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Abstract
We investigate an openXYZ spin-1 2 chain driven out of equilibriumby boundary reservoirs targeting
different spin orientations, aligned along the principal axes of anisotropy.We show that by tuning
localmagnetic fields, applied to spins at sites near the boundaries, one can change any nonequilibrium
steady state to a fully uncorrelatedGibbsian state at infinite temperature. This phenomenon occurs for
strong boundary coupling and on a criticalmanifold in the space of the fields amplitudes. The struc-
ture of thismanifold depends on the anisotropy degree of themodel and on the parity of the chain size.

1. Introduction

Manipulating a quantum system innonequilibriumconditions appears nowadaysone of themost promising
perspectives for proceeding our explorationof the intrinsic richness of quantumphysics and for obtaining an
insight on its potential applications [1–3]. In particular,much attentionhas been devoted to the studyof the
nonequilibrium steady state (NESS) in quantumspin chains, coupled to an environment, or ameasuring
apparatus. This is described, underMarkovianity assumptions [4–6], in the framework of a Lindbladmaster
equation (LME) for a reduceddensitymatrix,where a unitary evolution, described viaHamiltoniandynamics, is
competingwith a Lindbladdissipative action.Under these conditions, quantumspin chains subject to a gradient
evolve towards aNESS,where spin and energy currents set in. Inquasi one-dimensional systems, such currents
exhibit quite exceptional properties like scalings, ballisticity and integrability [7–13].Many of these unexpected
features stem from the fact that theNESS, corresponding to afixedpoint of the LMEdissipative dynamicswith a
gradient applied at the chainboundaries, are not standardGibbs-states.Moreover, further peculiar regimes appear
when the time lapse between two successive interactions of the quantumchainwith the Lindblad reservoir becomes
infinitely small, while the interaction amplitude is properly rescaled. In the framework of projectivemeasurements,
this kindof experimental protocol corresponds to the so-calledZenoeffect, that determines how frequent
projectivemeasurements on a quantum systemhave to beperformed inorder to freeze it in a given state [14, 15].

In this paperwe shall rather focus on a Zeno regime for non-projectivemeasurements, that has been found
to describe new counterintuitive scenarios forNESS. In particular, in [17] it was shown that in a boundary
drivenXXZ spin chain, for suitable values of the spin anisotropy theNESS is a pure state.Wewant to point out
the importance of this result in the perspective of engineering dark states, that have the advantage to bemore
stable against decoherence, than isolated quantum systems and, therefore, better candidates for technological
applications [3, 16].Herewe investigate how this non projectiveZeno regime can bemanipulated by the action of
a strictly localmagnetic field, whose strength is of the order of the exchange interaction energy of theXYZ
Heisenberg spin chainmodel. Themain result of our investigations is that, by such a local effect, one can kill any
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coherence of theNESS and turn it into amixed state at infinite temperature.More generally, the vonNeumann
entropy of theNESS can be changed from itsminimumvalue to itsmaximumone just by tuning the local
magnetic field, provided the couplingwith the baths is sufficiently strong.

The paper is organized as follows. In section 2we describe the general properties of the non projectiveZeno
setup and theway the spinXYZ chain is coupled to the Lindblad reservoirs. The effect of complete decoherence
induced by the addition of afine-tuned localmagnetic field acting on the spins close to the boundaries is
discussed in sections 3 and 4. A short account of the symmetries characterizing theNESS in the special case of a
XXZ spin chain is reported in section 5. In section 6we investigate the non-commutativity of the different limits
to be performed in themodel and the presence of corresponding hierarchical singularities.We concludewith a
discussion on the perspectives of our investigations (see section 7).

Appendices A–Dcontain some relevant technical aspects.

2. Themodel

We study an open chain ofN quantum spins, represented by theHamiltonian operatorH , in contact with
boundary reservoirs. The time evolution of the reduced densitymatrix ρ is described by a quantummaster
equation in the Lindblad form [4–6] (we set = 1)

 ρ ρ Γ ρ ρ∂
∂

= − + +( )
t

Hi[ , ] [ ] [ ] , (1)L R

where ρ ρ[ ], [ ]L R are Lindblad dissipators acting on spins at the left and right boundaries of the chain,
respectively. This is an usual setup for studying transport in quantum spatially extended systems, where the
explicit choice ofL andR is suggested by the kind of application one has inmind. In this way, one describes an
effective coupling of the chain, or a part of it, with baths or environments.Within the quantumprotocol of
repeated interactions, equation (1) describes an exact time evolution of the extended quantum system, provided
the couplingwith the Lindblad reservoirs is suitably rescaled [6].

Here we are interested to explore the strong coupling condition, i.e.Γ → ∞, that corresponds to the so–
calledZeno regime. In this case one can obtain the stationary solution of equation (1) in the formof the
perturbative expansion

∑ρ ξ Γ
Γ

ρ ξ=
=

∞

( , )
1

2
( ), (2)

k

k

kNESS
0

⎜ ⎟⎛
⎝

⎞
⎠

where ρ ξ Γ( , )NESS is the densitymatrix of the non equilibrium steady-state and ξ is a symbol epitomizing the
model parameters (e.g. bulk anisotropy, exchange energy,magnetic field, etc).

Suppose that the stationary solution ρ ξ Γ( , )NESS is unique. This fact will be validated further for all our
examples.Moreover, thefirst termof expansion (2), i.e. ρ =0 ρ Γ ξΓ→∞ →∞ tlim lim ( , , )t , satisfies the stationarity
condition ρ =[ ] 0LR 0 , where  = +LR L R is the sumof the Lindblad actions in (1) . This suggests that ρ0

can be represented in a factorized form

ρ ρ ξ ρ= ⊗ + ⊗
⊗ −I

M
2

( ) , (3)0 L 0 R

N 2

⎜ ⎟
⎛
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⎛
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where ρL and ρR are the one-site densitymatrices at the chain boundaries, satisfying ρ =[ ] 0L L and
 ρ =[ ] 0R R , andM0 is amatrix to be determined self-consistently. It is convenient to separate explicitly the

identitymatrix
⊗ −( )I

2

N 2
fromM0, in such away thatM0 is a traceless operator, due to the condition ρ =Tr ( ) 10 .

