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Abstract

We investigate an open XYZ spin-1/2 chain driven out of equilibrium by boundary reservoirs targeting
different spin orientations, aligned along the principal axes of anisotropy. We show that by tuning
local magnetic fields, applied to spins at sites near the boundaries, one can change any nonequilibrium
steady state to a fully uncorrelated Gibbsian state at infinite temperature. This phenomenon occurs for
strong boundary coupling and on a critical manifold in the space of the fields amplitudes. The struc-
ture of this manifold depends on the anisotropy degree of the model and on the parity of the chain size.

1. Introduction

Manipulating a quantum system in nonequilibrium conditions appears nowadays one of the most promising
perspectives for proceeding our exploration of the intrinsic richness of quantum physics and for obtaining an
insight on its potential applications [ 1-3]. In particular, much attention has been devoted to the study of the
nonequilibrium steady state (NESS) in quantum spin chains, coupled to an environment, or a measuring
apparatus. This is described, under Markovianity assumptions [4—6], in the framework of a Lindblad master
equation (LME) for a reduced density matrix, where a unitary evolution, described via Hamiltonian dynamics, is
competing with a Lindblad dissipative action. Under these conditions, quantum spin chains subject to a gradient
evolve towards a NESS, where spin and energy currents set in. In quasi one-dimensional systems, such currents
exhibit quite exceptional properties like scalings, ballisticity and integrability [7—13]. Many of these unexpected
features stem from the fact that the NESS, corresponding to a fixed point of the LME dissipative dynamics with a
gradient applied at the chain boundaries, are not standard Gibbs-states. Moreover, further peculiar regimes appear
when the time lapse between two successive interactions of the quantum chain with the Lindblad reservoir becomes
infinitely small, while the interaction amplitude is properly rescaled. In the framework of projective measurements,
this kind of experimental protocol corresponds to the so-called Zeno effect, that determines how frequent
projective measurements on a quantum system have to be performed in order to freeze it in a given state [ 14, 15].

In this paper we shall rather focus on a Zeno regime for non-projective measurements, that has been found
to describe new counterintuitive scenarios for NESS. In particular, in [17] it was shown that in a boundary
driven XXZ spin chain, for suitable values of the spin anisotropy the NESS is a pure state. We want to point out
the importance of this result in the perspective of engineering dark states, that have the advantage to be more
stable against decoherence, than isolated quantum systems and, therefore, better candidates for technological
applications [3, 16]. Here we investigate how this non projective Zeno regime can be manipulated by the action of
astrictly local magnetic field, whose strength is of the order of the exchange interaction energy of the XYZ
Heisenberg spin chain model. The main result of our investigations is that, by such a local effect, one can kill any
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coherence of the NESS and turn it into a mixed state at infinite temperature. More generally, the von Neumann
entropy of the NESS can be changed from its minimum value to its maximum one just by tuning the local
magnetic field, provided the coupling with the baths is sufficiently strong.

The paper is organized as follows. In section 2 we describe the general properties of the non projective Zeno
setup and the way the spin XYZ chain is coupled to the Lindblad reservoirs. The effect of complete decoherence
induced by the addition of a fine-tuned local magnetic field acting on the spins close to the boundaries is
discussed in sections 3 and 4. A short account of the symmetries characterizing the NESS in the special case of a
XXZ spin chain is reported in section 5. In section 6 we investigate the non-commutativity of the different limits
to be performed in the model and the presence of corresponding hierarchical singularities. We conclude with a
discussion on the perspectives of our investigations (see section 7).

Appendices A-D contain some relevant technical aspects.

2. The model

We study an open chain of N quantum spins, represented by the Hamiltonian operator H, in contact with
boundary reservoirs. The time evolution of the reduced density matrix p is described by a quantum master
equation in the Lindblad form [4-6] (weset 7 = 1)

dp

E:—i[H,p] +F(£L[p] +£R[p]), (1)

where L1 [p], Lg [p]are Lindblad dissipators acting on spins at the left and right boundaries of the chain,
respectively. This is an usual setup for studying transport in quantum spatially extended systems, where the
explicit choice of £1 and Ly, is suggested by the kind of application one has in mind. In this way, one describes an
effective coupling of the chain, or a part of it, with baths or environments. Within the quantum protocol of
repeated interactions, equation (1) describes an exact time evolution of the extended quantum system, provided
the coupling with the Lindblad reservoirs is suitably rescaled [6].

Here we are interested to explore the strong coupling condition, i.e. I" — o0, that corresponds to the so—
called Zeno regime. In this case one can obtain the stationary solution of equation (1) in the form of the
perturbative expansion

(o]

1V
Pness (& ) = é(;) P (&), (2)

where pypes (&, I') is the density matrix of the non equilibrium steady-state and & is a symbol epitomizing the
model parameters (e.g. bulk anisotropy, exchange energy, magnetic field, etc).

Suppose that the stationary solution pyges (&, I") is unique. This fact will be validated further for all our
examples. Moreover, the first term of expansion (2), i.e. py=lim_, o, lim,_, ,p (I, &, 1), satisfies the stationarity
condition Ly [p,] = 0,where L1 = L1 + Ly isthe sum of the Lindblad actionsin (1) . This suggests that p,
can be represented in a factorized form

QN-2
Po=pL @ [(é) +MO(§)) ® pr> (3)

where p; and p;, are the one-site density matrices at the chain boundaries, satisfying £1 [p, ] = 0and
Ly [pr] = 0,and My is a matrix to be determined self-consistently. It is convenient to separate explicitly the

. . . ®N- . . ..
identity matrix ( é) " from M, in such a way that M, is a traceless operator, due to the condition Tr (p,) = 1.

