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The aim of this work is to propose a fast and reliable algorithm for computing integrals of 
the type

∞∫
−∞

f (x)e
−x2− 1

x2 dx,

where f (x) is a sufficiently smooth function, in floating point arithmetic. The algorithm 
is based on a product integration rule, whose rate of convergence depends only on the 
regularity of f , since the coefficients of the rule are “exactly” computed by means of 
suitable recurrence relations here derived. We prove stability and convergence in the space 
of locally continuous functions on R equipped with weighted uniform norm. By extensive 
numerical tests, the accuracy of the proposed product rule is compared with that of the 
Gauss–Hermite quadrature formula w.r.t. the function f (x)e

− 1
x2 . The numerical results 

confirm the effectiveness of the method, supporting the proven theoretical estimates.
© 2023 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The present paper deals with the computation of integrals

∞∫
−∞

f (x)w̃(x)dx, (1)

where w̃(x) = e
−x2− 1

x2 is a combination of the Pollaczek–type weight e
− 1

x2 and the Hermite weight e−x2
, and f is a 

“smooth” function.
A straightforward approach to compute an approximation of (1) is to consider the Gauss quadrature rule (GQR) with 

weight function w(x) = e−x2
and integrand function e− 1

x2 f (x). Unfortunately, the presence of the factor e− 1
x2 as part of the 
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integrand function strongly reduces the convergence rate of GQR. On the other hand, the computation of integrals (1) is 
of interest in numerical methods for integral equations, which in turn are model for many applications arising in applied 
sciences. As an example, integral equations with the same weight function w̃ , but extended to the positive real semiaxis, 
model some mathematical financial problems [7]. Approximation properties related to Pollaczek–Laguerre weights of the 

type W (x) = xγ e
−xβ− 1

xα on the positive semiaxis, have been extensively studied in [11,12,15,16]. In particular in [5,6,11]
the authors proposed a Gaussian quadrature rule for approximating integrals on the positive semiaxis with a Pollaczek–
Laguerre weight and only with the use of the extended precision they were able to overcome the numerical instability in 
computing the corresponding zeros and weights [6, p. 230]. Such instability occurs only in computing the zeros and the 
coefficients of the Gaussian rule for a non standard weight, in applying the Chebyshev method of moments, and does not 
affect the stability of the Gaussian rule and the related methods considered there. Here, we deal with the Pollaczek–Hermite 

weight w̃(x) = e
−x2− 1

x2 proposing a fast and reliable algorithm for the efficient computation of integrals on R of type (1)
without using extended precision. The product integration rule we propose is based on the approximation of f by means of 
a “truncated” Lagrange polynomial interpolating f , and hence on the exact computation of the rule coefficients, by means 
of suitable recurrence relations here derived. In view of the truncation, the rule requires a reduced number of function 
evaluations. Moreover, for functions f belonging to suitable spaces of locally continuous functions, endowed with weighted 
uniform norm, we prove the rule is stable and convergent. Since we will prove that the quadrature error has the same 
behavior of the best polynomial approximation of f , the more regular f is, the faster the convergence of the product rule 
is.

The paper is organized as follows. In Section 2 the main features of the Hermite polynomials are described. Section 3 is 
devoted to function spaces and to Lagrange interpolation processes associated to the considered product rule. In Section 4
the construction of the proposed product rule is described.

A number of numerical examples, confirming the stability properties of the proposed method, is provided in Section 5, 
followed by the proofs of the theorems stated in Section 6. The paper ends with the concluding remarks.

2. Computing the zeros of orthogonal polynomials

Let H�(x) = k�x� +∑�−1
j=0 c j x j, � = 0, 1, . . ., be the sequence of orthonormal Hermite polynomials with respect to the 

weight function w(x) = e−x2
in the interval (−∞, ∞), i.e.,

∞∫
−∞

Hi(x)H j(x)w(x)dx = δi j, with δi j =
{

1, if i = j,
0, if i �= j,

where k�, c j ∈R, j = 0, 1, . . . , � −1, and k� > 0. Polynomials H�(x) satisfy the following three–term recurrence relation [20]⎧⎪⎨⎪⎩
H−1(x) = 0,

H0(x) = k0 = 4
√

1
π ,

β�+1H�+1(x) = xH�(x) − β�H�−1(x), � ≥ 0,

(2)

where

β0 = 0, β� = k�

k�−1
=
√

�

2
, � = 1,2, . . . . (3)

Using (2), we can write the n-step recurrence relation

Jh(x) = xh(x) − βnHn(x)en,

where

J =

⎡⎢⎢⎢⎢⎢⎢⎣

0 β1
β1 0 β2

β2
. . .