By substituting the perturbative expansion (2) into equation (1) and by equating terms of the orderΓ−k, one
can easily obtain the recurrence relation

ρ ρ= = ⋯+H ki ,
1

2
, 0, 1, 2, (4)k kLR 1

⎡⎣ ⎤⎦
whose general solution has the form

ρ ρ ρ ρ= + ⊗ ⊗ = ⋯+
−

+( )H M k2 i , , 0, 1, 2, (5)k k k1 LR
1

L 1 R
⎡⎣ ⎤⎦

provided that (formore details see [24]) [H, ρk] is orthogonal to the kernel of ( )LR ,

 ρ =( )( )P H, 0, (6)kker LR

⎡⎣ ⎤⎦
where ΩP denotes the orthogonal projector on Ω.
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Notice that, in order to obtain an explicit solution, one has to compute the inverse operator−
LR

1, that appears
in equation (5).

In summary, equations (3), (5) and (6) define a general perturbative approach, that applies in the Zeno (i.e.,
strong coupling) regime.

We consider theHamiltonian

= + + −H H V V ,XYZ N2 1

where

∑ σ σ σ σ Δσ σ= + +
=

−

+ + +( )H J J , (7)XYZ

j
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x j
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y j
y

j
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j
z

j
z
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1

1 1 1

is theHamiltonian of an openXYZHeisenberg spin chain andVl is a local inhomogeneity field acting on spin l to
be specified later on (see equations (15)–(16).Moreover, we consider Lindblad dissipators,L andR, favouring
a relaxation of boundary spins at k=1 and k=N towards states described by one-site densitymatrices ρL and ρR,
i.e. ρ =[ ] 0L L and ρ =[ ] 0R R . In particular, we choose boundary reservoirs that tend to align the spins at the

left and right edges along the directions ⃗lL and ⃗lR, respectively. These directions are identified by the longitudinal
and azimuthal coordinates as follows:

θ φ θ φ θ⃗ = ( )l sin cos , sin sin , cos .L,R L,R L,R L,R L,R L,R

Such a setting is achieved by choosing the Lindblad action in the form  ρ ρ ρ= +[ ] [ ] [ ]L R , where

    ρ ρ ρ= − + ={ } A[ ]
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In the absence of the unitary term in (1), the boundary spins relaxwith a characteristic timeΓ−1 to specific states
described via the one-site densitymatrices

ρ σ= + ⃗ ⃗( )I l
1

2
, (11)L L 1

ρ σ= + ⃗ ⃗( )I l
1

2
. (12)NR R

The condition ρ =[ ] 0A A follows fromdefinition (8), while the relations  ρ=A A
†

R and  = =( ) ( ) 0A A
2 † 2

can be easily checked.
In analogywith [18], it can be easily shown that, for the chosen boundary dissipation setup described by

equations (8)–(10), theNESS is unique. By applying the perturbative approach in the Zeno regime, one finds
that the unknownmatrices ΔM ( )k are fully determined by secular conditions (6). As shown in appendix A, for
the specific choice (8) of the Lindblad operators, they are equivalent to the requirement of a null partial trace

ρ = = ⋯( )H kTr , 0, 0, 1, 2, . (13)N k1,
⎡⎣ ⎤⎦

Wewant to point out that the computation of the full set ofmatrices ΔM{ ( )}k for any Δ ≠ 0 is quite a
nontrivial task.However, in the Zeno limit,Γ → ∞, we are just interested in computing the zeroth and the first
order contributionsM M,0 1, which can be completely determined by solving the set of secular equations (13) for

=k 0, 1, 2.

3.Manipulations ofNESS by non-uniform externalfields

The properties of themodel introduced in the previous section have beenwidely investigated forVl=0 and
φ π= 2 in [24].Herewe are interested in studying how the properties of theNESS can bemodifiedwhenVl is
an additional localfield, that corrupts the homogeneity of theXYZ spin chain.
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Notice first that a localfield applied to the boundary spins at positions k=1 and k=N does not affect the
strong coupling limit ρ =0 ρ ΓΓ→∞lim ( )NESS . On the other hand, applying a localfield to the spins at positions
k=2 and k=N − 1 canmodify ρ0 in a nontrivial way. TheHamiltonian reads

= + + −H H V V , (14)XYZ N2 1

where

σ σ σ σ= ⃗ ⃗ = + +V h h h h , (15)j x
x

y
y

z
z

2 2 2 2

σ σ σ σ= ⃗ ⃗ = + +− − − − −V g g g g . (16)N N x N
x

N j
y

z N
z

1 1 1 1 1

Carrying out the procedure outlined in the previous section, we canfind the formof the densitymatrix of the
NESS in the Zeno regime, ρ0. This is a function of the anglesθ φ θ φ, , ,L L R R, of the anisotropy parameterΔ and of

the localfields ⃗ ⃗h g, . One can argue that, in general, theNESS should be an entangled state, depending in a
nontrivial way on the localfields. Due to the boundary drive, theNESS typically exhibits nonzero currents
(magnetization current, heat current, etc), irrespectively of the presence of the localfields. However, in the Zeno
limit, there are critical values of the localfields for which a complete decoherence of theNESS occurs.

More precisely, we formulate our results under the following boundary condition assumptions:

• targeted boundary polarizations are neither collinear nor anti-collinear ( ⃗ ≠ ± ⃗l lL R);

• at least one of the polarizations (e.g. the left targeted polarization) is directed along one of the anisotropy axis
X Y, , orZ;

• the corresponding localfields ( ⃗h at site 2 and ⃗g at site −N 1) are collinear to the respective targeted boundary

polarizations ⃗ = ⃗h hlL, ⃗ = ⃗g glR.