By substituting the perturbative expansion (2) into equation (1) and by equating terms of the order ", one
can easily obtain the recurrence relation

i[H» Pk] = %ELRpk-H) k=0,1,2, (4)
whose general solution has the form
Pry1 = 2/3[1%(1[14: Pk]) +p0 @ Miy1 ® pr, k=0,1,2, - (5)
provided that (for more details see [24]) [H, px] is orthogonal to the kernel of (L),
Pa( s ([ 2 ]) = © (©

where P, denotes the orthogonal projector on £2.
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Notice that, in order to obtain an explicit solution, one has to compute the inverse operator £, that appears
in equation (5).

In summary, equations (3), (5) and (6) define a general perturbative approach, that applies in the Zeno (i.e.,
strong coupling) regime.

We consider the Hamiltonian

H=Hxy;+ VWV, + Wn_1

where

N-1
Hyyy = Z (]xoj‘o'jﬁrl + Jyolol + Aafajzﬂ), (7)
j=1

is the Hamiltonian of an open XYZ Heisenberg spin chain and V;is alocal inhomogeneity field acting on spin / to
be specified later on (see equations (15)—(16). Moreover, we consider Lindblad dissipators, £1 and L, favouring
arelaxation of boundary spins at k = 1 and k = N towards states described by one-site density matrices p; and py,
ie. Ly [p ] = 0and Ly [pr] = 0.In particular, we choose boundary reservoirs that tend to align the spins at the

left and right edges along the directions Iy and Iy, respectively. These directions are identified by the longitudinal
and azimuthal coordinates as follows:

TL,R = (sin O1,r cos PLro sin O sin @y g, cos F)L,R).
Such a setting is achieved by choosing the Lindblad action in the form L [p] = L [p] + Lg [p], where

Lalp) ==={p, SiSa} + Sap Sk, A=LR (8)

_1
2
and
SL= [(cos Oy cos qoL)alx + (cos 61 sin (pL)Gly - (sin eL)U1Z
+ io'lx(—sin §0L) + iG]’V(COS (pL):I/z) ©)
)

SR:[<cos Or cos @y |on + (cos Or sin qaR)af\’, - (sin GR)aﬁ,
+ iaff,(—sin (pR) + ic} (cos (pR)]/Z. (10)

In the absence of the unitary term in (1), the boundary spins relax with a characteristic time I" ! to specific states
described via the one-site density matrices

pL=%(1+TLa), (11)
P =%(1+TR3N). (12)

The condition £ 4 [p,] = 0 follows from definition (8), while the relations S4 S f= prand(S )2 = (S L)z =0
can be easily checked.

In analogy with [18], it can be easily shown that, for the chosen boundary dissipation setup described by
equations (8)—(10), the NESS is unique. By applying the perturbative approach in the Zeno regime, one finds
that the unknown matrices My (A4) are fully determined by secular conditions (6). As shown in appendix A, for
the specific choice (8) of the Lindblad operators, they are equivalent to the requirement of a null partial trace

Ton([Hop]) =0, k=0,1,2, (13)

We want to point out that the computation of the full set of matrices {Mj (4) } forany A # 0 is quitea
nontrivial task. However, in the Zeno limit, I" — oo, we are just interested in computing the zeroth and the first
order contributions My, M, which can be completely determined by solving the set of secular equations (13) for
k=0,1,2.

3. Manipulations of NESS by non-uniform external fields

The properties of the model introduced in the previous section have been widely investigated for V;=0and
@ = /2 in [24]. Here we are interested in studying how the properties of the NESS can be modified when V;is
an additional local field, that corrupts the homogeneity of the XYZ spin chain.

3
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Notice first that alocal field applied to the boundary spins at positions k=1 and k= N does not affect the
strong coupling limit py=lim ., pygss (I'). On the other hand, applying alocal field to the spins at positions
k=2and k=N — 1 can modify p, in a nontrivial way. The Hamiltonian reads

H=Hxy;+ V,+ Vn_p, (14)

where
Vs = h; = hoo3 + hyof + hof, (15)
VN-1= §6N-1= g, 081 + &y_10] + &,08-1- (16)

Carrying out the procedure outlined in the previous section, we can find the form of the density matrix of the
NESS in the Zeno regime, p,,. This is a function of the angles 6y, ¢, Or, @y, of the anisotropy parameter A and of

thelocal fields 1, g.One can argue that, in general, the NESS should be an entangled state, depending in a
nontrivial way on the local fields. Due to the boundary drive, the NESS typically exhibits nonzero currents
(magnetization current, heat current, etc), irrespectively of the presence of the local fields. However, in the Zeno
limit, there are critical values of the local fields for which a complete decoherence of the NESS occurs.

More precisely, we formulate our results under the following boundary condition assumptions:

o targeted boundary polarizations are neither collinear nor anti-collinear (TL + iTR);

o atleast one of the polarizations (e.g. the left targeted polarization) is directed along one of the anisotropy axis
X, Y, orz

o the correspondinglocal fields (i atsite 2 and g atsite N — 1) are collinear to the respective targeted boundary

polarizations /i = hTL,§ = gTR.