. . .

. . . 0 βn−1
βn−1 0

⎤⎥⎥⎥⎥⎥⎥⎦ , h(x) =

⎡⎢⎢⎢⎢⎢⎣
H0(x)
H1(x)

...

Hn−2(x)
Hn−1(x)

⎤⎥⎥⎥⎥⎥⎦ . (4)

The matrix J is called Jacobi matrix [2]. The following theorem was proved in [2, Th. 1.31].
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Theorem 2.1. Let J = Q X Q T be the spectral decomposition of J , where X ∈Rn×n is a diagonal matrix and

x := diag(X) = [x1, . . . , xn]T , x1 < x2 < · · · < xn,

and Q ∈Rn×n is an orthogonal matrix, i.e., Q T Q = In. Then Hn(xi) = 0, i = 1, . . . , n, and Q = V D, with

V = [h(x1),h(x2), . . . ,h(xn)] , D =

⎡⎢⎢⎢⎣
ŵ1

ŵ2
. . .

ŵn

⎤⎥⎥⎥⎦ , (5)

and

ŵi = 1

‖h(xi)‖2
= 1√∑n−1

�=0 H2
�(xi)

.

The eigenvalues xi, i = 1, 2, . . . , n, are the nodes of GQR and the corresponding weights wi are defined as (see [20])

wi := wi(xi) = ŵ2
i = 1∑n−1

�=0 H2
�(xi)

, i = 1, . . . ,n. (6)

As shown in [21], the weights can be also obtained by the first row of Q as

wi = μ0q2
1,i, i = 1, . . . ,n, (7)

where μ0 = ∫R e−x2
dx. The Golub and Welsch algorithm [3], relying on a modification of the Q R–method [1], yields the 

nodes and the weights of GQR by computing only the eigenvalues of the Jacobi matrix and the first row of the associated 
eigenvector matrix.

A different way to compute the weights of GQR in a stable manner has been described in [8].

3. Function spaces and Lagrange interpolation processes

From now on, C will denote any positive constant having different meanings at different occurrences and the writing 
C �= C(a, b, ..) means that C does not depend on a, b, ...

For a fixed δ ∈R+ let wδ(x) = √
w(x)(1 + |x|)δ . Let us introduce the space C wδ defined as

C wδ =
{

f ∈ C0(R) : lim
x→±∞ f (x)wδ(x) = 0

}
,

equipped with the norm

‖ f ‖wδ = ‖ f wδ‖∞ = sup
x∈R

| f (x)wδ(x)|.

Denoting by

En( f )wδ := inf
Pn∈Pn

‖( f − Pn)wδ‖∞, (8)

the error of best polynomial approximation of f ∈ C wδ , it can be proved that

lim
n→∞ En( f )wδ = 0 ⇐⇒ f ∈ C wδ ,

[9] (see, e.g. [17, p. 275–276]). Note that functions in C wδ can grow exponentially as |x| → ∞. For smoother functions, let 
us consider the following Sobolev subspaces of C wδ

W r(wδ) =
{

f ∈ C wδ : f (r−1) ∈ AC(R),‖ f (r)wδ‖∞ < ∞
}

, r ∈N, r ≥ 1,

where AC(R) denotes the set of all functions which are absolutely continuous on every closed subset of R. Such spaces are 
equipped with the norm

‖ f ‖W r(wδ) = ‖ f wδ‖∞ + ‖ f (r)wδ‖∞.

