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Abstract. Bursting and intermittent behavior is a fundamental feature of turbulence,
especially in the vicinity of solid obstacles. This is associated with the dynamics of turbulent
energy production and dissipation, which can be described in terms of coherent motion
structures. These structures are generated at random times and remain stable for long times,
after which they become suddenly unstable and undergo a rapid decay event. This intermittent
behavior is described as a birth-death point process of self-organization, i.e., a sequence of
critical events. The Inter-Event Time (IET) distribution, associated with intermittent self-
organization, is typically a power-law decay, whose power exponent is known as complexity
index and characterizes the complexity of the system, i.e., the ability to develop self-organized,
metastable motion structures. We use a method, based on diffusion scaling, for the estimation
of system’s complexity. The method is applied to turbulence velocity data in the atmospheric
boundary layer. A neutral condition is compared with a stable one, finding that the complexity
index is lower in the neutral case with respect to the stable one. As a consequence, the crucial
birth-death events are more rare in the stable case, and this could be associated with a less
efficient transport dynamics.

1. Introduction
The atmospheric boundary layer (ABL) is a complex system characterized by time and spatial
scales that can vary by different orders of magnitude. It is characterized by turbulent behavior
[15] and by the presence of coherent structures ([13]). Following [7], a coherent motion for
turbulent flow can be defined as a three-dimensional region of the flow over which at least
one fundamental flow variable (velocity components, density, temperature, humidity, vorticity,
other scalars or vector fields) exhibits significant correlation with itself or with another variable
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over a range of space and/or time that is significantly larger than the smallest local scales
of the flow. This means that coherent structures are characterized by some kind of self-
organization determined by the presence of cooperative dynamics. Coherent structures in the
ABL are metastable, i.e., they are characterized by a relatively long life-time after which a
rapid decay of memory and spatial coherence occurs. Near the ground, such fast transitions are
typically associated with bursting events. In Ref. [3] the authors denote these quasi-istantaneous
transitions as critical events and relate them to the intermittent behavior of the system, that is
a fundamental feature of turbulent fluid flows [1]. Then, the dynamics of coherent structures is
characterized by intermittent events or, in other words, a birth-death process of self-organization.
However, the definition of intermittency varies between studies, depending on the examined scale
and adopted methods [8]. In Ref. [9] the author distinguishes between small scale or microscale
intermittency and global intermittency. In the former, the intermittent behavior arise from
overall modulation of the turbulence by the main eddies or in connection with sharp edges
of the main eddies. The dissipation of turbulent energy is then confined in small subregions of
individual coherent eddies. On the contrary, global intermittency occurs at scales larger than the
main coherent eddies [9], as in the case of episodic bursting of turbulence in a strongly stratified
boundary layer. In Ref. [30] the terms internal and external intermittency are introduced to
distinguish between intermittency originated from the mean turbulent kinetic energy dissipation
rate and intermittency resulting from interaction between the flow and the boundary conditions.
Being large and small scale strongly coupled, at finer scales external and internal intermittency
interact.
Statistics dissimilarity between velocity and scalars within the inertial subrange are dependent
on external intermittency. The authors of Refs. [30, 32] investigate the fine-scale intermittency
analysing the clustering features of canopy turbulence. The intermittent behavior of coherent
structures give a substantial contribution to turbulent transport. Many studies are devoted to
investigate the role of coherent structures on turbulent transport of momentum and scalars. In
Ref. [31] the authors analyze velocity, air temperature and scalar concentrations fluctuations
above different surfaces in order to investigate the role of surface characteristic and atmospheric
stratification on intermittency and clustering. Dissimilarity of turbulent transport of momentum
and scalars and the relations with the topology and the role of turbulent coherent structures as
sweep and ejections is also investigated ([11], [10],[12]) for different stability conditions.
The sequence of intermittent bursting events is mainly described by two statistical indicators: the
Inter-Event Times (IETs) distribution and the correlation among evens and IETs. Regarding
the correlation among events, a renewal condition is here assumed, i.e., both events and the
IETs are statistically independent random variables. This is in agreement with several findings
in literature. In Ref. [4] critical events in the ABL are introduced and the renewal condition is
verified. Further, in Refs. [16] the authors developed the so-called surface renewal model. This is
a model for the dynamical formation of turbulent structures near the surfaces, given as random
intrusions of fluid alternated with a period (residence time) of unsteady Fickian diffusion. More
recently, it has been recognized that the rate of surface renewals is not constant, a condition
associated with a non-exponential IET distribution [17]. In summary, the renewal condition is
a reasonable assumption in the ABL.
The IET distribution associated with self-organization is typically a power-law decay with an
asymptotic power exponent, known as complexity index [3] and characterizing the complexity
of the system, i.e., the ability to develop self-organized, metastable motion structures. In Ref.
[14] the authors study the IET distribution associated with anomalous diffusion of gusts wind.
In the present work we investigate the time intermittency of turbulent transport associated with
the birth-death of self-organized coherent structures in the atmospheric boundary layer. The
intermittent behavior of ABL is investigated by means of a scaling analysis, the Event-Driven
Diffusion Scaling (EDDiS) method, which is applied to the sequence of IETs extracted from a
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set of wind data.
In Appendix A the EDDiS method is briefly recalled. In Section 2 we describe the results of the
stastical analysis and show the main results about the estimated scaling exponents. In Section
3 we draw some conclusions.