Then, there exists a zero-dimensional or a one-dimensional critical manifold in the h,g—plane (h,, g, ), such
that, in the Zeno limit, the NESS on this manifold becomes

®N-2
i) =P @ ((é) J ® i (17)

Notice that this a peculiar state: apart the frozen boundary spins, all the internal spins are at infinite temperature.
Indeed, tracing out the boundary spins, one obtains the Gibbs state at infinite temperature

Trl,N(pL ® ((é) ®N_Z) ® pR] = (é) ®N_2- (18)

Also notice that on the critical manifold the von Neumann entropy of the NESS, Synxg = =Tt (pypss 108, Pnpss)s
in the Zeno limit attains its maximum value given by

Pness (4)

lim max (—Tr (pNESS logszESS)) =N-2,

I'->

since p; , py are pure states. In the following, we also refer to state (17) as the state of maximal decoherence.

We have performed explicit calculations (see below) that confirm the above statement for different spin
chains up to N= 8. The particular form of the NESS assumed in these cases, however, strongly suggests that the
above results maybe of general validity and the critical manifold (h,,, g_,) independent on N.

The critical manifold has been fully identified for the following cases.

o XYZchain: ], # ], # A. Iftheleft, TL, and the right, TR, polarizations point in directions of different principal
axes

LL=ew h=ey a=p a,f=X,Y,Z, (19)

whereey = (1, 0, 0), ey = (0, 1, 0), ez = (0, 0, 1), then for chains with an even number, N, of spins, the
manifold (h, g, ) consists of three critical points: P, = (=2, 0), Py = (0, =2J3)and B, s = (—J,, —Jp). For
odd N, the critical point P, 4 is missing and the critical manifold reduces only to the points P,, P, above. If
only one of the two boundary driving points in the direction of a principal axis, the critical manifold reduces
to a single point, either P, or P, for both even and odd N.
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Figure 1. Contour plot of the von Neumann entropy Syng in the Zeno limit, as a function of the local fields for an open XYZ chain of
N =4 spins with exchange parameters ], = 1.5], = 0.8, A = 2. Green, white and red dots denote the critical points Py = (=2Jx, 0),
Py = (=Jx, —=4), P; = (0, —24), where the VNE reaches its maximum value Syng = 2 and the NESS becomes a completely mixed
state, respectively. Other parameters are fixed asl|, = ey, Ir = ez. Green, yellow, pink, orange, brown, red and blue contour lines refer
to Syng values:1, 1.2, 1.4, 1.6, 1.8, 1.9, 1.95, respectively. Notice the presence of the narrow corridors around Py and P, in which the
deviation, Synxg — 2, of the VNE from its maximum value becomes very small.

o XXZchain: ], = ], = ] # A.Ifboth TL and TR lay onto the XY-plane, we can parametrize the targeted
boundary polarizations via a twisting angle in the XY-plane p as 6, = 6, = g, ¢, = @, ¢, = 0, corresponding

to TL = (cos ¢, sin ¢, 0) and TR = (1, 0, 0). The critical fields are aligned parallel to the targeted boundary

magnetization, i.e. P_{CI = (he cos @, her sin ¢, 0), g = (g, 0, 0),and we find the one-dimensional critical
manifold

he + o =2], hee # —J. (20)

Notice that this expression is independent of system size N, of the anisotropy A and of the twisting angle . If
one of the two targeted polarizations points out of the XY-plane, the critical manifold becomes zero-
dimensional and consists of one, two or three critical points (depending on the polarization direction and on
Nbeing even or odd) as discussed for the full anisotropic case.

e XXXchain: ], = ], = A = ]. The critical manifold for arbitrary non-collinear boundary drivings is one-
dimensional and it is given by equation (20).

The above statements are illustrated in figures 1 and 2 for the case of a chain of N = 4 spins. In particular, in
figure 1 we show a contour plot of the VNE surface as a function of the applied fields for the XYZ case with left
and right boundary polarizations fixed along the X and Z directions, respectively. The three critical points
P, P;, Pz mentioned above correspond to the green, red, and white dots shown in the top panel of the figure.
Notice the presence of narrow corridors (blue shaded) around the Pyand P critical points, inside which the
VNE keeps very close to the maximal value Syng = 2 but never reach it, except at the critical points. This is quite
different from the partially anisotropic XXZ case shown in figure 2, where the existence of the critical line (blue
line) is quite evident.

Similar results are found also for longer chains. In particular, in figure 3 we show a cut of the VNE surface for
a partially anisotropic XXZ chain of N =5 spins. For the sake of simplicity we have set ], = J, = 1and considered
the cutat & = 0 so that the VNE of the NESS, in the Zeno limit, becomes a function of g only. We see that for
g = g, = —2,the VNE reaches the maximum value N — 2 indicating that the corresponding NESS has the
form (17).

As to the dependence of the critical manifold on parity of N, we find that while for odd sizes N=3, 5,7 and
XYZ Hamiltonian (see figure 4, top panel for an illustration) there are only two critical points (the critical point
P, p is missing), for even sizes N = 4, 6, 8 cases there are three critical points. These observations strongly suggest
aqualitative difference between even and odd N in the model, which is manifested in other NESS properties as
well, see e.g. (22) and (23).

Itis worth to note here that for h = g = —J, i.e. the case excluded in (20), the NESS behaves non-analytically
inthe Zeno limit I” — 0. As we are going to discuss in section 6, this non-analyticity is a consequence of the
non-commutativity of the limits I - coandh = g - —J.
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4 3 -2 -1 0 1
hy
Figure 2. Contour plot of Syxg in the Zeno limit, as a function of the local fields for the XXZ chain with N'= 4 spins. Parameters are

Je=J,=]=15,4 =1, = —ey,lr = ex. The green, yellow, pink, orange, brown, red, blue contour lines refer to Syg values:
0.6, 0.9, 1.2, 1.5, 1.8, 1.9, 2, respectively. The blue contour is in full overlap with the critical line hy + g, = —2J = —3.

