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Thermal degradation of optical resonances in
plasmonic nanoparticles

Lasse K. Sørensen, a,b Daniil E. Khrennikov,a Valeriy S. Gerasimov, *a,c

Alexander E. Ershov,a,c Maxim A. Vysotin,a,d Susanna Monti, e

Vadim I. Zakomirnyi, a,c Sergey P. Polyutov,*a,f Hans Ågren a,g and
Sergey V. Karpova,d

The dependence of plasmon resonance excitations in ultrafine (3–7 nm) gold nanoparticles on heating

and melting is investigated. An integrated approach is adopted, where molecular dynamics simulations of

the spatial and temporal development of the atoms constituting the nanoparticles generate trajectories

out of which system conformations are sampled and extracted for calculations of plasmonic excitation

cross sections which then are averaged over the sample configurations for the final result. The calcu-

lations of the plasmonic excitations, which take into account the temperature- and size-dependent relax-

ation of the plasmons, are carried out with a newly developed Extended Discrete Interaction Model (Ex-

DIM) and complemented by multilayered Mie theory. The integrated approach clearly demonstrates the

conditions for suppression of the plasmons starting at temperatures well below the melting point. We

have found a strong inhomogeneous dependence of the atom mobility in the particle crystal lattice

increasing from the center to its surface upon the temperature growth. The plasmon resonance suppres-

sion is associated with an increase of the mobility and in the amplitude of phonon vibrations of the lattice

atoms accompanied by electron–phonon scattering. This leads to an increase in the relaxation constant

impeding the plasmon excitation as the major source of the suppression, while the direct contribution

from the increase in the lattice constant and its chaotization at melting is found to be minor. Experimental

verification of the suppression of surface plasmon resonance is demonstrated for gold nanoparticles on a

quartz substrate heated up to the melting temperature and above.

The interaction of metal nanoparticles with laser radiation is a
phenomenon that is as intriguing as it is important in
research areas covering plasmonics.1–7 The study of such pro-
cesses is thus of topical interest for nanosensorics,8–10 nano-
biomedicine and biotechnology11 as well as for energy harvest-
ing,12 wave guiding and near-field heat transfer,13–15 all relying
on the strong field and energy concentration generated by

plasmonic excitations in nanoparticles. Despite the fact that
the fundamental processes in plasmonics nowadays are quite
well characterized, there is still a considerable lack of under-
standing of the effects of light–matter interaction when plas-
monic nanoparticles are exposed to high-intensity pulsed laser
radiation.16–21 This situation is unfortunate considering that
the photothermal properties of plasmonic nanoparticles are
associated with important applications, for instance when the
particles are bound to malignant cell membranes or malignant
neoplasms, where hydrodynamic effects accompanying the
vaporization process from heated nanoparticles gain thera-
peutic effects. Damage of the malignant cell membrane is rea-
lized through the heating by pulsed laser radiation of the
nanoparticles which at the initial moment of the bubble
nucleation creates a wave of high pressure acting on the mem-
brane. In this case, the value of pressure, considerably exceed-
ing the threshold values, gives an indication of irreversible cell
damage. Related, important, applications of plasmonic nano-
particles in anticancer therapy refer to hyperthermia of malig-
nant cells in pulsed laser fields.22 These are a few of a number
of applications of the heating of nanoparticles by laser radi-
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ation, see reviews in.7,23–25 However, in some of these appli-
cations the effect of heating on the optical properties of the
nanoparticles and vice versa are often not taken into account.

A special case of the photothermal processes takes place at
high temperatures when the plasmonic nanoparticles undergo
a transition into the liquid state26 as studied in papers27–29

focusing on the influence of pulsed laser radiation on plasmo-
nic nanoparticle aggregates. Here the effect of melting of
nanoparticles on their resonant properties was shown to gene-
rate changes in the optical properties and in particular non-
linear optical responses of such systems due to the pulsed
laser fields.30 However, the photothermal and optical pro-
perties of nanoparticles under laser pulses cannot be predicted
with their temperature-independent optical absorption cross
section. Besides, the thermal properties of the ambient liquid
at high temperatures and possible melting of nanoparticles
are side effects that need to taken into account.22 For instance,
in areas like plasmonic enhanced infrared energy harvesting,
using cascade upconversion amplification,31 the problem of
melting due to the ultra-enhanced fields becomes crucial.

Motivated by these endeavors, our present work aims to
establish the correlation between the optical properties of plas-
monic nanoparticles and structural properties of their crystal
lattices in a wide range of temperature variation, taking into
account the temperature dependence of the particle structure
as well as of the relaxation constant.

1. Models and methods
1.1. Extended discrete interaction model

The Extended Discrete Interaction Model (Ex-DIM),32,33 is a
discrete structure model parameterized directly from experi-
mental data. In this model each atom is represented by a
Gaussian charge distribution and endowed with a polarizabil-
ity and relaxation constants which governs the inter-atomic
interaction.34–37 Ex-DIM has shown to improve the description
of the surface topology, geometric dependence in comparison
to older Discrete Interaction Models.32 Since it previously has
been described in detail we will here only focus on the
improvements in the model preceding this study.

The frequency dependent polarizabilities from the fluctuat-
ing dipoles μ are determined by applying a weak uniform elec-
tric field E:

Aμ ¼ E: ð1Þ
Here A is defined as:

A ij ¼ δijαij
�1 � ð1� δijÞTð2Þ

ij ð2Þ

where Tð2Þ
ij is the electrostatic interaction tensor between

dipoles38 and αij is defined as:

αii;kl ω;P;T ; fcnð Þ ¼ Ri fcnð Þ
Ri;bulk

� �3

αi;s;klL ω;P;Tð Þ: ð3Þ

In eqn (3), Ri,bulk is the bulk radius of the atom, Ri( fcn) the
coordination number ( fcn)

39 scaled radius,32 αi,s,kl is the

assigned atomic polarizability and L(ω,P,T ) a size- and temp-
erature-dependent Lorentzian.

Here αi,s,kl used to be the static atomic polarizability32 but
we found that employing the static atomic polarizability
greatly overestimates both the total polarizability and extinc-
tion cross section comparing to classic methods when reason-
able values for the relaxation constants were utilized. This
finding is in line with the density functional theory (DFT) cal-
culations on smaller gold clusters where the polarizability per
atom decreases significantly with cluster size.40,41 The fitting
of the Ex-DIM parameters from experiment is discussed in
Appendix A.

