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Identifying nonclassicality from experimental data using artificial neural networks
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The fast and accessible verification of nonclassical resources is an indispensable step toward a broad utilization
of continuous-variable quantum technologies. Here, we use machine learning methods for the identification of
nonclassicality of quantum states of light by processing experimental data obtained via homodyne detection.
For this purpose, we train an artificial neural network to classify classical and nonclassical states from their
quadrature-measurement distributions. We demonstrate that the network is able to correctly identify classical and
nonclassical features from real experimental quadrature data for different states of light. Furthermore, we show
that nonclassicality of some states that were not used in the training phase is also recognized. Circumventing
the requirement of the large sample sizes needed to perform homodyne tomography, our approach presents a
promising alternative for the identification of nonclassicality for small sample sizes, indicating applicability for
fast sorting or direct monitoring of experimental data.
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I. INTRODUCTION

Quantum technologies promise various advantages over
classical technologies. By employing different features of
quantum systems that are not present in classical systems,
one can, e.g., perform more precise measurements, speed up
computations, or share information in a more secure way.
These nonclassical properties create possibilities to optimally
exploit physical systems for many technological challenges.
Light fields, described as continuous-variable systems, play
a key role for the transmission and manipulation of quan-
tum information [1]. Due to their infinite dimensions and an
accessible control by means of linear optical elements and
homodyne detection, they are widely considered for quan-
tum technological applications. In the case of single-mode
continuous-variable quantum systems, the central quantum
resource is nonclassicality [2,3]. Directly related to the neg-
ativities [4,5] of the Glauber-Sudarshan P representation of
the quantum state [6,7], nonclassicality manifests itself in
different observable characteristics such as photon antibunch-
ing [8–10], sub-Poissonian photon-number statistics [11,12],
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and quadrature squeezing [13–17], and can be transformed
into other quantum resources such as entanglement [18,19].
The fundamental nature of nonclassicality is exploited for
the investigation of the roots of quantum phenomena and
several quantum technological tasks such as, e.g., precision
measurements.

Due to its crucial importance for quantum technologies,
a fast and reliable identification of nonclassicality from ex-
perimental observations of the quantum state represents an
unavoidable step toward a practical usage of such a resource
for quantum technologies. In continuous-variable systems,
one of the most common measurement methods is homodyne
detection [20]. Advanced state tomography techniques based
on this type of measurement have been developed [21,22].
However, nonclassicality certification based on homodyne
tomography usually requires many different quadrature mea-
surements and involved analysis tools. A different approach is
nonclassicality certification via negativities of reconstructed
quasiprobabilities [23] (particularly, the Glauber-Sudarshan
P function [24] and the Wigner function [25–28]). Methods
that involve regularizations of quasiprobabilities have been
implemented for the single-mode and multimode scenarios
[29,30], and more recently, phase-space inequalities have been
proposed and tested experimentally [31–33]. Finally, a direct
nonclassicality estimation without the need for quantum state
tomography was proposed in Ref. [34]. Here, the nonclassical-
ity of phase randomized states was classified via semidefinite
programming. In all above approaches, to guarantee the
detection of nonclassicality with a high statistical signifi-
cance, extensive measurements must be performed (using
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different measurement settings or sampling different mo-
ments), after which advanced postprocessing is required
(estimation of pattern functions, reconstruction of quasiprob-
abilities, and semidefinite programming, among others).
Consequently, these methods are often complex and time
consuming. A direct access to nonclassicality identifiers from
unprocessed and finite homodyne-detection data is therefore
desirable.

In recent years, the problem of the classification of un-
structured and complex data has been increasingly addressed
with the help of machine learning (ML) techniques [35]. In
the quantum domain, a wide range of challenges was tackled
using various different forms of ML, see, e.g., Refs. [36–55]
for a review. ML tools have been applied to the identifica-
tion of nonclassicality [50,51]. In Ref. [50], neural networks
(NNs) were trained to identify nonclassicality from simulated
data of multiplexed click-counting detection schemes, and in
Ref. [51], the networks were trained to detect the negativity of
the multimode Wigner function using results from multimode
homodyne detection measurements. Also, ML in the form
of restricted Boltzmann machines has been used to perform
homodyne tomography in Ref. [52].