For f ∈ W r(wδ), we recall that the following estimate holds [18,19,13]
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En( f )wδ ≤ C
‖ f ‖W r(wδ)

(
√

n)r
, C �= C (n, f ). (9)

Let {xk}n
k=1 be the zeros of Hn and, for a fixed 0 < θ < 1, let j = j(n) be the index of the zero of Hn such that

x j = min
k=1,2,...,n

{xk : xk > θ
√

2n}. (10)

Moreover, let Pn−1 the subspace of Pn−1 defined as

Pn−1 := {P ∈ Pn−1 : P (xi) = 0,k > j, and k < n + 1 − j}.
Setting P̃ ∈Pn−1 the polynomial defined by

‖( f − P̃ )wδ‖∞ = inf
P∈Pn−1

‖( f − P )wδ‖∞ =: Ẽn−1( f )wδ ,

in [13, Lemma 3.1] (in a more general context) the following estimate was proved

Ẽn−1( f )wδ ≤ C
(

E N( f )wδ + e−Bn‖ f wδ‖∞
)

, C �= C (n, f ), (11)

with N =
⌊(

θ
1+θ

)2
n
2

⌋
∼ n, where �ξ� denotes the largest integer not exceeding ξ ∈R+ , and B ∈R+, B �= B(n, f ).

Let L1(R) be the space of all measurable functions f , equipped with the norm

‖ f ‖L1(R) =
∫
R

| f (x)|dx,

and let L∞(R) =: C0.

3.1. Truncated Lagrange interpolating polynomial

For a given function f , with j = j(n), defined in (10), the polynomial

Ln−1(w, f , x) =
j∑

k=n− j+1

�n,k(x) f (xk), �n,k(x) = Hn(x)

H′
n(xk)(x − xk)

, (12)

is the truncated Lagrange polynomial interpolating f [13,14]. Ln−1(w, f ) ∈ Pn−1, interpolates f at the zeros {xk} j
k=n+1− j ∈

(−θ
√

2n, θ
√

2n) and vanishes at {{xk}{k> j}∪{k<n+1− j}}. Differently from the ordinary Lagrange polynomial interpolating f on 
all the zeros of Hn(x), Ln−1(w, f ) is not a projector in Pn−1, but it preserves polynomials belonging to the subspace Pn−1, 
i.e., Ln−1(w, Q) =Q, Q ∈Pn−1.

4. The Product rule

In this section we construct the product rule of interpolation type for computing an approximation of the integral (1).
Hence, replacing f by Ln−1(w, f ), we obtain the product rule

∞∫
−∞

w̃(x)Ln−1(w, f , x)dx =
j∑

k=n+1− j

Ck f (xk) (13)

:=
j∑

k=n+1− j

f (xk)

⎡⎣wk

n−1∑
�=0

H�(xk)

∞∫
−∞

w̃(x)H�(x)dx

⎤⎦
=

j∑
k=n+1− j

f (xk)wk

n−1∑
�=0

H�(xk)M�,

where, for � = 0, 1, . . .,

M� =
∞∫

−∞
H�(x)w̃(x)dx, (14)

are the so called modified moments.
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4.1. Computing the Modified moments M�

In this subsection we construct the recurrence relations for computing the modified moments (14). Defining

N� :=
∞∫

−∞

H�(x)

x2
w̃(x)dx, � = 0,1, . . . ,

the following lemma holds.

Lemma 4.1. The sequences M� and N�, � = 0, 1, . . . satisfy the following recurrence relations⎧⎪⎨⎪⎩
M0 = 4√π

e2 ,

M� = 2−�√
�(�−1)

M�−2 + 2√
�(�−1)

N�−2, � = 2,4,6, . . . ,

M� = 0, � = 1,3,5, . . . ,

(15)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
N0 = 4√π

e2 ,

N�+2 = 2√
(�+1)(�+2)

M� −
(√

�
�+1

�
�+2 +

√
�+1
�+2

)
N�

−
√

�−1
�+1

�
�+2N�−2, � = 2,4,6, . . . ,

N� = 0, � = 1,3,5, . . . .

(16)

4.2. Stability and error estimates

By means of the product rule (13), it is introduced the error

en( f ) :=
∫
R

[ f (x) −Ln−1(w, f , x)]w̃(x)dx, (17)

i.e. ∫
R

f (x)w̃(x)dx =
j∑

k=n+1− j

Ck f (xk) + en( f ), (18)

being the rule exact for Pn+1 ∈Pn+1.
Now we state the stability and the convergence of the formula in C wδ , providing error estimates in the spaces Wr(wδ).

Theorem 4.2. Under the assumption δ > 1
2 , the rule (13) is stable in C wδ , i.e.,

sup
n

j∑
i=1

|Ci|
wδ(xi)

< ∞, (19)

and

|en( f )| ≤ C
(

E N( f )wδ + e−Bn‖ f wδ‖∞
)

, (20)

where N =
⌊(

θ
1+θ

)2
n

⌋
∼ n, and 0 < B �= B(n, f ), C �= C (n, f ).