The geometric dependence of the surface plasmon reso-
nance is determined by the size- and temperature-dependent
Lorentzian L(ω,P,T ):

Lðω;P;TÞ ¼ NðLxðω; Px;TÞ þ Lyðω; Py;TÞ þ Lzðω; Pz;TÞÞ; ð4Þ
where each Lorentzian:

Li ω; Pi;Tð Þ ¼ 1
ωi

2 Pið Þ � ω2 � iΓi Pi;Tð Þω ; ð5Þ

depends on the frequency ω, the plasmon length Pi
42 and

the temperature T. The plasmon length is defined as the
maximum distance between two atoms plus the radius of
those atoms in the given direction, in other words – the length
over which the oscillations take place. The size-dependent fre-
quency ωi(Pi) is defined as:

ωiðPiÞ ¼ ωað1þ As=PiÞ; ð6Þ
where ωa and As are a chemical element specific resonance fre-
quency and a size dependence quantity, resåectively, which are
fitted from experiment, see Appendix A.

The extinction cross section σext is calculated using the fol-
lowing relation:

σext ¼ 4π kj j = μ � E*
0

� �
jE0j2

; ð7Þ

where k is the wave vector, E0 is the external field and μ the
fluctuating dipoles. The extinction efficiency Qext of a nano-
particle is given by

Qext ¼ σext=ðπR 2Þ: ð8Þ
1.1.1. Size- and temperature-dependent relaxation con-

stants. In previous applications of the Ex-DIM the relaxation
constant Γ was a fixed quantity.32 However, in order to
describe both the dampening and broadening of the plasmon
resonance with respect to temperature due to scattering of
electronson phonons and lattice defects and due to the finite
size effect in a particle with radius Ri, the relaxation constant
will now be written as a sum of a size- and temperature-depen-
dent relaxation contributions:

ΓiðPi;TÞ ¼ ΓðPiÞ þ Γe–ph;dðTÞ: ð9Þ
The size-dependent relaxation constant Γ(Pi):

ΓðPiÞ ¼ Ks=Pi ð10Þ
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is proportional to the inverse plasmon length and is therefore
mostly relevant for particles of small size and Ks is here a
chemical element specific constant. The size-dependent relax-
ation in the Ex-DIM has in this way the same functional form
as the size-dependence of the resonance frequency and the
size-dependent relaxation constant from classical models as
seen in eqn (18).

The phonon spectrum and the temperature dependence of
the relaxation constant can be derived from the Debye model
for as:26,43

Γe�ph;d Tð Þ ¼ K0T5
ðTD=T

0

z4dz
ez � 1

ð11Þ

where TD is the Debye temperature and K0 is a constant includ-
ing the total scattering cross section of an isolated atom, the
ion mass, the ion density, the Debye wave number, the Debye
temperature, and other universal constants. K0 can be found
using already determined Γe–ph,d(Tm) values, where Tm is the
melting temperature. Upon melting, the specific resistance of
gold exhibits a sharp jump of 2.4 times in comparison to the
solid resulting in the change of the relaxation constant:26

ΓðlÞ
e–ph;dðTmÞ ¼ 2:4 � ΓðsÞ

e–ph;dðTmÞ; ð12Þ

where l and s denote here the liquid and solid phase,
respectively.

1.1.2. Melting temperature in Ex-DIM. In Ex-DIM the
melting temperature is calculated from the plasmon length

using the generalised Gibbs–Thomson equation:44

0 ¼ Lm
Tm

T*
m
� 1

� �
þ Δc Tm ln

Tm

T*
m

� �
þ T*

m � Tm

� �
þ 2σslκ

ρs
; ð13Þ

m

radius below 1 nm cannot be calculated due to an inflection
point on the melting curve and only the upper value can be
considered physical since the lower value will give negative
temperatures for a radius above 1.5 nm. In Ex-DIM the
plasmon length is used to calculate the melting temperature
of a particle according to eqn (13), and if the melting tempera-
ture is below the input temperature the relaxation constant is
adjusted according to eqn (12).

1.2. Plasmonic spectra of nanoparticles with an
inhomogeneous radial distribution of dielectric constants.
Multilayered Mie model simulations

We can consider a spherical particle with a radial distribution
of the dielectric constant ε(r) as a particle consisting of N thin
(thickness Δr) spherical layers of a homogeneous material
with dielectric constant Γe–ph,d(T ), where rj = jΔr is the outer
radius of the j-th layer. Taking into account the spherical sym-
metry, multilayered Mie theory will be used to calculate the
extinction spectrum.46 The extinction cross section is in this
theory defined by the following equation:

σext ¼ 2π
k2

X1
n¼1

2nþ 1ð Þ< an þ bnð Þ; ð14Þ

where k is the wave number, an, bn are expansion coefficients
of the field scattered by a particle. These coefficients can be
obtained by fulfilling the boundary conditions for each inter-
layer boundary:

For the outer border:

anmNξ′n xNð Þ �mNψ ′n xNð Þ þ dNn ψ ′n mNxNð Þ � gNn χ′n mNxNð Þ ¼ 0

anξn xNð Þ � ψn xNð Þ þ dNn ψn mNxNð Þ � gNn χn mNxNð Þ ¼ 0

bnmNξ′n xNð Þ �mNψ ′n xNð Þ þ cNn ψ ′n mNxNð Þ � f Nn χ′n mNxNð Þ ¼ 0

bnξn xNð Þ � ψn xNð Þ þ cNn ψn mNxNð Þ � f Nn χn mNxNð Þ ¼ 0:

ð16Þ
In addition, from the condition of finiteness of the field

amplitudes in the nanoparticle center we find f1n = g1n = 0. Here
cjn, d

j
n, f

j
n, g

j
n are expansion coefficients of the field in the j-th

layer, mj ¼ ffiffiffiffi
εj

p is the refractive index of the j-th layer, xj = krj is
the outer radius of the j-th layer (in wavelength unit), ψn(z) =
zjn(z), χn(z) = −zyn(z), ξn(z) = zhð1Þn (z) are the Ricatti-Bessel func-
tions, and symbol (′) denotes a derivative.

To obtain the radial dependence of the dielectric constants
in a particle we use the Drude model as described in ref. 26.