Then, there exists a zero-dimensional or a one-dimensional criticalmanifold in the h,g–plane h g( , )cr cr , such
that, in the Zeno limit, theNESS on thismanifold becomes

ρ Δ ρ ρ= ⊗ ⊗
⊗ −

( )
I

( )
2

. (17)
h gNESS , L R

N
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⎠

⎞
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Notice that this a peculiar state: apart the frozen boundary spins, all the internal spins are at infinite temperature.
Indeed, tracing out the boundary spins, one obtains theGibbs state at infinite temperature

ρ ρ⊗ ⊗ =
⊗ ⊗− −I I

Tr
2 2

. (18)N1, L R

N N2 2
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⎠

Also notice that on the criticalmanifold the vonNeumann entropy of theNESS, ρ ρ= −S Tr ( log )VNE NESS 2 NESS ,
in the Zeno limit attains itsmaximumvalue given by

ρ ρ− = −
Γ→∞ ( )( ) Nlim max Tr log 2,NESS 2 NESS

since ρ ρ,L R are pure states. In the following, we also refer to state (17) as the state ofmaximal decoherence.
We have performed explicit calculations (see below) that confirm the above statement for different spin

chains up toN=8. The particular formof theNESS assumed in these cases, however, strongly suggests that the
above resultsmaybe of general validity and the criticalmanifold h g( , )cr cr independent onN.

The criticalmanifold has been fully identified for the following cases.

• XYZ chain: Δ≠ ≠J Jx y . If the left, ⃗lL, and the right, ⃗lR, polarizations point in directions of different principal
axes

α β α β⃗ = ⃗ = = =α βl e l e X Y Z, , , , , (19)L R

where = = =e e e(1, 0, 0), (0, 1, 0), (0, 0, 1)X Y Z , then for chains with an even number,N, of spins, the
manifold h g( , )cr cr consists of three critical points: = −α αP J( 2 , 0), = −β βP J(0, 2 ) and = − −α β α βP J J( , ), . For
oddN, the critical point α βP , ismissing and the criticalmanifold reduces only to the points α βP P, , above. If
only one of the two boundary driving points in the direction of a principal axis, the criticalmanifold reduces
to a single point, either αP or βP , for both even and oddN.

4
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• XXZ chain: Δ= = ≠J J Jx y . If both ⃗lL and ⃗lR lay onto theXY-plane, we can parametrize the targeted

boundary polarizations via a twisting angle in theXY-planeφ asθ θ φ φ φ= = = =π , , 01 2 2 1 2 , corresponding

to ϕ ϕ⃗ =l (cos , sin , 0)L and ⃗ =l (1, 0, 0)R . The criticalfields are aligned parallel to the targeted boundary

magnetization, i.e. ϕ ϕ⃗ = ⃗ =h h h g g( cos , sin , 0), ( , 0, 0)cr cr cr cr cr , andwe find the one-dimensional critical
manifold

+ = − ≠ −h g J h J2 , . (20)cr cr cr

Notice that this expression is independent of system sizeN, of the anisotropyΔ and of the twisting angleφ. If
one of the two targeted polarizations points out of theXY-plane, the criticalmanifold becomes zero-
dimensional and consists of one, two or three critical points (depending on the polarization direction and on
N being even or odd) as discussed for the full anisotropic case.

• XXX chain: Δ= = ≡J J Jx y . The criticalmanifold for arbitrary non-collinear boundary drivings is one-
dimensional and it is given by equation (20).

The above statements are illustrated infigures 1 and 2 for the case of a chain ofN=4 spins. In particular, in
figure 1we show a contour plot of theVNE surface as a function of the applied fields for theXYZ case with left
and right boundary polarizations fixed along theX andZ directions, respectively. The three critical points
P P P, ,X Z X Z, mentioned above correspond to the green, red, andwhite dots shown in the top panel of thefigure.
Notice the presence of narrow corridors (blue shaded) around the PX andPZ critical points, insidewhich the
VNEkeeps very close to themaximal value =S 2VNE but never reach it, except at the critical points. This is quite
different from the partially anisotropicXXZ case shown in figure 2, where the existence of the critical line (blue
line) is quite evident.

Similar results are found also for longer chains. In particular, infigure 3we show a cut of theVNE surface for
a partially anisotropicXXZ chain ofN=5 spins. For the sake of simplicity we have set = =J J 1x y and considered
the cut at h=0 so that theVNEof theNESS, in the Zeno limit, becomes a function of g only.We see that for

= = −g g 2cr , theVNE reaches themaximumvalue −N 2 indicating that the correspondingNESS has the
form (17).

As to the dependence of the criticalmanifold on parity ofN, we find thatwhile for odd sizesN=3, 5, 7 and
XYZHamiltonian (see figure 4, top panel for an illustration) there are only two critical points (the critical point

α βP , ismissing), for even sizesN=4, 6, 8 cases there are three critical points. These observations strongly suggest
a qualitative difference between even and oddN in themodel, which ismanifested in otherNESS properties as
well, see e.g. (22) and (23).

It is worth to note here that for = = −h g J , i.e. the case excluded in (20), theNESS behaves non-analytically
in the Zeno limitΓ → ∞. Aswe are going to discuss in section 6, this non-analyticity is a consequence of the
non-commutativity of the limitsΓ → ∞ and = → −h g J .

Figure 1.Contour plot of the vonNeumann entropy SVNE in the Zeno limit, as a function of the localfields for an openXYZ chain of
N=4 spinswith exchange parameters Δ= = =J J1.5 0.8, 2x y . Green, white and red dots denote the critical points = −P J( 2 , 0)X X ,

Δ= − −P J( , )XZ X , Δ= −P (0, 2 )Z , where theVNE reaches itsmaximumvalue =S 2VNE and theNESS becomes a completelymixed
state, respectively. Other parameters are fixed as ⃗ =l eXL , ⃗ =l eZR . Green, yellow, pink, orange, brown, red and blue contour lines refer
to SVNE values:1, 1.2, 1.4, 1.6, 1.8, 1.9, 1.95, respectively. Notice the presence of the narrow corridors aroundPX andPZ inwhich the
deviation, −S 2VNE , of theVNE from itsmaximumvalue becomes very small.
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Conversely, for anyfinite boundary couplingΓ, i.e. far from the Zeno limit, theNESS is analytic for arbitrary
amplitudes of the localfields (the first order correction to theNESS for largeΓ is proportional toΓ−1 as shown in
the appendix C). This is also seen from figure 5where theVNEof theNESS is reported as a function of the local
field g for different values of the boundary couplingΓ and same parameters as infigure 3 (see curve Δ = 0.6).
Notice that the thin black line obtained forΓ = 103, is already in full overlapwith the Zeno limiting curve
depicted infigure 3 for Δ = 0.6. Also note the persistence of the peak at = −g 2 even for relatively small values of
Γ away from the Zeno limit.