By combining (20) and (9), the following error estimate follows.

Corollary 4.3. For any f ∈ W r(wδ), with δ > 1
2 , the following error estimate holds

|en( f )| ≤ C
‖ f ‖W r(wδ)√

r
, C �= C (n, f ). (21)
( n)
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Table 1
Values of the approximations of the integral (22) obtained TPR and GQR, with f (x) = cos(x), and Mval =
8.945397612471845 × 10−2.

n 2 j − n TPR | TPR−Mval
Mval | GQR | GQR−Mval

Mval |
8 8 8.945098794037276 × 10−2 3.34 × 10−5 6.949412400327926 × 10−2 2.23 × 10−1

16 16 8.945397611011636 × 10−2 1.63 × 10−10 9.723435717459904 × 10−2 8.70 × 10−2

32 32 8.945397612471852 × 10−2 6.21 × 10−16 8.918619331793731 × 10−2 2.99 × 10−3

64 48 8.945397612471877 × 10−2 3.41 × 10−15 8.936154227660445 × 10−2 1.03 × 10−3

128 68 8.945397612471848 × 10−2 1.55 × 10−16 8.945089722880344 × 10−2 3.44 × 10−5

256 90 8.945397612471870 × 10−2 2.64 × 10−15 8.945673065110885 × 10−2 3.08 × 10−5

512 124 8.945397612471838 × 10−2 9.31 × 10−16 8.945401734394182 × 10−2 4.61 × 10−7

1024 166 8.945397612471874 × 10−2 3.10 × 10−15 8.945397746086610 × 10−2 1.49 × 10−8

2048 242 8.945397612471845 × 10−2 0.00 × 100 8.945397612351721 × 10−2 1.34 × 10−11

4096 404 8.945397612471892 × 10−2 6.05 × 10−15 8.945397612473283 × 10−2 1.61 × 10−13

Table 2
Values of the approximations of the integral (22) obtained applying TPR and GQR, with f (x) = arctan( 1+x

4 ), and Mval =
5.427697244322335 × 10−2.

n 2 j − n TPR | TPR−Mval
Mval | GQR | GQR−Mval

Mval |
8 8 5.427686729587454 × 10−2 1.94 × 10−6 5.051927492275927 × 10−2 6.92 × 10−2

16 16 5.427697240051552 × 10−2 7.87 × 10−10 5.644085331675656 × 10−2 3.99 × 10−2

32 32 5.427697244322757 × 10−2 7.77 × 10−14 5.414250683007876 × 10−2 2.48 × 10−3

64 48 5.427697244322347 × 10−2 2.17 × 10−15 5.426208992962754 × 10−2 2.74 × 10−4

128 68 5.427697244322358 × 10−2 4.22 × 10−15 5.427544256103390 × 10−2 2.82 × 10−5

256 90 5.427697244322337 × 10−2 2.56 × 10−16 5.427767485244951 × 10−2 1.29 × 10−5

512 124 5.427697244322327 × 10−2 1.53 × 10−15 5.427698372784009 × 10−2 2.08 × 10−7

1024 166 5.427697244322347 × 10−2 2.17 × 10−15 5.427697278329974 × 10−2 6.27 × 10−9

2048 242 5.427697244322321 × 10−2 2.68 × 10−15 5.427697244286701 × 10−2 6.57 × 10−12

4096 407 5.427697244322308 × 10−2 4.99 × 10−15 5.427697244322690 × 10−2 6.53 × 10−14

5. Numerical Examples

In this section we state the numerical results obtained by approximating integrals

I( f ) =
∞∫

−∞
e
−x2− 1

x2 f (x)dx, (22)

for functions f belonging to different spaces of functions. We compare the results achieved by the proposed product rule 
(TPR) with those obtained by the truncated Gauss–Hermite quadrature rule (GQR) [10], considering e−x2

as the Hermite 

weight and g(x) = e
− 1

x2 f (x) as function. In the tables n denotes the number of points involved in TPR and GQR, respectively.
For each test, the approximations of (22) obtained by the two methods, TPR and GQR, for n = 2i, i = 3, 4, . . . , 12, are 

computed in Matlab R2022a with machine precision ε ∼ 2.22 × 10−16 and compared with the value of the integral 
computed by the function NIntegrate of Mathematica, with a working precision of 500 digits (denoted by Mval), 
considered as the exact value of the integral. The computed approximations and the corresponding relative errors are 
reported in the associated tables.