ε r;ωð Þ ¼ ε0 ωð Þ � ω2
p

ω2 þ iωΓ
; ð17Þ

where ω is the cyclic frequency of the electromagnetic
field, ε0(ω) is the component of the dielectric constant

djnmj�1ψ ′n mjxj�1
� �� gjnmj�1χ′n mjxj�1

� �� dj�1
n mjψ ′n mj�1xj�1

� �þ gj�1
n mjχ′n mj�1xj�1

� � ¼ 0

djnψn mjxj�1
� �� gjnχn mjxj�1

� �� dj�1
n ψn mj�1xj�1

� �þ gj�1
n χn mj�1xj�1

� � ¼ 0

cjnmj�1ψ ′n mjxj�1
� �� f jnmj�1χ′n mjxj�1

� �� cj�1
n mjψ ′n mj�1xj�1

� �þ f j�1
n mjχ′n mj�1xj�1

� � ¼ 0

cjnψn mjxj�1
� �� f jnχn mjxj�1

� �� cj�1
n ψn mj�1xj�1

� �þ f j�1
n χn mj�1xj�1

� � ¼ 0

ð15Þ

Nanoscale Paper

where the effect of pressure is omitted. In eqn (13) Lm is the 
latent heat in the phase change for melting, Tm the tempera-
ture at which the phase change occurs (in the case of a curved 
surface of a body), T* the bulk phase change temperature, Δc 
is the difference in the specific heat between the liquid and 
solid phase, Δc = cl − cs, where the subscripts indicate the 
phase, σ, the surface tension, ρs is the density of the metal, 
and κ is the mean curvature radius of the surface. Eqn (13) 
demonstrates a decrease of the melting temperature as the cur-
vature at the interface increases and establishes the correlation 
between these two parameters as experimentally demonstrated 
by Kofman et al.45

Font and Myers showed that using the generalised Gibbs–
Thomson equation from eqn (13) one can accurately describe 
the melting temperature of spherical nanoparticles with radii 
in the 1–12 nm range. We here note that eqn (13) is multiva-
lued and that the melting temperature for particles with a

https://doi.org/10.1039/d1nr06444d


corresponding to contribution of the interband transitions
which is fitted by means of experimental data47 that
makes it possible to accurately reproduce these experi-
mental data in the framework of the Drude model, ωp is
the plasma frequency, Γ is the size dependent relaxation
constant.

Γ ¼ Γ0 þ Ar
vf
R
: ð18Þ

Here vf is the Fermi velocity, R is the particle radius, Ar is
the constant assumed to be equal to 1, Γ0 is the size-inde-
pendent component of the relaxation constant for bulk
metals. In these materials the mobility of atoms is close to
that in the nanoparticle core because it does not experience
the influence of the surface layers, being deep in the center
of the particle.

To obtain this dependence, we use the dependence of the
relaxation constant on the temperature for a bulk:

Γ0 Tð Þ ¼ A0Te þ B0; Te , Tm

2:4 A0Tm þ B0ð Þ; Te > Tm:

	
ð19Þ

a Nose-Hoover thermostat54 with the temperature damping
parameter of 50 fs.

An NP was cut out of bulk FCC/fcc gold crystal as a sphere
with a diameter of 6 nm and containing 6531 atoms. At that
size of nanoparticle only slight discrepancies from the ideal
spherical shape are observed as small (111) facets. The NP was
pre-annealed at the temperature 700 K for 100 ps with sub-
sequent cooling down to 300 K in another 100 ps. During
annealing only single events of atom migration from vertices
and edges to the facets are observed. Therefore, the shape of
the NPs does not change significantly and remains almost
spherical. After that, the temperature was being increased at a
rate of 0.1 K ps−1 up to 1200 K and at every 50 K the atomic
motion was recorded.

The dynamics of atoms at each temperature was registered
with 10 000 consecutive configurations taken every 1 fs. A pre-
liminary analysis of all the MD trajectories confirmed the
stability of the structure, which preserved crystallinity and
morphology till 900 K.

1.3.2. ReaxFF molecular dynamics simulations. A reactive
force field model was also used for temperature dependent
molecular dynamics simulations focusing on particle behav-
iour at very high temperatures beyond melting. The initial con-
figurations were first energy minimized through low-tempera-
ture (10 K) molecular dynamics (MD) simulations in the cano-
nical ensemble (NVT) for about ten picoseconds. Then, the
temperature was slowly increased from 10 to 293 K (in a period
of about 15 ps), and equilibration at that temperature was
carried out for about 100 ps. The simulations were further
extended for production (50 ps), and the last 100 sampled
structures were extracted and used for the subsequent calcu-
lations. Au NP configurations were collected every 0.01 ps. To
explore the behavior of the Au NPs as a function of the simu-
lation temperature series of progressive NVT MDs, namely a
slow temperature increase (12 ps), equilibration (150 ps), and
production (100 ps), were carried out. The last 100 configur-
ations sampled every 0.01 ps were selected for the subsequent
calculations. All the MD simulations were based on an earlier
parametrized reactive force field.55–57

A preliminary analysis of all the MD trajectories confirmed
the stability of the structures, which preserved both their mor-
phology and crystallinity till 950 K, having almost unchanged
low index faces and no visible adatoms. The ReaxFF MD simu-
lations were carried out by means of the Amsterdam Density
Functional (ADF)/ReaxFF code.58 The simulation temperature
was controlled through Berendsens thermostat with relaxation
constants of 0.1 ps, and the time step was set to 0.2 fs.

1.3.3. Characterization of the atom mobility and its defi-
nition. To control transformations of the internal structure of
the Au particles we used several parameters, e.g. the lattice
parameter for the first coordination sphere and the standard
deviation of atomic coordinates from the averaged value for
the Nts = 100 last time-steps in the molecular dynamics
simulations.

Let rmij be the distance between the centers of the i-th and
j-th atoms at the m-th time step and ηmi is the set of the atom
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Here Tm is the melting temperature, A0 and B0 are linear 
coefficients determined in.26 In this approach, instead of the 
particle temperature, we use the effective temperature Te that 
corresponds to the temperature in bulk with the same mobility 
of atoms (δ) in the particle, as well as in the particle layer (see 
the definition of δ in section 1.3.3).

We  can obtain the dependence  Te(δ) (in  particular, for r 
= 0 as the point closest to the conditions of a bulk) from 
the results received by molecular dynamics methods (see 
section 1.3) using approximation for different tempera-
tures. Similarly, the radial dependence δ(r) can be obtained  
by approximating the calculated data on the mobility of 
atoms at a fixed temperature. We note here that the extinc-
tion cross section of the plasmonic nanoparticles studied 
in our work is close to the absorption cross section, since 
the contribution of scattering at such small sizes is 
negligible.