=25 -2.0 -1.5 -1.0 -0.5 0.0g

Figure 3. von Neumann entropy of the NESS Syng = —Tr (pygss 10g,0xgss) in the Zeno limit, as a function of local field g,
for different values of spin exchange anisotropy. Thick, thin, dashed and dotted curves correspond to 4 = 0.9239, 0.6,
0.3827, 0.3, respectively. For g = —2 the NESS is a completely mixed state for which VNE reaches its upper limit.
Parameters: h = 0, N=15, 60, = 6 = %, QL= —71'/2, @r = 0.

Conversely, for any finite boundary coupling I', i.e. far from the Zeno limit, the NESS is analytic for arbitrary
amplitudes of the local fields (the first order correction to the NESS for large I is proportional to I"~! as shown in
the appendix C). This is also seen from figure 5 where the VNE of the NESS is reported as a function of the local
field g for different values of the boundary coupling I” and same parameters as in figure 3 (see curve A = 0.6).
Notice that the thin black line obtained for I = 10, is already in full overlap with the Zeno limiting curve
depicted in figure 3 for A = 0.6. Also note the persistence of the peak at g = —2 even for relatively small values of
I" away from the Zeno limit.

Similar behaviors are observed for different choices of boundary polarizations and of local fields (not shown
for brevity), thus opening the possibility to detect the signature of the above phenomena in real experiments. In
this respect we remark that the near-boundary magnetic field / and the anisotropy A as suitable parameters for
controlling the dissipative state of the system in a NESS. Thus, if g= 0, the NESS can be made a pure state by

tuning the anisotropy A to a specific value A* (¢, N). For instance, we find that for g=0and
AL (n/2,5) =] % + % the NESS is a pure state [25], while for g = —2, the NESS in the bulk becomes an

infinite temperature state (17), i.e. a maximally mixed state. Thus, by suitably tuning the anisotropy and the local
magnetic field one can pass from minimally mixed (pure) NESS state to a maximally mixed one.

It should be emphasized at this point that general thermodynamic equilibrium quantities, e.g. the
temperature, are not well-defined for a generic NESS. In fact, pure states allowed by Liouvillian dynamics are not
ground states of the Hamiltonian, but are characterized by a property of being common eigenvectors of a
modified Hamiltonian and of all Lindblad operators [16, 21]. Likewise, an absence of currents in the NESS does
not necessarily imply a thermalization of the system: in fact also for fully matching boundary conditions the
NESS is not a Gibbs state at some temperature, so that correlation functions remain far from those of an
equilibrium system. From this point of view, the decoherence effect described in present paper can be viewed as a

6
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SvNE

SvNE

Figure 4. Cuts of the von Neumann entropy surface of the NESS in the Zeno limit, as function of critical field for the XYZ chains with
N=5 (top panel) and N = 6 (bottom panel) spins. The red, blue and black lines refer to cuts made at g, =0, hx=0and g, = -2,
respectively. Other parameters are fixed as in figure 1. Notice that for N odd the VNE reaches its maximum value N — 2 only at points
Py = (-2J;, 0) and P; = (0, —2A4) while for N even the maximum is reached also at the point Py, = (—J;, —4).

2.5

2.0

1.0 1 1 1 )
=25 -2.0 -1.5 -1.0 -0.5

g

Figure 5. von Neumann entropy of the NESS as function of the local field gand for different values of the coupling I'". Other parameters
arefixedas: N=5,4 =06, =], = 1, h=0,0,=0y = %, QL= —ﬂ/2, @g = 0. The thin (black), red (dashed), dotted (green),
dotted—dashed (blue) curves refer to values I = 10%, I = 102, I' = 50, I" = 25, respectively.

reaction of a nonequilibrium system on a local perturbation (the local magnetic field): as is well-known, a local
perturbation in nonequilibrium can lead to global changes of a steady state.

On the other hand, a fully mixed state as such has appeared already in the context of driven spin chains: if
both Lindblad boundary reservoirs target trivial states with zero polarization (p; = p; = I/2), the NESSis

maximally mixed pypes = ( é)

boundary coupling. The respective NESS is often being referred to as a state with infinite temperature [12]. Note
that our case is drastically different from the latter: the maximally mixed state (17) appears only in the bulk, after
tracing the boundary spins, in a system with generically strong boundary gradients, and under strong boundary
coupling.

A few more remarks are in order: (i) the amplitudes of the critical local fields scale with the amplitude of the
Hamiltonian exchange interaction, i.e. b, — yhe if Hyxz = yHxxz (this is a consequence of the linearity of the
recurrence relations (5) and (13)); (ii) the NESS may take the form (17) only in the Zeno limit /" — oo;in fact,
the first order correction to the NESS is proportional to I"~! and does not vanish (see appendix C); the fully
decoherent state (17) is intrinsic to nonequilibrium conditions and, strikingly enough, it persists even for nearly
matching or fully matching boundary driving, as we are going to discuss in section 4.

