brightness of
diffused light from distant sources.

However, our study was performed in a small residential area with a homogeneous
lighting system. Therefore, further studies in areas that include different types of lighting
systems should be conducted in the future, in order to confirm and generalize these
preliminary results. Other studies have used configurations that coupled camera systems
mounted on UAVs with sky quality meters mounted on mobile systems (shopping carts and
cars), thus comparing information taken at a certain altitude by camera with measurement
of light reflected from the ground taken at approximately 1–2 m height [62,63]. Our study
takes advantage of mounting the SQM on the drone just next to the camera, thus providing
measurements from the same height and point of view for both systems. However, attention
should be paid to the installation of this device on the drone. We set it in the rear position
to avoid hindering the visibility of the camera, but this setting produced an unbalanced
flight attitude, which required sufficient power from the motors to compensate for it. This
is why we took the precaution of performing take-off only in manual mode. These issues
also influence flight time autonomy and as a consequence the dimension of the monitored
area. This limitation can be avoided by developing a more optimized support for the flight
attitude in the future or by the vailability of sensors specifically designed for UAVs.

In this study, we did not perform a radiative calibration of the digital camera. There-
fore, the information content of the images is dependent on the specific digital camera
characteristics. This is a general issue of using digital cameras for monitoring light pollu-
tion. Indeed, the radiative calibration of some types of digital camera has already been
done in previous studies; however, this procedure is also dependent on the specific digital
camera. The procedure proposed in this study has the advantage of being easy to perform
and could be effective in the identification of hotspots of light pollution. It also has the
advantage of using low cost and commercial devices, such as the UAV and SQM used in
this study, which makes this setting easily replicable in other studies. Nowadays, there
are several commercial UAVs that are economical, reliable and easy to operate and these
features make them suitable for these types of campaigns.

Furthermore, our results suggest that calibrated devices such as the SQM can be
used to find relationships with indices derived from the orthophoto that can be applied
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to quantify cumulatively the luminous content of a scene. This relationship, even if it is
dependent on the type of digital camera, is easy to assess and can be used to estimate
hotspot areas of light pollution. For instance, the superimposition of the georeferenced
measurements taken by the SQM along the drone’s route on the orthomosaic of the selected
area during the same flight shows how higher values of NGB are positioned near brighter
areas (Figure 9). In this figure, the obstruction effect of urban features, in this case tree
canopies, is clearly visible. The bright lines are the street, while the black areas between
them are caused by tree canopies that mask light emitted by luminaires. This effect can
be reduced for deciduous species in winter when they are leafless [47]. Another effect
that interacts with light pollution measurement is the anisotropic diffusion of light due
to the presence of buildings [46]. For instance, the radiance measured from satellites
depends on the viewing zenithal angle (VZA) of the sensor due to the interaction of light
with buildings, especially in tall building areas [46]. The anisotropy of light in an urban
environment and the monitoring of the area with different VZA is an important aspect that
should be considered in future studies.
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areas likely subjected to upward emission due to bad shielding of the luminaires or an 
excess of light reflected by the surfaces. This information can be used to select areas for 
more accurate monitoring, for which preliminary analysis is needed to assess what is af-
fected by the limitations of this system and by the other factors of disturbance such as the 
partial obstruction of artificial light due to urban features that might affect the reliability 
of data taken from the air [46,47]. Moreover, the opportunity to monitor the first tens of 
meters allows an estimation of light pollution from the ground and in the portion of the 
atmosphere where many nocturnal species live, and this information might be interesting 
for studies that aim to assess the negative effect of the presence of altered night-time en-
vironments. 

In conclusion, according to our study, SQM devices can be used to identify hotspot 
areas of light pollution by coupling them with digital cameras and possibly in the future 
in a standalone setting, if such devices are designed specifically to operate with UAVs. 
Monitoring light pollution from the air may take advantage of low cost systems that pro-
vide ready-to-use information for the selection of candidate hotspot areas of light pollu-
tion. Further investigations are needed to take into account the limitations of the specific 
settings used in this study, and the different illumination characteristics and other envi-
ronmental factors that might affect the results—and which are complex to investigate in a 
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Figure 9. Georeferenced night ground brightness (NGB) measured in magnitude/arcsec2 (mpsas)
recorded by the UAV along the route at 70 m height on 3 April 2021 displayed upon the georeferenced
night images taken by the digital camera during the same flight. Colors indicate NGB in mpsas.

The application of UAVs, albeit still limited in this research field, has a potential for
the detailed analysis of light pollution along a route over small and medium size areas such
as a highway, city neighborhood or a sport facility [56,62]. It must be underlined that such
monitoring should be considered as a survey to identify bright areas that indicate areas
likely subjected to upward emission due to bad shielding of the luminaires or an excess
of light reflected by the surfaces. This information can be used to select areas for more
accurate monitoring, for which preliminary analysis is needed to assess what is affected
by the limitations of this system and by the other factors of disturbance such as the partial
obstruction of artificial light due to urban features that might affect the reliability of data
taken from the air [46,47]. Moreover, the opportunity to monitor the first tens of meters
allows an estimation of light pollution from the ground and in the portion of the atmosphere
where many nocturnal species live, and this information might be interesting for studies
that aim to assess the negative effect of the presence of altered night-time environments.

In conclusion, according to our study, SQM devices can be used to identify hotspot
areas of light pollution by coupling them with digital cameras and possibly in the future
in a standalone setting, if such devices are designed specifically to operate with UAVs.
Monitoring light pollution from the air may take advantage of low cost systems that provide
ready-to-use information for the selection of candidate hotspot areas of light pollution.
Further investigations are needed to take into account the limitations of the specific settings
used in this study, and the different illumination characteristics and other environmental
factors that might affect the results—and which are complex to investigate in a real context.
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