1.3. Molecular dynamics and mobility simulations

1.3.1. Embedded Atom Model Molecular Dynamics simu-
lations. We have performed MD calculations of spherical gold 
nanoparticles to explore their behavior as a function of the 
simulation temperature and to obtain a detailed observation 
of the motion of atoms and of the vibrational properties of 
different parts of the nanoparticles. These simulations were 
performed using the Embedded Atom Model (EAM)48 potential 
implemented in the LAMMPS code.49,50 The EAM potentials 
were initially developed to represent the metallic bonding be-
havior and therefore are known to provide an accurate descrip-
tion of mechanical, kinetic and even vibrational properties of 
gold.51 In this study we have chosen the parametrization by 
Foiles et al.52 because it is capable of representing tempera-
ture-dependent elastic properties of Au.53 For higher accuracy 
of the atomic trajectory calculations, the MD time step was set 
to 0.5 fs in all calculations. The temperature was controlled by

https://doi.org/10.1039/d1nr06444d


indices (number) that are located in the first coordination
sphere at the m-th time step (Nts is the number of steps). The
lattice parameter L for the i-th particle corresponds to the
mathematical expectation (Rm

i ) of the distance to the neighbor-
ing atom in the first coordination sphere

Rm
i ¼ 1

ηmi


 



X
j[ηmi

rmij

Li ¼
ffiffiffi
2

p

Nts

XNts

m¼1

Rm
i ;

ð20Þ

here the multiplier √2 takes into account the FCC lattice
feature which relates the lattice parameter to the distances
between the atoms in the first coordination sphere. The stan-
dard deviation of the atom coordinates from the averaged
value within the entire particle is calculated as

δi ¼ 1
Nts

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNts

m¼1

rmi � ravi
� �2

vuut ; ð21Þ

ravi ¼ 1
Nts

XNts

m¼1

rmi : ð22Þ

Here rmi is the coordinate of the i-th atom at the m-th time
step. The coefficient δi corresponds to the temperature depen-
dent mobility of the atoms growing to the melting point.

We note that a similar definition in paper59 of the mobility
of atoms in a crystal lattice in paper59 also used the mean
square relative atomic displacement dependent on tempera-
ture and pressure.

2. Results and discussion
2.1. Structural evolution of Au nanoparticles upon heating

We analyze first the temperature dependence of the mobility
in the center of a 6 nm Au nanoparticle, see results presented
in Fig. 1. The choice of the mobility measurement point is
motivated by that the conditions for the surrounding atoms in

this location as well as the crystal lattice structure are similar
to that in bulk and are not affected by the boundary of the par-
ticle. As we can see from this figure, a slow monotonic increase
in this parameter is replaced by a sharp jump close to the
melting point in the temperature range from 1000 K to 1050 K
and above, at which point a phase transition occurs. The latter
corresponds to the onset of an amorphous structure formation
when the melting point is reached. When the temperature con-
tinues growing, the mobility demonstrates a slow monotonic
growth, which may be accompanied by evaporation or even
fragmentation of the particle at extremely high temperatures
as shown in Fig. 2. Note that the simulation of melting shown
in this Fig. 2 gives only a qualitative view of the process of par-
ticle evolution as the temperature increases. This particle be-
havior is typical for the conditions of instantaneous heating,
for example, by a picosecond laser pulse, when the thermo-
dynamic state of the particle is not in equilibrium with the
thermostat. Such laser-induced fragmentation of metal nano-
particles has been experimentally observed, see in particular
ref. 60.

Calculated data available in the literature on the size depen-
dence of the melting temperature of free particles have a wide
dispersion of values. These data depend on the employed
model, as well as on the initial shape of the particle (e.g.
round or faceted Wulff-constructions). The papers by Sclexer61

and Guisbiers62 present comparative results from applications
of the effective medium theory (EMT) and the embedded atom
model (EAM), as in our case. The calculated value of Tm
obtained with EAM for a 6 nm nanoparticle is close to our
data. That paper also presents experimental data on the
melting temperature for Au particles with size D≤5 nm which
demonstrate very large dispersion ΔTm (over 200 K).

Fig. 2 Reactive force field model simulation of the evolution of the Au
nanoparticle shape upon temperature growth – from the initial state at
room temperature (D = 6 nm) directly to extremely high temperature
values much above the melting point.

Nanoscale Paper

Fig. 1 The temperature dependence of the mobility of atoms in the 
center of a 6 nm Au nanoparticle with a linear approximation below the 
melting point. The EAM molecular dynamics simulations.

https://doi.org/10.1039/d1nr06444d


Experimental data in different papers have been obtained
either for particles in a matrix or on a substrate. A noticeable
effect of substrates on the melting temperature has been
pointed out, namely that the melting temperature always then
increases compared to free particles and becomes more pro-
nounced with increasing conductivity of the substrate. In
papers63,64 the substrate effect on the melting temperature was
investigated for gold nanoparticles, showing that a high con-
ductivity of the substrate material increases the melting temp-
erature. The size effect on the melting temperature of gold par-
ticles was studied experimentally by Buffat and Borel65 in one
of the first papers on this subject. Their experiment with Au
nanoparticles was carried out on a carbon film substrate that
gives Tm = 1100 K for a 6 nm Au nanoparticle.

Fig. 3(I) shows the radial dependence of mobility in the
6 nm Au particle at different temperatures. Determination of
this parameter makes it possible to calculate not only the aver-
aged value over the entire volume of a particle, but also the
values in the selected parts or spherical layers in a particle.
Fig. 3(I and II) demonstrates some interesting physical fea-
tures, first of all, the pronounced radial dependence of the
mobility. It shows that the mobility near the particle surface is
much higher than in its core, which means that melting starts
from the surface of the particles and progresses gradually
towards the inner layers during the heating. It is also clear that
the melting of the surface layers occurs at lower temperatures
than in the core. This feature is visually evident in the sec-
tional view of particles at different temperatures (especially at
T = 1000 K) revealing the structure, amplitude and state of
mobility of the atoms. These images reproduce the degree of
disorder increasing upon the temperature growth and detected
by the TEM analysis at high resolution for different tempera-
tures.61 An available experimental evidence of this process is
confirmed by the phenomenon of fusion of contacting metal-
lic nanoparticles, combined into a dumbbell with formation of
a bridge between them during heating at temperatures well
below the melting temperature of single particles, see e.g.66,67

The spatial dispersion of the mobility of atoms δi(r) can
here be explained by the presence of the different parts inside
the particle with different lattice parameters and by the
decrease of binding energy of atoms in the lattice closer to the
particle boundary. In general, the atomic mobility parameter
is related to the specific electrical conductivity of a metal
due to the electron–phonon scattering, which is responsible
for the growing of the electron relaxation constant of a metal
and the suppression of the surface plasmon resonances of
the nanoparticles. We explain this as follows: first, the
random thermal vibrations of atoms in the lattice and the
amplitudes of phonons are temperature dependent parameters
which can be obtained by the Fourier transform of the time
dependent function of the modulus of the i-th atom co-
ordinate in the particle (|ri(t )|) at different temperatures
ρω ¼ 1=

ffiffiffiffiffi
2π

p� � Ð t0
0 ri tð Þ expð�iωtÞdt. Fig. 3(III) demonstrates the

spectral density of phonon modes or the total over the unit fre-
quency range (Δω = 1 Hz) vibration amplitude (ρω) as a func-
tion of frequency ω corresponding to different temperatures.

These Fourier spectra were averaged over all atoms of the par-
ticle. The time interval during which the function |ri(t )| is
recorded was equal to t0 = 10 ps in the frequency range up to
1012 Hz. The spectra demonstrate thermal fluctuations of
atoms in the crystal lattice. As we can see the spectral density
of the phonon amplitudes (falling in a unit spectral range) at
the frequency of 1011 Hz and below increases by 20 times and
higher from the room temperature to the melting point.