Similar behaviors are observed for different choices of boundary polarizations and of localfields (not shown
for brevity), thus opening the possibility to detect the signature of the above phenomena in real experiments. In
this respect we remark that the near-boundarymagnetic field h and the anisotropyΔ as suitable parameters for
controlling the dissipative state of the system in aNESS. Thus, if g=0, theNESS can bemade a pure state by

tuning the anisotropyΔ to a specific value Δ φ N* ( , ). For instance, we find that for g=0 and

Δ π = ±± ( 2, 5)* 1

2

1

2 2
theNESS is a pure state [25], while for = −g 2cr , theNESS in the bulk becomes an

infinite temperature state (17), i.e. amaximallymixed state. Thus, by suitably tuning the anisotropy and the local
magnetic field one can pass fromminimallymixed (pure)NESS state to amaximallymixed one.

It should be emphasized at this point that general thermodynamic equilibriumquantities, e.g. the
temperature, are notwell-defined for a generic NESS. In fact, pure states allowed by Liouvillian dynamics are not
ground states of theHamiltonian, but are characterized by a property of being common eigenvectors of a
modifiedHamiltonian and of all Lindblad operators [16, 21]. Likewise, an absence of currents in theNESS does
not necessarily imply a thermalization of the system: in fact also for fullymatching boundary conditions the
NESS is not aGibbs state at some temperature, so that correlation functions remain far from those of an
equilibrium system. From this point of view, the decoherence effect described in present paper can be viewed as a

Figure 2.Contour plot of SVNE in the Zeno limit, as a function of the localfields for theXXZ chainwithN=4 spins. Parameters are
Δ= ≡ = = ⃗ = −J J J l e1.5, 1,x y YL , ⃗ =l eXR . The green, yellow, pink, orange, brown, red, blue contour lines refer to SVNE values:

0.6, 0.9, 1.2, 1.5, 1.8, 1.9, 2, respectively. The blue contour is in full overlapwith the critical line + = − = −h g J2 3Y X .

Figure 3. von Neumann entropy of the NESS ρ ρ= −S Tr ( log )VNE NESS 2 NESS in the Zeno limit, as a function of local field g,
for different values of spin exchange anisotropy. Thick, thin, dashed and dotted curves correspond to Δ = 0.9239, 0.6,
0.3827, 0.3, respectively. For = −g 2 the NESS is a completely mixed state for which VNE reaches its upper limit.
Parameters: θ θ φ π φ= = = = = − =πh N0, 5, , 2, 0L R 2 L R .

6

New J. Phys. 17 (2015) 023066 VPopkov et al



reaction of a nonequilibrium systemon a local perturbation (the localmagnetic field): as is well-known, a local
perturbation in nonequilibrium can lead to global changes of a steady state.

On the other hand, a fullymixed state as such has appeared already in the context of driven spin chains: if
both Lindblad boundary reservoirs target trivial states with zero polarization (ρ ρ= = I 2R L ), theNESS is

maximallymixed ρ =
⊗( )I

NESS 2

N
, which is a trivial solution of the steady Lindblad equation for any value of

boundary coupling. The respectiveNESS is often being referred to as a statewith infinite temperature [12]. Note
that our case is drastically different from the latter: themaximallymixed state (17) appears only in the bulk, after
tracing the boundary spins, in a systemwith generically strong boundary gradients, and under strong boundary
coupling.

A fewmore remarks are in order: (i) the amplitudes of the critical localfields scalewith the amplitude of the
Hamiltonian exchange interaction, i.e. γ→h hcr cr if γ→H HXXZ XXZ (this is a consequence of the linearity of the
recurrence relations (5) and (13)); (ii) theNESSmay take the form (17) only in the Zeno limitΓ → ∞; in fact,
thefirst order correction to theNESS is proportional toΓ−1 and does not vanish (see appendix C); the fully
decoherent state (17) is intrinsic to nonequilibrium conditions and, strikingly enough, it persists even for nearly
matching or fullymatching boundary driving, as we are going to discuss in section 4.

Figure 4.Cuts of the vonNeumann entropy surface of theNESS in the Zeno limit, as function of critical field for theXYZ chains with
N=5 (top panel) andN=6 (bottompanel) spins. The red, blue and black lines refer to cutsmade at gZ=0, hX=0 and = −g 2Z ,
respectively. Other parameters arefixed as infigure 1.Notice that forN odd theVNE reaches itsmaximumvalue −N 2 only at points

= −P J( 2 , 0)X x and Δ= −P (0, 2 )Z while forN even themaximum is reached also at the point Δ= − −P J( , )XZ x .

Figure 5. vonNeumann entropy of theNESS as function of the localfield g and for different values of the couplingΓ. Other parameters
are fixed as:N=5, Δ = = =J J0.6, 1x y , θ θ φ π φ= = = = − =πh 0, , 2, 0L R 2 L R . The thin (black), red (dashed), dotted (green),
dotted–dashed (blue) curves refer to valuesΓ Γ Γ Γ= = = =10 , 10 , 50, 253 2 , respectively.
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Wewant to conclude this section by pointing out that a fully analytic treatment of the problem for arbitrary
large values ofN should encounter serious technical difficulties. Themain one concerns the solution of the
consistency relations determined by the secular conditions (6) for the perturbative expansion (2), with the zero-
order term given by (17).Moreover, finding thefirst order correction toNESS, proportional toΓ−1, amounts to
solve a systemof equations, whose number grows exponentially withN.WithMatematicawewere able to solve
that systemof equations analytically for ⩽N 5 and numerically up to ⩽N 7.

4.Matching and quasi-matching boundary drivings

In the previous sectionwe have discussed the casewhere the complete alignment of the boundary Lindblad baths
was excluded. In this sectionwewant to analyze the specific case where they are aligned (or quasi-aligned) in the
same direction on theXY-plane.