2. Diffusion scaling analysis of turbulence data
Before applying the EDDiS method (see Appendix A), we need to extract the critical events
from the turbulence data with an event detection algorithm. Wind velocity data observed in the
Atmospheric Buondary Layer (ABL) were considered. The data were collected in a measurement
campaign carried out in Lecce (Salentum Peninsula, Apulia region, South-East part of Italy)
during March 2004 [33]. The instrumental set-up for the measurement of wind velocity was
a ultrasonic anemometer Gill R3, with 100 Hz sampling frequency. This was mounted on a
horizontal bar placed at the top of a telescopic mast, 9.6m above the ground. 8 hours of
collected wind data were approximatively considered for the analysis.
Firstly, a sequence of events was extracted from the experimental time series. Our goal is to
identify bursts of air motion in the vicinity of the ground, marking the birth or the death of
a coherent structure of fluid motion. As bursting events are associated with a sudden fluid
acceleration, the events are defined as abrupt changes in the moduli of the turbulent velocity
increments:

|∆S(t)| = |S(t+ ∆t)− S(t)| > S0 , (1)

where S(t) is the generic signal at time t, ∆t the sampling time of the time series and S0
a threshold defining the abrupt change. In our case, the signal S(t) is a turbulent velocity
fluctuation in the generic direction (x, y, z). The fluctuation is defined in such a way to minimize
the non-stationary effects, which are related to large scale meteorological patterns. These long-
time behaviors are mainly included in the direction and intensity of the mean wind and also in
the turbulence intensity (i.e., kinetic energy). Following the common practice in meteorological
studies, the turbulent velocity fluctuations are defined by the linear detrending of the air velocity,
evaluated over time windows of 30 minutes [15]. The detrended velocity components were also
normalized with the local standard deviation, again computed over time windows of 30 minutes,
thus defining the fluctuating signal S(t) in Eq. (1).
The turbulence features in the ABL depend mainly by the so-called atmospheric stability, which
characterizes the local tendency of small air particles to remain in the same vertical position
(quote) or not. This depends mainly by the temperature and humidity profiles, which can be
combined to derive a stability parameter. In particular, a stable atmosphere means that an
air particle, when perturbed, has the tendency to come back to the original quote (attractive
bouyancy forces), while, in the unstable case, it escapes far from the starting quote (repulsive
bouyancy forces). In the neutral case, there are no vertical forces and the wind dynamics is
independent from temperature and humidity. Here, we compared two periods with different
stability features: a neutral case and a stable one.
The detection of a bursting event formally depends on the threshold S0, but threre’s a range in
which the scaling is not affected by this choice. This is easily seen in Fig. 1 (Left Panel), where
different values of S0 are compared.