It can be noticed that the ratio (2 j −n)/n becomes smaller and smaller as n increases. Therefore, the proposed truncated 
product rule has a computational cost much smaller than the non truncated one for large n.

Example 5.1. In this example, f (x) = cos(x) in (22) and Mval = 8.945397612471845 × 10−2. The results are displayed in 
Table 1. They show that the relative errors of TPR are close to the machine precision with n ≈ 32, since cos(x) is a very 
regular function. About the slow convergence of GQR, we observe that, even though g(x) := e

− 1
x2 cos(x) ∈ Wr(wδ) for any 

r ≥ 1, the seminorms of g appearing in the error estimates becomes larger and larger as r increases, by slowing down the 
speed of convergence of GQR. For instance, ‖g‖Wr(wδ ) ∼ 5 × 103 for r = 5, and ‖g‖Wr (wδ ) ∼ 6 × 1011 for r = 10.

Example 5.2. Here, f (x) = arctan
( 1+x

4

)
and Mval= 5.427697244322335 × 10−2. The results are displayed in Table 2. Simi-

larly to Example 5.1, the relative errors of TPR are close to the machine precision with n ≈ 32, being arctan
( 1+x

4

)
a regular 

function, while the convergence of GQR is almost linear since it is applied to h(x) := e
− 1

x2 arctan
( 1+x

4

) ∈ Wr(wδ) for any 
r ≥ 1, and whose seminorms become larger and larger as r increases, strongly affecting the speed of convergence. For 
instance, ‖h‖Wr (wδ) ∼ 2 × 1011, for r = 10.
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Table 3
Values of the approximations of the integral (22) obtained applying TPR and GQR, with f (x) = | cos(x)|5/4, and Mval =
9.105558869283804 × 10−2.

n 2 j − n TPR | TPR−Mval
Mval | GQR | GQR−Mval

Mval |
8 8 9.485235885806660 × 10−2 4.17 × 10−2 7.301487850488275 × 10−2 1.98 × 10−1

16 16 9.074650084283779 × 10−2 3.39 × 10−3 9.863496922603453 × 10−2 8.32 × 10−2

32 32 9.182616784940598 × 10−2 8.46 × 10−3 9.162629410875198 × 10−2 6.27 × 10−3

64 48 9.079166478725698 × 10−2 2.90 × 10−3 9.070205616732352 × 10−2 3.88 × 10−3

128 68 9.121947847053928 × 10−2 1.80 × 10−3 9.121708479806487 × 10−2 1.77 × 10−3

256 90 9.104913976690782 × 10−2 7.08 × 10−5 9.105186176595942 × 10−2 4.09 × 10−5

512 124 9.109013869493021 × 10−2 3.79 × 10−4 9.109017834749777 × 10−2 3.80 × 10−4

1024 166 9.104375386675621 × 10−2 1.30 × 10−4 9.104375504983463 × 10−2 1.30 × 10−4

2048 240 9.106285825658801 × 10−2 7.98 × 10−5 9.106285824155236 × 10−2 7.98 × 10−5

4096 404 9.105641735268770 × 10−2 9.10 × 10−6 9.105630563127487 × 10−2 7.87 × 10−6

Example 5.3. In this test f (x) = | cos(x)|5/4 and Mval= 9.105558869283804 × 10−02.
The results are displayed in Table 3. The function | cos(x)|5/4 ∈ W1(wδ) and the speed of convergence of both the rules

TPR and GQR is very slow.

6. Proofs

In this section, the proofs of Lemma 4.1 and Theorem 4.2 are outlined.

Proof of Lemma 4.1. Taking into account the three–term recurrence relation (2), we have

β�M� =
∞∫

−∞
xH�−1(x)e

−x2− 1
x2 dx − β�−1M�−2, � ≥ 2. (23)

Let us now compute the integral in (23). Since [20, p. 106],

e−x2H�−1(x) = − 1√
2(� − 1)

d

dx

(
e−x2H�−2(x)

)
, (24)

integrating by parts (23) we obtain:

∞∫
−∞

xH�−1(x)w̃(x)dx = 1√
2(� − 1)

∞∫
−∞

H�−2(x)w̃(x)dx

+
√

2

� − 1

∞∫
−∞

H�−2(x)

x2
w̃(x)dx

= 1√
2(� − 1)

M�−2 +
√

2

� − 1
N�−2.