A complete alignment, i.e. ⃗ = ⃗l lL R, corresponds to a perfectmatching between the left and right boundary
Lindblad baths, that yields a total absence of boundary gradients, so that any current of theNESS vanishes. Also
in this case theGibbs state at infinite temperature can be achieved by suitably tuning the values of the near-
boundaryfields, but for even-sized chains, only.

Let usfirst illustrate thisfinding for theXYZ case.With no loss of generality, we can set
⃗ = ⃗ = =l l e (0, 0, 1)ZL R . The behavior of the driven chainwith localfields depends drastically onwhether the
size of the chainN is an even or an oddnumber: in the former casewe find the critical one-dimensional
manifold, defined by

Δ Δ+ = − ≠ −h g h2 , ; (21)cr cr cr

in the latter case =N 3, 5 ,..,wedonotfind any critical point. This result has been found explicitly for
⩽ ⩽N3 6, but, since it depends on the effect of local perturbations, it seems reasonable to conjecture that it

should hold for largerfinite values ofN. This result holds as long as theHeisenberg exchange interaction in the
plane perpendicular to the targeted direction (theXY-plane in this example) is anisotropic, i.e. ≠J Jx y .
Conversely, for Jx= Jy, the infinite temperature state (17) cannot be reached for any value of the localfields h and
g. There is a delicate point to be taken into account whenwefix =h hcr andwe perform the limit →J Jy x, i.e. we

reestablish themodel isotropy: for complete alignment, ⃗ = ⃗ =l l eZL R , theNESS is singular. Theway this
singularity sets in is shown infigure 6. In the limit when the anisotropy in the direction transversal to the targeted
direction becomes infinitesimally small∣ − ∣ →J J 0y x theNESS is a pure state withminimal possible →S 0VNE

for any amplitude of the localfield values, except at a critical point where SVNE ismaximal.
The noncommutativity of similar limits and the dependence of theNESS properties on the parity of system

sizeN in Lindblad-drivenHeisenberg chains, have been observed in previous studies [22, 23]. Also in these cases,
the origin of noncommutativity is a consequence of global symmetries of theNESS, that, for ourmodel, are
discussed in section 5.

In the isotropic case, as long as the localfields are parallel to the targeted spin polarization, theNESS does not
depend on them: it is a trivial factorized homogeneous state with amaximal polarizationmatching the
boundaries, i.e. ρ ρ= ⊗( )NESS L

N . This can be easily verified by a straightforward calculation.
Another kind ofNESS singularity can be found in the partially anisotropic case, with quasi-matching

boundary driving in theXY isotropy plane. As amismatch parameter we inroduce the angular difference

Figure 6. vonNeumann entropy of theNESS ρ ρ= −S Tr ( log )VNE NESS 2 NESS in the Zeno limit, as function of localfield g, forXYZ
model withmatching boundary driving ⃗ = ⃗ =l l (0, 0, 1)L R , for different values of spin exchange anisotropy difference −J Jy x . Thin,
thick, dashed and dotted curves correspond to − =J J 0.02, 0.3, 0.6, 1.2y x .Parameters: Δ= =J 1.5, 2x ,N=4.
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between the targeted polarizations at the left and the right boundaries,φ φ φ= −L R. Forφ = 0 and in the
absence of localfields, we have found that the spin polarization at each site of the chain is parallel to the targeted
polarization; on the other hand, even in the Zeno limit, it does not saturate to the value imposed at the
boundaries =j N1, . In general, this is not an equilibriumGibbs state, even in the Zeno limit and for any finite
boundary couplingΓ. However, if the near-boundary fields are switched on and tuned to their critical values, the
coherence of this state is destroyed and theNESS becomes an infinite temperatureGibbs state.On the other
hand, we have found that there is a relevant difference between quasi-matching andmismatching conditions for
even and odd values ofN (notice that the isotropic and the free fermion cases, Δ = 1, Δ = 0, are special and
should be considered separately). Our results can be summarized as follows:

• Nodd.Wecan fix the boundarymismatch by choosingφ φ φ= =, 0L R , the left localfield h=0, and study
theNESS as a function of the right localfield g. At = = −g g 2cr , theNESS becomes trivial (maximally
mixed); however, as shown in panel (a) offigure 7, for smallmismatchwe find a singular behavior of the
NESS close to =g gcr. Analytic calculations (not reported here) show that forφ = 0 there is a singularity at

=g gcr, as a result of the non-commutativity of the limitsφ → 0 and →g gcr.

• N even.Unlike the previous case, theNESS is analytic for small and zeromismatch (see panel (b) offigure 7).
For =g gcr theNESS becomes trivial (maximallymixed), also forφ = 0.

Finally, let us comment about two special cases, for ‘equilibrium’ boundary driving conditions, i.e.φ φ=L R.
For Δ = 0 (free fermion case), theNESS is a fullymixed state (apart from the boundaries) for all values of g. For
Δ = 1 (isotropicHeisenbergHamiltonian), theNESS is a trivial factorized state, fully polarized along the axis of
the boundary driving, for any value of g. Both statements can be straightforwardly verified.

NESS singularities, onset of which can be recognized infigures 6 and 7(a), appear because of non-
commutativity of limits. Noncommutativity of various limits, implying singularities and nonergodicity, which
are due to global symmetries is a well-established phenomenon and occurs already inKubo linear response
theory describing fluctuations of a thermalized background. In nonequilibriumopen quantum systems,
however, the presence ofNESS symmetries at special value of parameters ismanifestedmuch strongly, due to
richer phase spacewhich includes both bulk parameters (such as anisotropy and external field amplitudes) and

Figure 7. vonNeumann entropy of an internal block, (sites −N1 ,.., 1), forN=5 (panel a), andN=4 (panel b), versus the localfield g,
for differentφ. Parameters: Δ = 0.3. Panel (a): thick and dotted curve correspond toφ π= 7 andφ π= 30 respectively. Panel (b):
thick and dotted curve correspond toφ π= 7 andφ = 0 respectively.
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boundary parameters (such as coupling strength). As a result, noncommutativity of the limits and consequent
NESS singularities seems to be a rather commonNESS feature. In the next two sections we reveal some ofNESS
symmetries and show that the respective singularities, connectedwith them, can be observed already in afinite
system consisting of a few qubits.