®N, which is a trivial solution of the steady Lindblad equation for any value of

7
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SvnE
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——————————

-10 -8 -6 -4 -2 28

Figure 6. von Neumann entropy of the NESS Syng = —Tr (pypss 10g,Pnpss) in the Zeno limit, as function of local field g, for XYZ
model with matching boundary driving I}, = Iz = (0, 0, 1), for different values of spin exchange anisotropy difference Iy = k- Thin,
thick, dashed and dotted curves correspond to J, — J, = 0.02, 0.3, 0.6, 1.2.Parameters: J, = 1.5, 4 = 2,N=4.

We want to conclude this section by pointing out that a fully analytic treatment of the problem for arbitrary
large values of N should encounter serious technical difficulties. The main one concerns the solution of the
consistency relations determined by the secular conditions (6) for the perturbative expansion (2), with the zero-
order term given by (17). Moreover, finding the first order correction to NESS, proportional to I"~!, amounts to
solve a system of equations, whose number grows exponentially with N. With Matematica we were able to solve
that system of equations analytically for N < 5 and numericallyupto N < 7.

4. Matching and quasi-matching boundary drivings

In the previous section we have discussed the case where the complete alignment of the boundary Lindblad baths
was excluded. In this section we want to analyze the specific case where they are aligned (or quasi-aligned) in the
same direction on the XY-plane.

A complete alignment, i.e. Iy = Iy, corresponds to a perfect matching between the left and right boundary
Lindblad baths, that yields a total absence of boundary gradients, so that any current of the NESS vanishes. Also
in this case the Gibbs state at infinite temperature can be achieved by suitably tuning the values of the near-
boundary fields, but for even-sized chains, only.

Let us first illustrate this finding for the XYZ case. With no loss of generality, we can set
TL = TR = ez = (0, 0, 1). The behavior of the driven chain with local fields depends drastically on whether the
size of the chain Nis an even or an odd number: in the former case we find the critical one-dimensional
manifold, defined by

hcr + 84 = =24, hcr ?é —A4; (21)

in the latter case N = 3, 5,.., we do not find any critical point. This result has been found explicitly for

3 < N < 6, but, since it depends on the effect of local perturbations, it seems reasonable to conjecture that it
should hold for larger finite values of N. This result holds as long as the Heisenberg exchange interaction in the
plane perpendicular to the targeted direction (the XY-plane in this example) is anisotropic, i.e. J, # J,.
Conversely, for ], = J,, the infinite temperature state (17) cannot be reached for any value of the local fields h and
& There is a delicate point to be taken into account when we fix s = h,, and we perform thelimit J, — J,i.e. we

reestablish the model isotropy: for complete alignment, Iy = Iy = ez, the NESSis singular. The way this
singularity sets in is shown in figure 6. In the limit when the anisotropy in the direction transversal to the targeted
direction becomes infinitesimally small|J, — J.| — 0 the NESS is a pure state with minimal possible Syng — 0
for any amplitude of the local field values, except at a critical point where Syng is maximal.

The noncommutativity of similar limits and the dependence of the NESS properties on the parity of system
size N'in Lindblad-driven Heisenberg chains, have been observed in previous studies [22, 23]. Also in these cases,
the origin of noncommutativity is a consequence of global symmetries of the NESS, that, for our model, are
discussed in section 5.

In the isotropic case, as long as the local fields are parallel to the targeted spin polarization, the NESS does not
depend on them: it is a trivial factorized homogeneous state with a maximal polarization matching the
boundaries, i.e. pyrss = (pp) ®~. This can be easily verified by a straightforward calculation.

Another kind of NESS singularity can be found in the partially anisotropic case, with quasi-matching
boundary driving in the XYisotropy plane. As a mismatch parameter we inroduce the angular difference
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Figure 7. von Neumann entropy of an internal block, (sites1,.., N — 1), for N=5 (panel a), and N =4 (panel b), versus the local field g,
for different . Parameters: A = 0.3. Panel (a): thick and dotted curve correspond to ¢ = #z/7 and ¢ = 7/30 respectively. Panel (b):
thick and dotted curve correspond to g = #/7 and ¢ = 0 respectively.

between the targeted polarizations at the left and the right boundaries, ¢ = ¢; — @y.Forg = 0 andin the
absence of local fields, we have found that the spin polarization at each site of the chain is parallel to the targeted
polarization; on the other hand, even in the Zeno limit, it does not saturate to the value imposed at the
boundaries j = 1, N.In general, this is not an equilibrium Gibbs state, even in the Zeno limit and for any finite
boundary coupling /. However, if the near-boundary fields are switched on and tuned to their critical values, the
coherence of this state is destroyed and the NESS becomes an infinite temperature Gibbs state. On the other
hand, we have found that there is a relevant difference between quasi-matching and mismatching conditions for
even and odd values of N (notice that the isotropic and the free fermion cases,A = 1,4 = 0, are special and
should be considered separately). Our results can be summarized as follows:

o Nodd. We can fix the boundary mismatch by choosing ¢, = ¢, ¢ = 0, theleftlocal field h = 0, and study
the NESS as a function of the right local field g. At g = g = —2,the NESS becomes trivial (maximally
mixed); however, as shown in panel (a) of figure 7, for small mismatch we find a singular behavior of the
NESS close to g = g_.. Analytic calculations (not reported here) show that for ¢ = 0 there is a singularity at
g = g..»asaresult of the non-commutativity of thelimits¢p — Oandg — g_.

e Neven. Unlike the previous case, the NESS is analytic for small and zero mismatch (see panel (b) of figure 7).
For g = g the NESS becomes trivial (maximally mixed), also for ¢ = 0.