Therefore, the recurrence relation (15) for M� holds, where the coefficients β� are given in (3).
To compute the sequence N�, � = 0, 1, 2, . . ., we need the following lemma.

Lemma 6.1. The sequence of even (odd) Hermite polynomials Hk(x), k = 0, 2, 4, . . . (k = 1, 3, 5, . . .) satisfies the following three–
recurrence relation

βk+1βk+2Hk+2(x) =
(

x2 − (β2
k + β2

k+1)
)
Hk(x) − βk−1βkHk−2(x),

Proof. Let us consider (2) evaluated for k = k + 1 and k = k − 1, respectively,

Hk+1(x) = βk+2Hk+2(x) + βk+1Hk(x)

x
(25)

and

Hk−1(x) = βkHk(x) + βk−1Hk−2(x)
. (26)
x
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Replacing (25) and (26) into (2) for � = k, we then obtain:

βk+1
βk+2Hk+2(x) + βk+1Hk(x)

x
+ βk

βkHk(x) + βk−1Hk−2(x)

x
= xHk(x),

and thus

βk+1βk+2Hk+2(x) =
(

x2 − (β2
k + β2

k+1)
)
Hk(x) − βk−1βkHk−2(x), (27)

i.e., we obtain a three–term recurrence relation for the odd and even polynomials extracted from the sequence H�(x), 
� = 0, 1, 2, . . .. �

Therefore, the recurrence relation (16) is obtained dividing (27) by x2 and considering the weighted integral, with weight 
w̃ , on both sides.

The values of the modified moments M0 and N0 can be retrieved from [4, p. 337] and [4, p. 369], respectively.

Observe that M� = 0, � even, since w̃ is an even function and H� is an odd function for � odd. �
Proof of Theorem 4.2. First of all we prove that for any f ∈ C wδ ,∫

R

|Ln−1(w, f , x)|w̃(x)dx ≤ C ‖ f wδ‖∞, C �= C (n, f ). (28)

Since the factor e
− 1

x2 ∈ C∞(R) satisfies 0 ≤ e
− 1

x2 < 1, we have

∫
R

|Ln−1(w, f , x)|e−x2− 1
x2 dx ≤

⎛⎝∫
R

w(x)dx

⎞⎠
1
2
⎛⎝∫
R

(Ln−1(w, f , x))2 w(x)dx

⎞⎠
1
2

.

By using the n-th Gauss-Hermite rule which is exact for the polynomial (Ln−1(w, f ))2 ∈P2n−2, we get⎛⎝∫
R

(Ln−1(w, f , x))2 w(x)dx

⎞⎠
1
2

=
(

n∑
k=1

wk[ f (xk)]2

) 1
2

×

(
n∑

k=1

wk

(1 + |xk|)2δ
[ f (xk)wδ(xk)]2

) 1
2

≤ C ‖ f wδ‖∞

(
n∑

k=1

wk

(1 + |xk|)2δ w(xk)

) 1
2

≤ C ‖ f wδ‖∞

⎛⎝∫
R

dx

(1 + |x|)2δ

⎞⎠
1
2

≤ C ‖ f wδ‖∞,

taking into account the assumption δ > 1
2 .

We omit the proof of (19) since it can be easily deduced by standard arguments by (28). In order to prove (20), let 
P̃ ∈Pn−1, as defined in (11).

Then

|en( f )| ≤
∫
R

∣∣( f (x) − P̃ (x))
∣∣ w̃(x)dx

+
∫
R

∣∣Ln+1(w, f − P̃ , x)
∣∣ w̃(x)dx

≤ ‖( f − P̃ )wδ‖∞
∫
R

wρ(x)

wδ(x)
dx + C ‖( f − P̃ )wδ‖∞

≤ C Ẽn−1( f )wδ .

The thesis follows by (11). �
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7. Conclusions

The construction of a fast and reliable product rule for computing integrals involving functions of kind e
−x2− 1

x2 f (x) on 
the whole real line in floating point arithmetic is considered.

It is shown that the convergence properties of the proposed method only rely on the regularity properties of f (x) rather 

than those of f (x)e
− 1

x2 .
The numerical experiments confirm the effectiveness of the proposed approach.
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