5. Symmetries ofNESS

Symmetries of the LME are powerful tools that reveal general, system size-independent properties of the
Liouvillean dynamics (1). In the case ofmultiple steady states, symmetry based analysis allows one to predict
different basins of attraction of the densitymatrix for different initial conditions [19]. For a unique steady state,
symmetry analysis provides a qualitative description of the Liouvillean spectrum [20] or the formulation of
selection rules for steady state spin and heat currents [22]. It is instructive to list several generalNESS symmetries
valid for our setup.We restrict toXXZHamiltonianwith = =J J 1x y , and perpendicular targeted polarizations

in theXY-plane, i.e. ⃗ = −l (0, 1, 0)L , ⃗ =l (1, 0, 0)R . The LMEhas a symmetry, depending on parity ofN, which
connects theNESS for positive and negativeΔ. Let us denote by ρ Δ ΓN h g( , , , , )NESS the nonequilibrium steady
state solution of the LME (see (1) and (8) ) for theHamiltonian (B.1) reported in appendix B. It is known that
thisNESS is unique [18] for any set of its parameters;moreover, one can easily check that

ρ Δ Γ ρ Δ Γ− =N h g U N h g U( , , , , ) ( , , , , , ) (22)NESS NESS
*

ρ Δ Γ Σ ρ Δ Γ Σ− =N h g U N h g U( , , , , ) ( , , , , ) . (23)y yNESS NESS
*

These relations hold for even and odd values ofN, respectively; hereΣ σ= ⊗( )y
y N , ∏ σ= ⊗U

n n
z

odd
and the

asterisk on the rhs of both equations denotes complex conjugation in the basis whereσ z is diagonal.
Equations (22) and (23) hold for any value of the localfieldsh g, and for any couplingΓ, including the Zeno
limitΓ → ∞. Due to properties (22) and (23), we can restrict to the case Δ ⩾ 0 further on. For = −g h,
ρ Δ ΓN h g( , , , , )NESS has the automorphic symmetry

ρ Δ Γ

Σ ρ Δ Γ Σ

−
= − +

N h h

U N h h RU

( , , , , )

R ( , , , , ) , (24)x x

NESS

rot NESS rot

where ⊗ ⊗ ⊗ = ⊗ ⊗ ⊗A B C C B AR( ... ) ( .... )R is a left–right reflection, = ⊗U idiag(1, )rot
N is a

rotation inXYplane, σ =+U Un
x

rot rot σn
y, σ σ= −+U Un

y
n
x

rot rot , andΣ σ= ⊗( )x
x N .

6.Non-commutativity of the limitsΓ → ∞ and →h hcrit , Δ Δ→ crit. Hierarchical
singularities

Herewe consider theXXZHamiltonian and a perpendicular targeted polarizations in theXY-plane
⃗ = −l (0, 1, 0)L , ⃗ =l (1, 0, 0)R ; the near-boundary fields are taken on the criticalmanifold, i.e. + = −h g 2. For

=N 3, 5 and Δ > 0 wehave found the noncommutativity conditon

ρ Δ Γ

ρ Δ Γ

− −

≠ − −
Γ

Γ

→∞ →

→ →∞

N h h

N h h

lim lim ( , , 2, , )

lim lim ( , , 2, , ). (25)
h

h

1
NESS

1
NESS

Making use of (17), the rhs of (25) can be rewritten

ρ Δ Γ ρ ρ− − =
Γ→ →∞

⊗ −

N h h Ilim lim ( , , 2, , )
1

2
. (26)

h 1
NESS L R

N 2

⎜ ⎟⎛
⎝

⎞
⎠

For the simplest nontrivial caseN=3, the validity of these noncommutativity relations is verified by the
calculations reported in appendix B (see (B.4). On top of (25), wefind an additional singularity at the isotropic
point Δ = 1 for >N 3

ρ Δ Γ

ρ Δ Γ

− −

≠ − −
Γ Δ

Γ Δ

→∞ → →

→∞ → →

N h h

N h h

lim lim lim ( , , 2, , )

lim lim lim ( , , 2, , ). (27)
h

h

1 1
NESS

1 1
NESS

Due to the symmetry conditions (22) and (23), the singularity is present also for Δ = −1. Equations (25) and
(27) entail the presence in ourmodel of a hierarchical singularity. Namely, the full parameter space of amodel
is a four-dimensional one and consists of the parameters Δ Γ− h g{ , , , }1 . As a consequence of (25), aNESS is
singular on a critical one-dimensionalmanifold Δ Γ = = − = −− h g{any , 0, 1, 1}1 . According to (27),
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further singularities appear for two special values of the anisotropy, inside the criticalmanifold Δ = ±{ 1,
Γ = = − = −− h g0, 1, 1}1 , engendering a zero-dimensional submanifold of the criticalmanifold. Thus, a
hierarchy of singularities is formed. It is quite remarkable that such hierarchical singularities emergewithout
performing the thermodynamic limit → ∞N . In fact, as shown in appendixD, they can be explicitly detected
already forN=4. ForN=5we have found other singularmanifolds, parametrized byh g, , andΔ. For the sake of
space, details of this case will be reported in a future publication.

The appearance of the singularity at → − → −h g1, 1 is a consequence of the additional symmetry (24) at
this point. By direct inspection of the analytic formulae obtained for =N 3, 4, 5, we can guess the formof the
limit state Γ Δ→∞ → →lim lim limh 1 1 as a fully factorized one, namely

ρ Δ Γ

ρ σ σ ρ= − +

Γ Δ→∞ →− →
⊗ −

N h

I

lim lim lim ( , , , )

1

3

1

3

1

2
. (28)

h

x y

1 1
NESS

L R

N 2

⎜ ⎟⎛
⎝

⎞
⎠

Conversely, for genericΔ and odd ⩾N 5, the limit state ρ Δ ΓΓ→∞ →− N hlim lim ( , , , )h 1 NESS does not take a
factorized form.Notice also that frommaking use of equations (22) and (23), we readily obtain also theNESS
limit state for Δ → −1:

∏

ρ Δ Γ

ρ σ σ ρ= ⊗ − − + +

Γ Δ→∞ →− →−

=

−

( )

N h

I

lim lim lim ( , , , )

( 1)
1

3
( 1)