In this paper, we use ML techniques to identify nonclas-
sicality of single-mode states based on a finite number of
quadrature measurements recorded via balanced homodyne
detection. For this purpose, we employ a dense artificial NN
and train it with supervised learning of simulated homodyne
detection data from several noisy classical and nonclassical
states. We demonstrate the successful performance of the NN
nonclassicality prediction on real experimental data and com-
pare the results with established nonclassicality identification
methods. Furthermore, we test the performance of the network
for experimentally generated states which were not used in
the training procedure and show that the NN can identify
different nonclassical features at once. We conclude that the
ML approach offers an accessible alternative for the classifi-
cation of single-mode nonclassicality, and particularly, due to
its performance on small sample sizes, the presented approach
constitutes a powerful tool for data pre-selecting, sorting, and
onsite real-time monitoring of experiments. Our result repre-
sents an approach to train NNs for identifying nonclassicality
of single-mode phase-sensitive states, here measured by ho-
modyne detection.

The paper is structured as follows. In Sec. II, we briefly
recall the technique of single-mode balanced homodyne de-
tection. In Sec. III, we describe in detail the training of the
NN and the resulting nonclassicality identifier. In Sec. IV,
we apply the NN to experimental homodyne measurement
data and then analyze its performance on untrained data in
Sec. V B. We summarize and conclude in Sec. VI.

II. BALANCED HOMODYNE MEASUREMENT
AND NONCLASSICAL STATES

Any direct experimental investigation of light is based
on photodetection. Depending on the information on the
quantum statistics of the measured light required, different
measurement schemes need to be implemented. For example,
photon-counting measurements are not sensitive to the phase
of the sensed field.

FIG. 1. Homodyne detection scheme. The signal field ρ̂ and the
reference coherent beam (LO) are mixed using a 50:50 beam splitter
(BS) before measuring light intensity.

To get information about the phase, interferometric meth-
ods have to be applied. In these methods, the field is mixed
with a reference beam, the so-called local oscillator (LO).
The mixing takes place just before intensity measurements
[20,22]. The scheme of balanced homodyne detection is
shown in Fig. 1. It consists of the signal field ρ̂, the LO,
a 50:50 beam splitter (BS), two proportional photodetectors,
and the electronics used to subtract and amplify the photocur-
rents after all. Homodyning with an intense coherent LO gives
the phase sensitivity necessary to measure the quadrature vari-
ances [56–58].

This kind of interferometric approach is necessary for the
reconstruction of the quasiprobabilities of bosonic states. In
principle, all normally ordered moments can be determined
from this measurement scheme, including the ones which con-
tain different numbers of creation and annihilation operators.

Thus, homodyne detection drastically enlarges our mea-
suring capabilities in a simple way. The key for the
quasiprobability estimation is to perform measurements for
a large set of quadrature phases, which leads ultimately to
a proper state reconstruction. Balanced homodyne detection
and the subsequent reconstruction of the Wigner function have
become a standard measuring technique in quantum systems
such as, e.g., quantum light, molecules, and trapped atoms
[25–28].

Although experimentally accessible, phase-space func-
tion reconstructions and moment-based nonclassicality cri-
teria require significant amounts of measurement data,
computational power, and postprocessing time. Here, we
propose a shortcut to this process. Using NNs, we can
do an on-the-fly nonclassicality identification with few
measurements.

III. TRAINING THE NN

A. Setup of the network

The input vector of the network consists of a normal-
ized histogram (relative frequencies) of homodyne-detection
data which is collected along a fixed phase setting. To
generate the histogram from simulated or experimentally
generated data (produced from quadrature-measurement
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outcomes x), we bin the data into 160 equally sized in-
tervals which cover the interval [−8, 8] [59]. Since the
histogram is normalized, input vectors constructed from ar-
bitrary numbers of detection events can be used for the same
network.

We use a fully connected artificial NN with an input layer
of size 160, an output layer of size 2, and three hidden layers
with sizes 64, 32, and 16. The hidden layers are activated
with the rectified linear unit, and the output layer is activated
with a softmax function. These parameters were chosen for
a good performance in discriminating between classical and
nonclassical states. The simulated data consisting of 2×104

input vectors per training family (see below) are split into
training data (80%) and validation data (20%). The network
is trained until the validation error stops decreasing for more
than 10 training cycles.

Considering the experimental data on which we want to
test the network’s prediction later, we simulate 16 000 detec-
tion events to generate each training input vector. We train
the NN with data generated from Fock, squeezed-coherent,
and single-photon-added coherent states (SPACS) as states
that show nonclassical signatures and with coherent, thermal,
and mixtures of coherent states as states showing classical
characteristics, see Appendix A for a discussion of this choice.
All families of states used in the training are summarized
together with their parameters in Appendix B. To account for
realistic (imperfect) scenarios, we chose an overall efficiency
of the homodyne measurement of η = 0.6 [33]. Note that the
quantum efficiency that represents external limitations such
as channel or detector efficiencies can equivalently be used
to describe noisy quantum states. Thus, we train the network
with data that correspond to the detection of realistic, lossy
quantum states.