Determination of the relationship between the amplitude
of thermal vibrations of the crystal lattice of metals, electron–
phonon scattering and the electron relaxation constant is an
important issue in plasmonics, just as it is in condensed
matter physics in general. Experimentally, the thermal
vibrations of the crystal lattice and the state of the phonon
spectrum can be detected by scattering of X-rays or neutrons
when they pass through a sample. Such scattering is described
by the Debye–Waller factor (W) and corresponds to the expo-
nential attenuation of the transmitted flow (I = I0 exp(−W)).
The dimensionless parameter W is proportional to the mean
square of the vibration amplitude, which, in turn, for the case
of high temperatures (T ≫ TD), is proportional to the absolute
temperature, where TD is the Debye temperature.

The relaxation processes limiting the conductivity of metals
is known to be related to the free path of conduction electrons
l = vττ, where τ is a mean free run time, vτ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=me

p
is the

average velocity of the thermal motion of the electrons. In the
general case the electrical conductivity coefficient (at the elec-
tron concentration n) is determined as σ0 = e2nl/(mevτ).

According to the Matthiessen rule, the dominant factor in
the decrease of conductivity of pure metals with a defect-free
crystal lattice is the scattering of conduction electrons by
phonons, which increases in proportion to the first power of
temperature at its high values, ranging from the Debye temp-
erature up to the melting point.68 The electron–electron com-
ponent of electrical resistivity is observed only at low tempera-
tures (well below 300 K).68,69 The scattering of electrons on the
surface of the particle is taken into account in eqn (18) for
quantum-size effects that does not depend on temperature.

In general, phonon vibrations cover a wide frequency range.
The free path of an electron (lep) due to its interaction with the
lattice depends on the phonon frequency, which in turn is
limited from above by the condition ω ≤ ω0, where ω0 = vs L

−1,
vs is the speed of sound in a metal (3200 ms−1 for a gold).
Under the condition T ≫ TD the mean free path is lep ∼
ħτ(kBT ). In this case, the specific resistance due to the phonon
contribution corresponds to the equation

ρph ¼ mevτ
e2nlep

: ð23Þ

It is also notable that when approaching the melting temp-
erature, the concentration of defects such as vacancies in the
crystal lattice of a particle increases. The effect can be
described by the additional term (ρd = mevτ/(e

2nlepd)) when the
free path of electrons (lepd) is reduced. In this case, the specific
resistance accumulates both factors ρ = ρph + ρd that will also
cause an increase in the electron relaxation constant in a wide
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Fig. 3 Temperature dependencies (columns I, II, III, IV) of the atomic mobility in an Au nanoparticle with radius R = 3 nm (I), view of this mobility in
the particle cross-section with internal structure (II), the Fourier transform of the time dependent modulus of the i-th atom coordinate (|ri(t )|) as a
spectral density of states in a unit range Δωi within in the frequency range up to 1012 Hz (III), and distribution of the local field inside the particle and
near its surface with raising temperature (for vertical polarization) (IV).
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on a discrete set of experimental data for Au bulk by Otter47

are shown in Fig. 4. As can be seen in this figure, the main
reason for the suppression of the surface plasmon resonance
with growing temperature is the increase in the imaginary part
of the dielectric constants, which is responsible for the radi-
ation energy loss in the particle, and related to the electron–
phonon scattering. Employing the temperature dependence of
dielectric constants, one can obtain the dependence of the
mobility on the dielectric constants by comparison with the
temperature dependence of the mobility, see Fig. 1. Having
obtained data on the radial distribution of the dielectric con-
stants in the nanoparticle for each temperature value, one can
perform calculations of the extinction of such a plasmonic par-
ticle using Mie theory applied to the core–shell model.46 Note,
that for each particle radius the size correction to the dielectric
constants should be taken into account.

Fig. 5(a and b) shows the evolution of the extinction
spectra of an Au nanoparticle for each temperature value with
the surface plasmon resonance at the wavelength λ = 490 nm
in vacuum. For comparison, two models were used in these
calculations: (a) taking into account the inhomogeneous dis-
tribution of the dielectric constant along the radius, and (b)
using a simplified approach with a homogeneous distribution
of the dielectric constant throughout the particle volume,
which we employed earlier. To determine the radial depen-
dence of the dielectric constants inside the particle we used
the temperature dependence of the mobility of atoms in the
particle in Fig. 1, as well as the radial dependence of the
mobility at different temperatures in Fig. 3(I), shown as a set
of statistically scattered points. This dependence was rep-
resented by the approximation curve T (δ), in which the temp-
erature scale was correlated with the dielectric constant ε(T )
(see Fig. 4).

The series of spectral curves demonstrates a stable tendency
towards the suppression of the plasmon resonance with
increasing temperature. In the range of moderate tempera-
tures, the rate of decrease in the amplitude is rather slow,
similar to the results in paper.79 When approaching the point

Fig. 4 Spectra of dielectric constants (real “left” and imaginary “right”
parts) for gold adapted to the experimental data by Otter47 vs. tempera-
ture. Insets show enlarged fragments of the sets of curves for the real
part in a narrow spectral range.
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frequency range. The specific resistance is proportional to the 
temperature of the metal which, in turn, is proportional to the 
mean square of the amplitude of phonon vibrations T ∝ 
(|r0i(t )|)2. Thus, this reasoning indirectly explains the increase 
in the specific resistance upon the temperature growth and 
hence in the electron relaxation constant of a particle as well, 
as shown in Fig. 3(III).

2.2. Evolution of Au nanoparticle extinction spectra during 
heating

It is pertinent to put our new data into context of literature 
findings: in our earlier papers27–29,70 we studied the influence 
of pulsed laser radiation on plasmonic Ag nanoparticle aggre-
gates and took into account the effect of melting of the nano-
particles on their resonance properties29,70. This factor is 
accompanied by an unusual feature – a cyclically repeating rise 
and fall of the temperature of the resonantly excited nano-
particles within a nanosecond laser pulse. The cycles occur 
due to the ceasing of resonant interaction of radiation with 
liquefied particles having a suppressed surface plasmon reso-
nance and the following recovery of the surface plasmon reso-
nance during cooling and subsequent reheating. In papers26,29 

we took into account the heating factor of plasmonic nano-
particles and their aggregates at a temperature above the 
melting point during interaction with pulsed laser radiation, 
which is accompanied by a suppression of the resonant pro-
perties of the liquefied plasmonic nanoparticles. Thereby we 
showed that the results obtained with and without taking into 
account the melting factor differ dramatically. However, in 
that study any experimental evidence of suppression of surface 
plasmon resonance was not available, and only calculated data 
were used based on the spectral dependencies of the dielectric 
constants of the metal at temperatures above and below the 
melting point.