Finally, let us comment about two special cases, for ‘equilibrium’ boundary driving conditions, i.e. ¢, = @y.
For A = 0 (free fermion case), the NESS is a fully mixed state (apart from the boundaries) for all values of g. For
A = 1 (isotropic Heisenberg Hamiltonian), the NESS is a trivial factorized state, fully polarized along the axis of
the boundary driving, for any value of g. Both statements can be straightforwardly verified.

NESS singularities, onset of which can be recognized in figures 6 and 7(a), appear because of non-
commutativity of limits. Noncommutativity of various limits, implying singularities and nonergodicity, which
are due to global symmetries is a well-established phenomenon and occurs already in Kubo linear response
theory describing fluctuations of a thermalized background. In nonequilibrium open quantum systems,
however, the presence of NESS symmetries at special value of parameters is manifested much strongly, due to
richer phase space which includes both bulk parameters (such as anisotropy and external field amplitudes) and
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boundary parameters (such as coupling strength). As a result, noncommutativity of the limits and consequent

NESS singularities seems to be a rather common NESS feature. In the next two sections we reveal some of NESS
symmetries and show that the respective singularities, connected with them, can be observed already in a finite

system consisting of a few qubits.

5. Symmetries of NESS

Symmetries of the LME are powerful tools that reveal general, system size-independent properties of the
Liouvillean dynamics (1). In the case of multiple steady states, symmetry based analysis allows one to predict
different basins of attraction of the density matrix for different initial conditions [ 19]. For a unique steady state,
symmetry analysis provides a qualitative description of the Liouvillean spectrum [20] or the formulation of
selection rules for steady state spin and heat currents [22]. It is instructive to list several general NESS symmetries
valid for our setup. We restrict to XXZ Hamiltonian with J, = J, = 1, and perpendicular targeted polarizations
in the XY-plane, i.e. TL = (0, -1, 0), TR = (1, 0, 0). The LME has a symmetry, depending on parity of N, which
connects the NESS for positive and negative A. Let us denote by pypes (N, 4, h, g, I') the nonequilibrium steady
state solution of the LME (see (1) and (8) ) for the Hamiltonian (B.1) reported in appendix B. It is known that
this NESS is unique [18] for any set of its parameters; moreover, one can easily check that

Press (N> =4, b, g, I) = Up{pes (N, A, by g, T, ) U (22)
Prpss (N> =4, b, g, T) = 2, Uplpss (N, A, by g, T UZ,. (23)

These relations hold for even and odd values of N, respectively; here X, = (¢7) ®~,U = Hn odd ® o/ and the
asterisk on the rhs of both equations denotes complex conjugation in the basis where ¢* is diagonal.

Equations (22) and (23) hold for any value of the local fields 1, ¢ and for any coupling I', including the Zeno
limitI" — oo. Due to properties (22) and (23), we can restrict to the case A > 0 further on. For g = —h,

Pugss (N> 4, h, g, I') has the automorphic symmetry

pNESS(N) A) h) _h) F)
:Z‘x UrOtRpNESS (N) A) h) _h) F)RUr-;th) (24)

whereR(A ® B ® .. ® C) =(C ® ... ® B ® A)Risaleft-rightreflection, U, = diag(1, )N isa
rotation in XY plane, U 0, Ut = 6/, Ui Ut = —67,and =, = (6*) ®¥.

6. Non-commutativity of the limits " - coandh — h_;,A — A_,. Hierarchical

singularities

crit > crit*

Here we consider the XXZ Hamiltonian and a perpendicular targeted polarizations in the XY-plane
I, = (0, -1, 0),Ig = (1, 0, 0); the near-boundary fields are taken on the critical manifold, i.e.h + g = —2.For
N =3, 5and A > 0 we have found the noncommutativity conditon

lim limpypeg (N, b, —=h — 2, A, )

I'-ooh—1

#lim limpgpe (N, b, —h — 2, A, ). (25)
h—1I>o0
Making use of (17), the rhs of (25) can be rewritten

1 ®N-2
lim limpype(N, h, —=h — 2, A, T) = pL(—I) PR (26)
h—>1TI'->00 2
For the simplest nontrivial case N = 3, the validity of these noncommutativity relations is verified by the
calculations reported in appendix B (see (B.4). On top of (25), we find an additional singularity at the isotropic
pointA = 1forN > 3

lim lim lim, N, h,—-h—-2,A,T
I"—»coA—»lh—»leESS( )

# lim lim limp o (N, b, =h — 2, A, T). (27)
I'->oc0h—>14-1
Due to the symmetry conditions (22) and (23), the singularity is present also for A = —1. Equations (25) and
(27) entail the presence in our model of a hierarchical singularity. Namely, the full parameter space of a model
is a four-dimensional one and consists of the parameters{A, '\, h, g}. Asa consequence of (25), a NESS is
singular on a critical one-dimensional manifold {any 4, I 1=0,h=-1, g = —1}. According to (27),
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further singularities appear for two special values of the anisotropy, inside the critical manifold {A = +1,
I''=0, h = -1, g = —1}, engendering a zero-dimensional submanifold of the critical manifold. Thus, a
hierarchy of singularities is formed. It is quite remarkable that such hierarchical singularities emerge without
performing the thermodynamiclimit N — oo. In fact, as shown in appendix D, they can be explicitly detected
already for N = 4. For N = 5 we have found other singular manifolds, parametrized by h, g, and A. For the sake of
space, details of this case will be reported in a future publication.