1

2
. (29)

h

i

N
i N x y

1 1
NESS

L
2

1

R
⎜ ⎟⎛
⎝

⎞
⎠

7. Conclusion

In this paper we extensively analyzed the properties of theNESS of openHeisenberg spin chains, subject to the
action of LME at their boundaries and of perturbingmagnetic fields at the near-boundary sites. The setupwe
deal with operates in the Zeno regime, i.e. in the strong coupling limit,Γ → +∞ (see equation (1) ).Most of our
analytic and numeric calculations have been performed for relatively small values of the chain sizeN. On the
other hand, as a consequence of the local nature of the reservoirs and of the perturbingmagnetic fields, we
conjecture thatmany of these results could be extended to largefinite values ofN: the delicate question of how
theymight bemodified in the thermodynamic limit is still open. At the present level of standard computational
power, the strategy of performing large scale calculations to get any inference on such a limit is impractical,
because the number of equations to be solved grows exponentially withN.

Despite all of these limitations, themain outcome of our study is quite unexpected: by tuning the near-
boundarymagnetic fields we canmanipulate theNESS,making it pass from a dark pure state (for a suitable
choice of the value of the anisotropy parameterΔ), to a fully uncorrelatedmixed state at infinite temperature.

We have also discussed how this general scenario emerges in the anisotropic, partially anisotropic and
isotropic cases. The influence of different alignment conditions imposed by the Lindblad reservoirs has been
extensively explored, together with the symmetries of theNESS and their importance for engendering
hierarchical singularities due to the noncommutativity of different limits, performed on themodel parameters.

A physically relevant point in our discussion concerns the possibility of performing such amanipulation of
theNESS also for large butfinite values ofΓ: numerical investigations confirm this expectation, thus opening
interesting perspectives of experimental investigations.
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AppendixA. Inverse of the Lindblad dissipators and secular conditions

L andR are linear super-operators acting on amatrix ρ as defined by equations (9) and (10). In our case, each
super-operator act locally on a single qubit only. The eigen-basis ϕ α

α={ }R 1
4 of ϕ λ ϕ=α

α
α

R R R is
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ϕ ρ ρ φ σ φ σ θ φ σ φ σ θ σ= − − + + −I{2 , 2 , sin cos , cos (cos sin ) sin },x y x y z
R R R R R R R R R with the respective

eigenvalues λ = − − −α{ } {0, 1, , }1

2

1

2
. Here I is a 2 × 2 unitmatrix,σ σ σ, ,x y z are Paulimatrices, and ρR is

targeted spin opientation at the right boundary. Analogously, the eigen-basis and eigenvalues of the
eigenproblem ϕ μ ϕ=β

β
β

L L L areϕ ρ ρ φ σ φ σ θ φ σ φ σ= − − + +I{2 , 2 , sin cos , cos (cos sin )x y x y
L L L L L L L L

θ σ− sin }z
L and μ = − − −β{ } {0, 1, , }1

2

1

2
, where ρL is the targeted spin opientation at the left boundary. Since

the basesϕR andϕL are complete, anymatrix F acting in the appropriateHilbert space is expanded as

∑∑ϕ ϕ= ⊗ ⊗
α β

β
βα

α

= =

F F , (A.1)
1

4

1

4

L R

where βαF are ×− −2 2N N2 2 matrices. Indeed, let us introduce complementary basesψ ψ,L R asψ = I{ 2,L,R

ρ φ σ φ σ θ φ σ φ σ θ σ− − + + −I , ( sin cos ) 2, (cos (cos sin ) sin ) 2}x y x y z
L,R L,R L,R L,R L,R L,R L,R , trace-ortho-

normal to theϕ ϕ,R L respectively, ψ ϕ δ=γ α
αγTr ( )R R , ψ ϕ δ=γ β

βγTr ( )L L . Then, the coefficients of the expansion

(A.1) are given by ψ ψ= ⊗ ⊗βα
β α⊗ ⊗− −F I F ITr (( ) ( ))N1, L R

N N1 1 . On the other hand, in terms of the expansion

(A.1) the superoperator inverse  + −( )L R
1 is simply

  ∑
λ μ

ϕ ϕ+ =
+

⊗ ⊗
α β α β

β
βα

α−( ) F F
1

. (A.2)L R
1

,
L R

The above sum contains a singular termwithα β= = 1, because λ μ+ = 0.1 1 To eliminate the singularity, one
must require = =F FTr 0N11 1, , which generates the secular conditions (13).

Appendix B. Analytic treatment ofN=3 case

Herewe prove the property (17) forN=3, and demonstrate a singularity of theNESS at afixed value of local
fieldsh g, . Note that we treat caseN=3 for simplicity and for demonstration purposes only; Also for simplicity,

we considerXXZHamiltonian and perpendicular targeted polarizations inXY plane ⃗ = −l (0, 1, 0)L ,
⃗ =l (1, 0, 0)R ,

σ σ= − + −H H h g . (B.1)XXZ
y

N
x

2 1

Wehave ρ ρ ρ= ⊗ + ⊗( )MI
0 L 2 0 R and ρ ρ ρ ρ= + ⊗ ⊗− H M2 (i[ , ])1 LR

1
0 L 1 R , with ρ ρ,L R given by

(11), (12), and α σ= ∑M k
k

0 , β σ= ∑M k
k

1 , where σ ={ }k
k 1
3 is a set of Paulimatrices, andα β,k k are unknowns.