The features of melting of metal nanoparticles and associ-
ated processes are mentioned in a number of papers, in par-
ticular, in refs. 30,71,72 including the heating of plasmonic 
nanoparticles due to interaction with radiation and 
peculiarities of the nanoparticle layer-by-layer melting at high 
temperatures,60,73 and measuring the optical constants for 
gold in thin films74 necessary for simulations of melting. The 
model presented in paper45 makes it possible to estimate the 
thickness of a liquid layer of a metal around the solid core of a 
nanoparticle with a given nanoparticle size at different temp-
eratures and the kinetics of the melting process. In 
papers26,75,76 we presented the effect of temperature on the 
resonance properties of plasmonic nanoparticles within a wide 
range of variation of this parameter, both experimentally and 
theoretically. This effect underlies the dynamic photochromic 
effects in multiparticle plasmonic aggregates observed using 
picosecond laser pulses.70,77,78 In the latter case we accounted 
for the available data on the temperature dependence of the 
optical constants of the material.

2.2.1. Multilayered Mie model simulations of plasmonic 
excitations. The spectral dependences of dielectric constants 
on temperature approximated by continuous functions based
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change in the dielectric constant in the spherical layers close
to the surface, first of all, an increase in its imaginary part,
which is accompanied by an accelerated suppression of the
resonance. Fig. 5(e) shows that besides the decrease of the
plasmon resonance maximum, a long-wavelength shift of the
resonance is observed with raising temperature. Here the
spectra taking into account the radial dependence of the
dielectric constant in the nanoparticle demonstrates a more
pronounced effect, similar to the experimental result, com-
pared to the case of the homogeneous distribution.

2.2.2. Ex-DIM simulations of plasmonic excitations. Fig. 3
(II and III), demonstrates the chaotization of the crystal lattice
structure, the increase of vibrational amplitude and growing
mobility of atoms seen in a sectional view of the particle occur-
ring at raising temperatures. The question arises how the chao-
tization of the Au nanoparticle crystal lattice with growing
temperature affects the plasmonic spectra? Here, the unique
capabilities of the Ex-DIM make it possible to account for the
effect of the crystal lattice geometry of a nanoparticle in its
pure form on the plasmon absorption spectra. In our case, the
geometry change involves an increase in the crystal lattice con-
stant as well as a randomization of the lattice with growing
temperature. Fig. 6(a and b) demonstrates the structural effect
on the extinction spectrum shown at different temperatures.
In these simulations the relaxation constant was maintained
unchanged and corresponds to the room temperature of
300 K. As follows from the figure the structural effect on the
spectrum from single snapshots at different temperatures is
negligibly small. To show that this is no coincidence a statisti-

Fig. 5 Variation of the extinction spectra and differential extinction
spectra of a 6 nm Au nanoparticle in vacuum and suppression of surface
plasmon resonance in the temperature range 300–1200 K with a radial
dependence of the dielectric constant (a, c), and in the absence of radial
dependence of dielectric constant (b, d) in a vacuum (refractive index n0

= 1). Shift of the wavelength corresponding to the maximum in the
extinction spectra of a 6 nm Au nanoparticle upon the temperature
growth (e): for the inhomogeneous (square dots) and the homogeneous
(crosses) radial dependencies of the dielectric constant.

Fig. 6 Ex-DIM simulations of the structure effect on the extinction
spectra for the 6 nm Au nanoparticle. Geometries are taken at different
temperatures but with relaxation constant fixed at the room temperature
– Γi(T = 300 K). Insets show the enlarged fragments of spectral curves
near the surface plasmon resonance maximum to highlight minor differ-
ences in the curves. Plasmonic absorption spectra of the 6 nm Au nano-
particle with subtracted interband absorption band of gold at different
temperatures. (a, c) – in a vacuum (n0 = 1), (b, d) – in a medium with a
refractive index of n0 = 1.33.
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of the phase transition, a abrupt drop of the plasmon reso-
nance amplitude is observed. Note, approaching a temperature 
of the melting point and above it, the optical properties of the 
plasmonic nanoparticles are determined not only by the 
thermal variation of the dielectric constants, but also by the 
dynamical chaotization of the particle shape, which is 
accompanied by a broadening of the plasmonic spectrum and 
emergence of additional resonances for each instantly existing 
shape.80,81

Differential spectra of the Au nanoparticle extinction and 
the difference in spectra based on different models are shown 
in Fig. 5(c and d). As can be seen from this figure, there is a 
general tendency for the plasmon resonance to become sup-
pressed with growing temperature. However, taking into 
account the inhomogeneity in the radial distribution of the 
dielectric constant results in a higher rate of suppression with 
growing temperature compared to the case of a homogeneous 
dielectric constant distribution. This is explained by the fact 
that at the same temperature and dielectric constant at the 
center of the particle, the first model takes into account the
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sion of the surface plasmon resonance due to the relaxation
processes with increasing temperature followed by melting.
However, both factors are worth considering in order to inter-
pret the overall results presented in Fig. 7.

Fig. 3(IV) demonstrates the distribution of the local field
inside the particle and close to its surface with increasing temp-
erature. The capabilities of Ex-DIM make it possible to calculate
both the plasmon absorption spectra and the local field inside
the particle and near its surface at the given temperature. As can
be seen from the series of images, the distribution of the local
field inside the heated particle and near its surface is inhomo-
geneous. The maximum values of the field strength inside the
particle and near its poles are achieved at minimum tempera-
tures and in conditions of the ordered crystal lattice. The pattern
of the local field distribution near the particle surface corres-
ponds to the classical one for a spherical geometry. However,
with raising temperature, the field strength near the poles
decreases and deviates from the classic configuration, which is
associated with the growing contribution of the relaxation pro-
cesses, suppressing the plasmon oscillations. It is also notable
that overall decrease in the amplitude of the internal local fields
inside the particle as the temperature rises and when the crystal
structure amorphizes. Attention is drawn to the perturbation of
the field near the particle surface, associated with deviations of
the particle shape from the sphere at high temperatures.

Fig. 7 clearly demonstrates the suppression of the surface
plasmon resonance with increasing temperatures. Due to the
rapid suppression of resonance in the range from 300 K to
700 K it becomes difficult to visibly distinguish the surface
plasmon resonance above 700–900 K without comparing with
the spectra at 1150 K where the particle is melted. We here
note that the melting temperature in the Ex-DIM calculated
from the Gibbs–Thomson equation – eqn (13) is 1130 K.