The appearance of the singularityath — —1, ¢ = —1isaconsequence of the additional symmetry (24) at
this point. By direct inspection of the analytic formulae obtained for N = 3, 4, 5, we can guess the form of the
limit statelim_, o, limy,_, ; lim 4, as a fully factorized one, namely

lim lim limpygeg (N, h, A, T)
I'-ooh—-1A-1
®N-2
:pL(ia" - %ay + %1) Pr- (28)
Conversely, for genericA and odd N > 5, the limit state lim_, o, limj,_, 3pypss (N, b, A, I') does not take a
factorized form. Notice also that from making use of equations (22) and (23), we readily obtain also the NESS
limitstate forA — —1:

lim lim lim N, h, A, T
I'-ocoh——14—-1 pNESS( )

N-1
=p H ® (H)’%( (=1)No* + (;)’) + %I)[)R. (29)
=2

7. Conclusion

In this paper we extensively analyzed the properties of the NESS of open Heisenberg spin chains, subject to the
action of LME at their boundaries and of perturbing magnetic fields at the near-boundary sites. The setup we
deal with operates in the Zeno regime, i.e. in the strong coupling limit, I — +oo (see equation (1) ). Most of our
analytic and numeric calculations have been performed for relatively small values of the chain size N. On the
other hand, as a consequence of the local nature of the reservoirs and of the perturbing magnetic fields, we
conjecture that many of these results could be extended to large finite values of N: the delicate question of how
they might be modified in the thermodynamic limit is still open. At the present level of standard computational
power, the strategy of performing large scale calculations to get any inference on such a limit is impractical,
because the number of equations to be solved grows exponentially with N.

Despite all of these limitations, the main outcome of our study is quite unexpected: by tuning the near-
boundary magnetic fields we can manipulate the NESS, making it pass from a dark pure state (for a suitable
choice of the value of the anisotropy parameter A), to a fully uncorrelated mixed state at infinite temperature.

We have also discussed how this general scenario emerges in the anisotropic, partially anisotropic and
isotropic cases. The influence of different alignment conditions imposed by the Lindblad reservoirs has been
extensively explored, together with the symmetries of the NESS and their importance for engendering
hierarchical singularities due to the noncommutativity of different limits, performed on the model parameters.

A physically relevant point in our discussion concerns the possibility of performing such a manipulation of
the NESS also for large but finite values of I': numerical investigations confirm this expectation, thus opening
interesting perspectives of experimental investigations.
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Appendix A. Inverse of the Lindblad dissipators and secular conditions

L1 and Ly are linear super-operators acting on a matrix p as defined by equations (9) and (10). In our case, each

super-operator act locally on a single qubit only. The eigen-basis {y' } a—) f Lr by = Ao by is
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Pr = 2pg, 2pg — I, —sin pg6* + cos @07, cos Og (cos pgo* + sin gpc”) — sin g o7}, with the respective
eigenvalues{i,} = {0, —1, —%, —%}. Here Iisa 2 X 2 unit matrix, 6%, ¢/, ¢° are Pauli matrices, and py is

targeted spin opientation at the right boundary. Analogously, the eigen-basis and eigenvalues of the
eigenproblem £L¢Lﬂ = y/}q&Lﬂ arepy = {2p;, 2p; — I, —sin @ 6™ + cos @ 67, cos O, (cos ¢ 6* + sin ¢, ¢6”)

—sin 0y 6%} and {u ﬁ} = {0, -1, —%, —%}, where p; is the targeted spin opientation at the left boundary. Since
the bases ¢y and ¢, are complete, any matrix Facting in the appropriate Hilbert space is expanded as
4 4
F=YY¢/ ® Fpu ® 4, (A1)
a=1p=1

where Fy, are2V~% x 2V~? matrices. Indeed, let us introduce complementary bases y , yy asyq p = {1/2,

prr — I, (=sin gy go* + cos @y z67) /2, (cos O,k (cos @y g™ + sin ¢ g6”) — sin Oy o) /2}, trace-ortho-
normal to the ¢, ¢p; respectively, Tr (yf ¢y’ ) = 8y Tr (y/ gl)Lﬁ ) = 8, Then, the coefficients of the expansion
(A.1) aregiven by Fy, = TrI)N((y/Lﬁ ® I®-NF(I®' ® ¥ )). On the other hand, in terms of the expansion
(A.1) the superoperator inverse (L + Lg)™!is simply

-1 1
(EL + ER) F= Z—¢Lﬂ ® Fpa ® oy (A.2)
ap Aa + Hp

The above sum contains a singular term witha = # = 1,because 4; + y; = 0. To eliminate the singularity, one
must require §; = Try yF = 0, which generates the secular conditions (13).