Then, the events were defined as the 90th percentile in the statistical distribution of the
increments, corresponding to a threshold of about 0.15: ∆S(t) > 0.15. A sequence of occurrence
times {tn} was derived in this way and used to define the discrete variable ξ(t) for the three
walking rules introduced in Appendix A. Then, the diffusion variable X(t) was computed by
applying Eq. (A.1). An example of the DFA function, evaluated from the turbulent bursting
events, is reported in Fig. 1 (Right Panel) for the three walking rules. The DFA displays the
typical power-law F (t) ∼ tH , valid for monoscaling signals. The SJ rule gives a normal scaling
H = 0.5, which means that µ > 2. The SV rule seems to give a normal scaling in the long-time
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Figure 1. Left Panel: threshold dependence of the DFA function applied to the event-driven
random walk with the AJ rule (vertical velocity). Right Panel: The DFA function applied to
the three walking rules (AJ, SJ and SV). The diffusion scaling is also reported.

HAJ µ
Neutral Stable Neutral Stable

u 0.97 0.86 2.06 2.28
v 0.97 0.88 2.06 2.24
w 0.99 0.87 2.02 2.26

Table 1. Estimated values of HAJ , from the AJ rule, and µ for the three turbulent velocity
components.

limit. However, this rule is less accurate as it is affected by the presence of noise, which can be
related to the experimental data and instrumentation, but also to the thresholding technique
[5]. On the contrary, the AJ rule gives a well-defined anomalous scaling H ∼ 0.9. The values of
the diffusion scaling H and, under the renewal assumption, of the associated complexity index
µ are reported in Table 2. For a given stability condition, all the fluctuacting, or turbulent,
velocity components have the same H scaling and, consequently, the same complexity index.
The diffusion scaling H is greater in the neutral case that in the stable one. In the renewal
assumption, this gives a slower power-law decay of the IET distribution in the stable case. This
means that the bursting, birth-death, events are more rare, so that the transport dynamics
associated with these critical events is less efficient.

3. Conclusions
We have applied a scaling analysis, denoted as EDDiS method, based on the generation of
three different random walks to a set of turbulence data in order to characterize the diffusive
behavior associated with intermittent bursting events in the ABL turbulence. Two different
stability conditions, one neutral and the other stable, have been compared, showing that scaling
is affected by the atmospheric stability. We have found that the complexity index associated
with intermittency is lower in the neutral case with respect to the stable one. As a consequence,
the crucial birth-death events are more rare in the stable case, and this could be associated with
a less efficient transport dynamics. Future investigations will carry out to better characterize the
dissimilarity of different scalars and the consequences of the different scaling on the modeling of
turbulent transport in the ABL.
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Figure 2. Scaling δ and H vs. complexity index µ for the three walking rules: AJ (continuous
line), SJ (dotted-dashed line) and SV (dashed line). Left Panel: scaling δ. Right Panel: scaling
H.

Appendix A. The diffusion scaling analysis of event-driven random walks
Given an experimental sequence of random events in time, this method is based on the generation
of three different random walks and on the estimations of two different scaling exponents, the
self-similarity index of the diffusion variable Probability Density Function (PDF) δ and the
second moment scaling H. It is worth noting that the three random walks introduced here,
and their scaling properties in the case of renewal events, are well known in literature by
many years [21, 22, 26, 23, 24, 25]. The calculation of these scaling exponent is based on
the analytical treatment of the Continuous Time Random Walk developed by Montroll and
co-workers [18, 19, 20]. In particular, these walking rules have been extensively used as a
tool of scaling analysis in experimental event sequences [6, 3, 5]. However, the joint use of all
these random walks and scaling analyses was carried out in Ref. [6] for the first time as an
application to brain data (see also [3] for a brief review). This scaling analysis, which is here
denoted as Event-Driven Diffusion Scaling (EDDiS) method, allows to evaluate the diffusion
scaling exponents δ and H, which are asymptotic features of the signal under consideration.
In the renewal condition this allows also to derive a robust estimation of the complexity index
µ. When a reliable estimation of all the different scaling exponents is carried out, the EDDiS
also gives a reasonable justification of the renewal condition itself [6, 3, 5]. In fact, for renewal
events, the relatiohships among the different scaling exponents and of these exponents with the
complexity index are theoretically known. Then, it is possible to derive independent estimations
of the complexity index. When these evaluations are compatible with each other, the renewal
condition is reasonably proved and, further, a robust estimation of the complexity index is
obtained.
Given the experimental sequence of event occurrence times t0 , t1 , t2 , ... corresponding to the
events 0, 1, 2, ..., we have the following walking rules:

(a) Asymmetric Jump (AJ) rule:
the walker makes a positive jump (ξ(tn) = 1) in correspondence of each event n, otherwise
it stands (ξ(t) = 0). In other words, ξ(t) is a sequence of unitary pulses

(b) Symmetric Jump (SJ) rule:
as in the AJ rule, but the walker can make positive or negative jumps in correspondence of
an event: ξ(tn) = ±1. The sign ± is randomly chosen.

(c) Symmetric Velocity (SV) rule:
the walker moves with constant velocity towards a given direction, in the time interval
between two events, then a new random direction is chosen in correspondence of an event:
ξ(t) = ±1 ; tn < t ≤ tn+1.
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Each random walk is then defined through a signal ξ(t), which is a kind of random discontinuous
velocity, or with discontinuous derivative, and taking two or three different discrete values (two
for AJ and SV and three for SJ). The diffusion variable X(t) of the random walk is computed
by integrating ξ(t):

X(t) = X0 +

∫ t

0
ξ(t′)dt′ (A.1)

The scaling properties of these random walks were extensively investigated in several papers
[21, 22, 26, 23, 24, 25]. (see [6, 3] for a brief account of the literature). The scaling exponents δ
and H are defined in the following way:

P (x, t) =
1

tδ
F
( x
tδ

)
, (A.2)

σ2(t) = 〈
(
X(t)−X

)2〉 ∼ t2H , (A.3)

where X is the mean value of X(t). These exponents were analytically computed, in the
asymptotic long-time limit, for random walks driven by renewal events with asymptotic power-
law decay in the IET-PDF: ψ(τ) ∼ τµ (this is also denoted as fractal intermittency [3]). The
analytical expressions for the diffusion scaling exponents δ and H as a function of µ are given
by:

δAJ (µ) =


µ− 1 ; 1 < µ < 2

1/(µ− 1) ; 2 ≤ µ < 3

1/2 ; µ ≥ 3

(A.4)

HAJ (µ) =


µ/2 ; 1 < µ < 2

2− µ/2 ; 2 ≤ µ < 3

1/2 ; µ ≥ 3

(A.5)

δSV (µ) =


1 ; 1 < µ < 2

1/(µ− 1) ; 2 ≤ µ < 3

1/2 ; µ ≥ 3

(A.6)

HSV (µ) =

{
2− µ/2 ; 1 < µ < 3

1/2 ; µ ≥ 3
(A.7)

δSJ (µ) = HSJ (µ) =

{
(µ− 1) /2 ; 1 < µ < 2

1/2 ; µ ≥ 2
(A.8)

These results are plotted in Fig. 2. All rules give a normal scaling δ = H = 1/2 for µ ≥ 3,
corresponding to normal (Gaussian) diffusion. This is a consequence of the generalized limit
theorem for Lévy stable distribution [28]. For the SJ rule this is true also in the range 2 < µ ≤ 3,
while AJ and SV rules are super-diffusive (H > 1/2) in all the interval 1 < µ < 3. On the
contrary, the SJ rule is sub-diffusive (H < 1/2) for 1 < µ < 2. For Poisson renewal processes,
corresponding to the joint limit µ, T →∞, the values of δ and H are again given by the normal
scaling 1/2 and the diffusion is Gaussian.
The scalings δ and H are evaluated by means of the Diffusion Entropy (DE) method [23, 24]
and of the Detrended Fluctuation Analysis (DFA) [27], respectively.
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