Table 1 Statistically averaged structural effects on maximum of the
surface plasmon resonance (λ) and extinction cross section σext along
with the standard deviation σ(λ) and σ(σext) for both properties. T shows
the temperature for the snapshot, all calculations have been performed
at 300 K in the Ex-DIM. NPs in the top section are in vacuum while the
middle section corresponds to the ambient medium with the refractive
index of n = 1.33. In the last line the snapshots and temperature in the
Ex-DIM is 500 K. These calculations have been performed for particles
in a medium with the refractive index of n = 1.33

T [K] λ [nm] σ(λ) [nm] σext [nm
2] σ(σext) [nm

2]

300 505.4 0.1 2.814 0.004
500 505.59 0.03 2.813 0.001
700 505.87 0.08 2.811 0.002
900 507.0 0.1 2.817 0.003
1100 507.5 0.3 2.804 0.009

300 511.8 0.2 6.64 0.02
500 511.8 0.2 6.603 0.008
700 512.2 0.1 6.56 0.01
900 513.6 0.2 6.56 0.02
1100 513.7 0.3 6.31 0.05

500 508.0 0.1 5.290 0.005

Fig. 7 Ex-DIM simulations of the extinction spectra variation for the
6 nm Au nanoparticle with suppression of surface plasmon resonance in
the temperature range 300–1150 K. Differential extinction spectra vari-
ation with suppression of surface plasmon resonance in the temperature
range 300–1150 K (all curves were subtracted from the spectral depen-
dence for T = 1150 K). (a, b) – in vacuum, (b, d) – in the medium with
refractive index n0 = 1.33 (b).
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cal analysis of 100 randomly selected snapshots at each temp-
erature was performed, see Table 1. It demonstrates that the 
red shift in the surface plasmon resonance from the structural 
effects remains within 2 wave numbers and that the decrease 
in the extinction cross section in vacuum is only 0.4% while in 
the medium with the large refractive index the decrease is 5%. 
The variations between the snapshots at a given temperature is 
even smaller as seen from the standard deviation of both the 
surface plasmon resonance and extinction cross section.

A similar statistical analysis from raising the temperature in 
the Ex-DIM unfortunately gives difficulties in pinpointing the 
maximum of the surface plasmon resonance because of the 
absence of a definite peak at higher temperatures. It is, 
however, evident when comparing the single snapshots 
plotted in Fig. 6 that the structural effects almost vanish in 
comparison to the change from the Debye model for the 
phonon spectrum. In the last line of Table 1 this becomes very 
clear since there is a shift of almost 4 wave numbers and a 
decrease of 20% in the extinction cross section when compar-
ing the Ex-DIM calculations performed at 300 K and 500 K.

Thus, an important conclusion follows from Fig. 6(a and b), 
namely that the randomization of the crystal lattice in its pure 
form, which intensifies with raising temperature, does not 
noticeably affect the surface plasmon resonance.

Here we see that although there is a structural dependence 
that suppresses the plasmon band to a small extent with temp-
erature, the relaxation factor represents by far the most impor-
tant mechanism that contributes to the temperature depen-
dence of the suppression.

In contrast to Fig. 6(a, b, c and d) shows the extracted intra-
band spectral contribution of the surface plasmon resonance 
for the Au nanoparticles obtained by subtracting the interband 
absorption band at different temperatures from the total spec-
trum. This series of curves clearly demonstrates the suppres-
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The suppression of the surface plasmon resonance, as cal-
culated by Ex-DIM, is predicted to be faster at lower tempera-
tures than from the multilayered Mie theory, as seen in Fig. 7,
where a more linear correlation between the maximum value
of the surface plasmon resonance and temperature is
observed. For the maximum of surface plasmon resonance,
there is a wavelength difference of less than 10 nm between
Ex-DIM and the multilayered Mie theory. This difference is pri-
marily due to the size correction for the multilayered Mie
theory for the case of gold26 and the discrete nature of Ex-DIM,
where the number of atoms in a particle with the same radius
can vary and hence give a small change in the position of the
surface plasmon resonance. The calculations of the plasmonic
spectra of Au nanoparticles performed for different values of
the refractive index of the environment coincide with the trend
shown by K. G. Thomas.82

In order to better observe the temperature suppression of
the surface plasmon resonance, the differential spectra
between the solid and melted (1150 K) nanoparticles are
plotted in Fig. 7(c and d). Here the contribution from the
surface plasmon resonance at different temperatures becomes
more visible along with the slight red shift of the resonance as
temperature grows.

2.2.3. Comparison with experiment. Fig. 8 shows a com-
parison between available experimental data and the results of
calculating the extinction spectra with raising temperature.
The slope of these dependencies corresponds to the rate of
suppression of the surface plasmon resonance. The range of
variation of the extinction cross section values is expressed
through the difference of the maximum to the minimum value
in the investigated temperature range comprising the room
temperature and the melting point. Since we compare the
temperature dependence of the surface plasmon resonance
amplitude of different size particles – 6 nm in calculations and
40 nm in our experiments Fig. 8, we limit ourselves to a com-
parison of the general trends in the spectra. We note that an
exact comparison with experiment cannot be made due to the

size dependent melting temperatures (Tm) – for the 6 nm Au
nanoparticle the melting point is obtained from the Gibbs–
Thomson equation as 1130 K, whereas for the 40 nm nano-
particle the melting is observed at 1300 K (both values are
marked on the temperature axis of this figure).

As can be seen from Fig. 8 the calculated and experimental
dependencies with the thermal suppression rate of the surface
plasmon resonance amplitude are generally similar.
Calculations of the extinction spectra were carried out by two
methods: Ex-DIM and the multilayered Mie theory. In both
cases there is a slow and monotonic decrease in the amplitude
with raising temperature, and when the melting temperature
is reached an abrupt drop in the resonance amplitude occurs
that qualitatively reproduces the experimental result. It is
notable that the shape of the curves in Fig. 8 when comparing
the calculated and experimental data can also be an indicator
of their similarity besides a sharp drop when approaching the
melting point. However, this is a subject of separate studies.

Fig. 9 shows SEM images of Au nanoparticles on a quartz
substrate subject to heating up to the melting point and above
in our experiment. The average size of polydisperse Au par-
ticles is here about 40 nm.