Appendix B. Analytic treatment of N = 3 case

Here we prove the property (17) for N = 3, and demonstrate a singularity of the NESS at a fixed value of local
fields b, g. Note that we treat case N = 3 for simplicity and for demonstration purposes only; Also for simplicity,
we consider XXZ Hamiltonian and perpendicular targeted polarizations in XY plane I, = (0, —1, 0),

TR = (1) 0, 0)>

H = Hxx, — hGZy + gG;\C]_l. (B.1)

Wehavep, =p, ® (é + Mo) ® prandp, = 2L (i[H, py]) + pp ® My ® pg,withp;, p givenby

(11),(12),and My = Yo o M, = Zﬂkok, where{c*} 2:1 is a set of Pauli matrices, and a, f§; are unknowns.
Secular conditions (13) at zero-th order k = 0 give a set of three equations

(h+ 1Da3=0,
(g+ l)(l3=0)
g+ Da+ Q1+ ha =0,

from which the p, cannot be completely determined. The secular conditions (13) for k =1 provide missing
relations

—(h+ 1) — 2(2A2 + 1)0:1 +24=0,
~(g+ 1)p; - 2(2% +1)a, - 24 =0,
g+ D+ (h+1)p —4a;=0

from which p,, can be readily found. Namely, ifh # —1,g # —1, then

a3:O)
Ag+h+2
a=@g+1) 8 ) ;
(2A2 + 1)(g2+ 2¢+ h? +2h+2)
a=(=h—1) Ag+h+2) (B.2)

(242 + 1) (g2 + 26+ 1 + 20 +2)

Observables of the system change nontrivially with i1, g. In particular, the current-like two-point correlation
function j’ = 2(6y 6]’ — 6/ 6, )xgss has the form
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A(g+ h+2)
(242 +1)(g2+ 2+ P+ 2h +2)

Jh =4m=4(g+1) (B.3)

Consequently, manipulating the /1, g, one can change the sign of the above correlation or make it vanish for
allA, for2 + g + h = 0. Moreover, forh = h,, = =2 — g,allay = 0,see (B.2),and we recover (17).If,

however,h = —1, g = —1, then the solution for a reads
asz = 0
A
a=—a; = , (B.4)
T

manifesting a singularity of the NESS at the pointh = g = —1foranynonzero A # 0, see also section 6.

Appendix C. Corrections to (17) of the order1/I"

Here we show that the perturbation theory (5) predicts M; # 0 for arbitrarylocal fields g, h,if My = 0. We
restrict to XXZ Hamiltonian J, = ], = 1, and perpendicular boundary twisting in the XY-plane, I = (0, =1, 0),
Ix = (1,0, 0).

Letussetp, = p ® ( %I ) o ® py as predicted by (17) for critical values of the local field. We then

obtain, in the zeroth order of perturbation

Q= i[H, po] = i[hl,z + hN—l,Nr ﬂo]

1
= N2 (KXZ @ I® @ pp—p. @ I® Q KZY)> (C.1)
where K5 = —46% @ ¢’ + 6/ ® 0% andhyy, is thelocal Hamiltonian term, hy 11 = 6 055, + o 6y +

Aoy 6f,. The secular conditions Ty Q = 0 are trivially satisfied. Noting that Q has the property%ELR Q=-Q,
we obtain from (4) and (5) the first order correction to p,

p=-Q+p & M ® py.

Let usassume that M} = 0. Then, in the second order of perturbation theory, we have

i[ H, p]=-ilH, Ql

—i[hlz + hys + hod + go{_1 + hn_an-1 + hnoins Q]- (C.2)
After some calculations we obtain

i[H, P1] =R + const

XA(-1 ® ¢’ ® IO ® py+p, ® [ ® o* @ ), (C.3)

where the unwanted secular terms are written out explicitly, and T yR = 0. The unwanted terms proportional
toA donotdependonh, g. Forany A # 0 the secular conditions Tr i [H, p;] = 0 cannot be satisfied. This
contradiction shows that M} # 0 forany A # 0.

Appendix D. Hierachical singularity in the NESS for N=4

Here we restrict to XXZ Hamiltonian with J, = J, = 1, and perpendicular boundary twisting in the XY-plane

TL = (0, -1, 0), TR = (1, 0, 0). For N=4 we have 30 equations to satisfy from the secular conditions (13) for
k=0,1, and the set of variables {ay; }, {f,;} to determine the matrices My = ZZ:‘:O aok ® o, My = B

X ® o'.The ‘prime’ in the sum denotes theabsence of the terms ay, Pyo since the matrices M are traceless.
The matrices {6, 6', 62, 6°} ={I, 6%, 67, 67} are unit matrix and Pauli matrices. We do not list here all 30
equations but just their solutions for different values of parameters, obtained using Matematica. For

g = —h — 2 wehave, in agreement with (17), M, = 0, while, out of 15 coefficients {f3;;}, only six are determined,
namely
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Ps=Pn=1,
1
Pos = P = 1+_h’
Pr=p=0, (D.1)

while other $; (and therefore, the M, ) have to be determined at the next order k = 2 of the perturbation theory.
From (D.1) itis clear that the case1 + h = 0 hasto be considered separately. In fact, forh = ¢ = —1 we obtaina
different solution: M, = 0, while the coefficients {,;} are

AZ
Pz =P = 112
A
Pz =P = 1
Bo1=Poy = Pro=Pp =0 (D.2)
thusath = g = —1we havea singularity in the first order of perturbative expansion, in M;. On the other hand,

(D.2) for A = 1thereis asingularity in M;: we have to treat this case separately. For A = 1we find

®:2 . . . .
M, = (lo-x - %ay + %I) *, in agreement with (28), while the set of 8. is

3
1

Pos = Pz = 2’
P =P =1,
P31 = Pps = 0.
SoatA = 1, h = g = —1wehaveasingularity in the zeroth order of the perturbative expansion, at the level of

M. Summarizing, for N = 4 we have M, = 0 on the two-dimensional manifold of the phase space characterized
. . ®:2
by{Aarbitrary, g = —h — 2}, exceptatthe point{A = 1, h = g = —1}, where M, = (%6" - %U" + %I) .On

aone-dimensional submanifold{A # 1, g = h = —1} thereisasingularity in M;.
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