Secular conditions (13) at zero-th order k=0 give a set of three equations

α
α

α α

+ =
+ =

+ + + =

h

g

g h

( 1) 0,

( 1) 0,

( 1) (1 ) 0,

3

3

2 1

fromwhich the ρ0 cannot be completely determined. The secular conditions (13) for k=1providemissing
relations

β Δ α Δ

β Δ α Δ

β β α

− + − + + =

− + − + − =

+ + + − =

( )
( )

h

g

g h

( 1) 2 2 1 2 0,

( 1) 2 2 1 2 0,

( 1) ( 1) 4 0

3
2

1

3
2

2

2 1 3

fromwhich ρ0 can be readily found.Namely, if ≠ −h 1, ≠ −g 1, then

α

α
Δ

Δ

α
Δ

Δ

=

= +
+ +

+ + + + +

= − −
+ +

+ + + + +

( )( )

( )( )

g
g h

g g h h

h
g h

g g h h

0,

( 1)
( 2)

2 1 2 2 2
,

( 1)
( 2)

2 1 2 2 2
. (B.2)

3

1
2 2 2

2
2 2 2

Observables of the system change nontrivially withh g, . In particular, the current-like two-point correlation
function σ σ σ σ= 〈 − 〉j 2z x y y x

12 1 2 1 2 NESS has the form
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α
Δ

Δ
= = +

+ +
+ + + + +( )( )

j g
g h

g g h h
4 4( 1)

( 2)

2 1 2 2 2
. (B.3)z

12 1
2 2 2

Consequently,manipulating theh g, , one can change the sign of the above correlation ormake it vanish for
allΔ, for + + =g h2 0.Moreover, for = = − −h h g2cr , allα = 0k , see (B.2), andwe recover (17). If,
however, = −h 1, = −g 1, then the solution forαk reads

α

α α Δ
Δ

=

= − =
+

0

2 1
, (B.4)

3

1 2 2

manifesting a singularity of theNESS at the point = = −h g 1 for any nonzero Δ ≠ 0, see also section 6.

AppendixC. Corrections to (17) of the order Γ1

Herewe show that the perturbation theory (5) predicts ≠M 01 for arbitrary localfields g h, , if =M 00 .We

restrict toXXZHamiltonian = =J J 1x y , and perpendicular boundary twisting in theXY-plane, ⃗ = −l (0, 1, 0)L ,

⃗ =l (1, 0, 0)R .

Let us set ρ ρ ρ= ⊗ ⊗
⊗ −( )I0 L

1

2 R
N 2

as predicted by (17) for critical values of the localfield.We then

obtain, in the zeroth order of perturbation

ρ ρ

ρ ρ

= = +

= ⊗ ⊗ − ⊗ ⊗

−

−
⊗ ⊗− −( )

Q H h h

K I I K

i , i ,

1

2
, (C.1)

N N

N XZ ZY

0 1,2 1, 0

2 R L
N N3 3

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

where Δσ σ σ σ= − ⊗ + ⊗αβ
α β β αK , and +hk k, 1 is the localHamiltonian term, σ σ σ σ= + ++ + +hk k k

x
k
x

k
y

k
y

, 1 1 1

Δσ σ +k
z

k
z

1. The secular conditions =Tr Q 0N1, are trivially satisfied.Noting thatQhas the property  = −Q Q1

2 LR ,

we obtain from (4) and (5) thefirst order correction to ρ0

ρ ρ ρ= − + ⊗ ⊗Q M .1 L 1 R

Let us assume that =M 01 . Then, in the second order of perturbation theory, we have

ρ

σ σ

= −

− + + + + +− − − −

H H Q

h h h g h h Q

i , i[ , ]

i , . (C.2)y
N
x

N N N N

1

12 23 2 1 2, 1 1,

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

After some calculations we obtain

ρ

Δ σ ρ ρ σ

= +

× − ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗⊗ ⊗− −( )
i H

I I I I

, R const

, (C.3)y x

1

R L
N N3 3

⎡⎣ ⎤⎦

where the unwanted secular terms arewritten out explicitly, and =Tr R 0N1, . The unwanted terms proportional
toΔ do not depend onh g, . For any Δ ≠ 0 the secular conditions ρ =Tr H[ , ] 0N1, 1 cannot be satisfied. This
contradiction shows that ≠M 01 for any Δ ≠ 0.

AppendixD.Hierachical singularity in theNESS forN=4

Herewe restrict toXXZHamiltonianwith = =J J 1x y , and perpendicular boundary twisting in theXY-plane

⃗ = −l (0, 1, 0)L , ⃗ =l (1, 0, 0)R . ForN= 4we have 30 equations to satisfy from the secular conditions (13) for

k=0,1, and the set of variables α β{ }, { }ki ki to determine thematrices α σ σ= ∑ ⊗=
′

M k i ki
k i

0 , 0
3

, β= ∑′M ki1

σ σ⊗k i. The ‘prime’ in the sumdenotes theabsence of the termsα β,00 00 since thematricesMk are traceless.

Thematrices σ σ σ σ{ , , , }0 1 2 3 = σ σ σI{ , , , }x y z are unitmatrix and Paulimatrices.We do not list here all 30
equations but just their solutions for different values of parameters, obtained usingMatematica. For

= − −g h 2wehave, in agreementwith (17), =M 00 , while, out of 15 coefficients β{ }ki , only six are determined,
namely
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β β

β β

β β

= =

= =
+

= =
h

1,

1

1
,

0, (D.1)

13 32

03 31

23 31

while other βki (and therefore, theM1) have to be determined at the next order k=2 of the perturbation theory.
From (D.1) it is clear that the case + =h1 0 has to be considered separately. In fact, for = = −h g 1we obtain a
different solution: =M 00 , while the coefficients β{ }ki are

β β Δ
Δ

β β Δ
Δ

β β β β

= =
− +

= =
− +

= = = =

1
,

1
,

0, (D.2)

13 32

2

2

23 31 2

01 02 10 20

thus at = = −h g 1we have a singularity in the first order of perturbative expansion, inM1. On the other hand,
(D.2) for Δ = 1 there is a singularity inM1: we have to treat this case separately. For Δ = 1we find

σ σ= − +
⊗

( )M Ix y
0

1

3

1

3

1

2

2
, in agreementwith (28), while the set of βki is

β β

β β
β β

= =

= =
= =

1

2
,

1,

0.

03 30

32 13

31 23

So at Δ = = = −h g1, 1we have a singularity in the zeroth order of the perturbative expansion, at the level of
M0. Summarizing, forN=4we have =M 00 on the two-dimensionalmanifold of the phase space characterized

by Δ = − −g h{ arbitrary, 2}, except at the point Δ = = = −h g{ 1, 1}, where σ σ= − +
⊗

( )M Ix y
0

1

3

1

3

1

2

2
. On

a one-dimensional submanifold Δ ≠ = = −g h{ 1, 1} there is a singularity inM1.
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