3. Conclusions

The intriguing issues related to melting of small metal nano-
particles induced by strong laser fields, and the altered behav-
iour of plasmonic excitations with temperature, form interest-
ing subjects for fundamental studies, but finds also motiv-
ation in the large number and a variety of applications of plas-
monic nanoparticle technology. These considerations led us to
the initiate the present work, where we studied the behaviour
of plasmon resonances of metal nanoparticles as the tempera-
ture goes from room conditions to the melting point. This was
accomplished by engaging the Extended Discrete Interaction

Fig. 9 SEM image of Au nanoparticles on quartz substrate after anneal-
ing. The mean size of the nanoparticles is 40 nm.
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Fig. 8 Comparison of the suppression rate for the maximum of plas-
monic spectrum upon the temperature growth calculated by the multi-
layered Mie theory in the case of inhomogenious radial dependences of 
the dielectric constant in a 6 nm Au nanoparticle (circles), by Ex-DIM 
with homogenious radial dependences of dielectric constant (cross 
dots) – both in vacuum (n0 = 1), and in experimental extinction spec-
trum of a 40 nm Au nanoparticles on quartz substrate (square dots).75 

Arrows on the temperature scale show the melting points for the 6 nm 
and 40 nm nanoparticles.
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ture, becoming almost totally suppressed at the melting
point.75 The suppression of the surface plasmon resonance in
the metal nanoparticle starts at temperatures well below the
melting point up to full suppression after the transition of the
particle into the liquid state, something that is associated with
an increase in the amplitude of the atom vibrations in the
crystal lattice. It is accompanied by electron–phonon scattering
with simultaneous increase in the relaxation constant. The
earlier melting of the surface will to a large extent dictate the
dependence of the plasmon resonance on temperature.

5. The contributions of the lattice structure chaotization as
well as the increase in particle size and lattice constant to the
suppression of the surface plasmon resonance during heating
seem quite minor. The dominant factor of suppression of the
plasmonic excitation is thus the electron–phonon scattering,
which significantly changes the relaxation constant.

The ramifications of these findings could be very wide and
call for the optimization of the temperature conditions, and to
optimize the plasmonic nanoparticles under these conditions,
and concern a large number of applications that employ plas-
monic nanoparticles. Thus, the particles must be optimized
both to maximize the local field enhancement and to maintain
maximum functionality, taking into account also the degra-
dation of resonance properties caused by the incident
radiation.

The unique combination of research tools employed in this
work made it possible to look deep into processes underling
thermal effects in metallic nanoparticles, previously inaccess-
ible for studies. These effects, often ignored in many publi-
cations cause a fundamental change in the properties of such
particles during heating. The most typical conditions, under
which the thermal effects occur, arise when nanoparticles are
irradiated by pulsed laser radiation of high intensity. Such
exposures underlie various applications related to the require-
ment of local field enhancement effect. The study of such pro-
cesses is of topical interest for nanosensorics, plasmonically
enhanced Raman scattering, nanobiomedicine and biotech-
nology as well as for waveguiding and near-field heat transfer

Fig. 10 Fitting the maximum value of the extinction cross section to
the classical results obtained by using the parameterization of Karimi86

(a). Fitting of the size-dependent position of the surface plasmon reso-
nance (SPR) compared to the fit of the experimental data.83–85 The data
points are the measured and calculated values (b). The refractive index
of the host medium is here n = 1.33.
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Model (Ex-DIM) for predicting plasmonic excitations where the 
basic structural data for the nanoparticles were obtained by 
means of molecular dynamics simulations. A semi-empirical 
theory for relaxation constants of the plasmonic excitation 
states was thereby also employed, as well as a classical 
approach based on the multilayered Mie theory. As a prerequi-
site to studying the plasmonic spectral dependency on temp-
erature we also computationally explored the actual melting 
process, and the dependence of the atom mobility in the 
crystal lattices with heat.

We find that heating of plasmonic nanoparticles, including 
super-high heating, changes not only the dielectric constant 
due to the electron–phonon scattering, but the size and shape 
of particles as well. In the liquid state the shape can dynami-
cally vary from spherical to chaotic as shown in Fig. 2. Even at 
room temperature complex-shaped particles, unlike spherical 
ones, acquire additional resonances in the plasmonic absorp-
tion band, which is accompanied by a broadening of this spec-
tral band.81 At the same time, in real conditions of picosecond 
laser heating of nanoparticles both features – change in the 
shape and structure and change in the dielectric constant –
will manifest themselves jointly. In particular, these factors 
may serve as additional sources of optical nonlinearity of a 
nanocomposite medium containing plasmonic nanoparticles.

Based on the obtained results in this work, we can make 
the following statements:

1. The mobility of atoms in the crystal lattice of heated 
nanoparticles clearly demonstrates staged features when the 
temperature approaches the melting point. Upon temperature 
growth this mobility first shows a slow monotonic increase 
which is replaced by a sharp drop close to the melting point, 
in which a phase transition occurs. When the temperature 
continues growing, the mobility demonstrates again a slow 
monotonic growth, leading ultimately to evaporation or even 
fragmentation of the particle.

2. We could predict a pronounced radial dependence of the 
mobility which is much higher near the particle surface than 
in the central part. This reflects the fact that the melting starts 
from the surface and progresses gradually towards the inner 
layers of the particle during heating. It becomes clear that the 
melting of the surface layers occurs at a much lower tempera-
tures than of the core. It corroborates with the finding in the 
experimental paper45 that gives evidence of the key role of the 
surface in melting of ultrafine particles. When approaching 
the melting point, the radial dependence of the mobility 
gradually disappears and becomes homogenized over the 
volume of the particle.

3. We could also show that Fourier spectra representing the 
average amplitude of phonon oscillations, expressed as a func-
tion of frequency, demonstrate that conditions for electron–
phonon scattering arising with temperature, lead to a signifi-
cant increase in the electron relaxation constant.

4. Concerning the dependence of the plasmonic spectra on 
temperature we could conclude that the plasmonic resonance 
bands slightly red shift, reproducing experimental results, and 
that their extinction coefficients decrease with raising tempera-
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and energy concentration around nanoparticles generated by 
plasmonic excitations.
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Appendix A: Fitting of the Ex-DIM
parameters

Previously the Ex-DIM was only fitted to the position of the 
surface plasmon resonances from experiment and not to the 
absolute value of the extinction cross section.32 Since the 
polarizability per atom is not a constant with increasing 
cluster size the use of atom polarizabilities overestimates the 
extinction cross section.40,41 This means that not only are ωa 

and A from eqn (6) but also the polarizability α along with the 
constants K0 and Ks from the size- and temperature-dependent 
relaxation constants Γsize(Pi) and Γe–ph,d(T ) are to be fitted.

The positions of the surface plasmon resonances are here 
fitted to different experimental sources83–85 while the extinc-
tion cross section is fitted to Mie theory at room temperature. 
The parameters have been optimized by minimizing the differ-
ence between the size-dependent experimental fit and the size-
dependent fit of a training set of spherical gold clusters, as 
seen in Fig. 10(a), along with minimizing the difference in the 
extinction cross section to the size-corrected Mie theory86 as 
seen in Fig. 10(b). We have in this way improved the fitting 
procedure in comparison to the original procedure used for 
the Ex-DIM since the size-dependent fit is significantly closer 
to experiment and gives a correct absolute value for the extinc-
tion cross section. The procedure is substantially faster to 
perform. We find ωa = 0.08735Eh, As = 2.06a0, α = 3.4a03, Ks = 
0.50Eha0 and K0 = 0.005Eh in atomic units.
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