B. Identification of nonclassicality

In the training process, we assign the value 0 to all classical
quadrature data and the value 1 to nonclassical data. The out-
put of the NN is a value r between 0 and 1 that provides a way
to discriminate classical and nonclassical data. A high output
value (close to 1) indicates the nonclassical character of the
tested quadrature data. We choose a threshold value t above
which we say that the NN identifies nonclassicality. As our
goal is to faithfully identify nonclassicality, we set t = 0.9.
This means that, for r > t = 0.9, we conclude that the NN
identifies nonclassicality. In this way, we might reject some
nonclassical states to be recognized as such, but we minimize
the risk of falsely recognizing classical states as nonclassical
ones. Note that depending on the specific requirements and
the choice of trained and studied states, the value of t can be
adapted.

In this context, it is important to stress that the result of
the NN can only be an indication for nonclassical states; cf.
also Ref. [50]. A certification of nonclassicality requires full
analysis including the evaluation of a nonclassicality test (wit-
ness) and a proper treatment of errors. While such an analysis
can be rather involved, the proposed NN approach allows one
to implement an easy and fast identification of nonclassicality.
Therefore, it provides a useful tool for preselecting and sorting
of data or the online, in-laboratory monitoring of experiments.

FIG. 2. Nonclassicality prediction of the neural network (NN)
on the training states [coherent, thermal, and mixed coherent states
as classical ones; Fock, squeezed-coherent, and single-photon-added
coherent states (SPACS) as nonclassical ones], each in its corre-
sponding state-parameter domain. α is the coherent amplitude, n
is the number of photons, and n̄ is the mean number of photons.
The gray horizontal line corresponds to the nonclassicality threshold
t = 0.9. Note that, for the squeezed-coherent states, the squeezing
parameter ξ is chosen randomly in ξ ∈ [0.5, 1] and is not shown in
this plot. For each Fock state, the NN prediction is tested for four
different simulations of the quadrature measurements. For details on
the state parameters, see Appendix B.

C. Performance of the network on trained states

In Fig. 2, we show the output r of the network for the
different families of training states in their corresponding
parameter ranges. All training families are correctly and
consistently recognized to be classical or nonclassical. This
holds for the total parameter regions of the considered states
(cf. Appendix B), indicating that the training of the NN is
successful in the sense that the network learned to correctly
classify the states from the training set into classical and
nonclassical ones.

IV. APPLICATION TO EXPERIMENTAL DATA

Here, we will use the trained NN for the identification of
nonclassicality from experimental quadrature data. We ana-
lyze data from two different families of states: single-mode
squeezed states and SPACS. This analysis will demonstrate
the strength of the network approach as a fast and easy-to-
implement characterization tool for experimental data.

A. Squeezed vacuum states

The first nonclassical experimental state we consider is a
squeezed vacuum state. The vacuum state is squeezed along
the real axis of the coherent plane. Details on the experimental
realization can be found in Ref. [60].
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FIG. 3. Bottom: Nonclassicality prediction of the neural network
(NN; teal) and quadrature variance of the corresponding distribution
(yellow) for experimental data from squeezed states, dependent on
the homodyne phase setting. Shaded regions are indicating nonclas-
sicality for the corresponding quantity. Top: For φ = 0 and π/2, the
exact quadrature distribution p(x) is shown (solid) in comparison
with the quadrature distribution of the vacuum state (dashed).

In the measurements, the homodyne phase setting is
changed continuously within the interval φ ∈ [0, 2π ]. The
resulting measurement data are then divided into 125 bins of
size �φ = 2π/125, such that ∼16 000 detection events are
grouped together to constitute an input vector of the NN. For
our analysis, the amount of squeezing |ξexp| and the quantum
efficiency ηexp of the detectors do not have to be known, which
highlights the practicability of the NN prediction.

In Fig. 3 (bottom), we show the prediction of the network
for the nonclassicality of the squeezed state with respect to
the homodyne phase setting together with the variance of the
measured quadrature distribution. Additionally, the quadra-
ture distributions p(x) for φ = 0 and π/2 (solid) compared
with the vacuum quadrature distribution (dashed) are dis-
played (top). It is known that nonclassicality in quadrature
data can be verified by observing single-mode quadrature
squeezing, see, e.g., Ref. [61]. That is, if the quadrature vari-
ance Var[x̂(φ)] is below the vacuum noise for some values of
φ, Var[x̂(φ)] < 1/4, nonclassicality is detected. We see that
the domain of nonclassicality classification of the network
coincides well with the domain of nonclassicality detection
by sub-shot-noise variance.

In short, we confirm that the NN learns the standard non-
classicality classifier of sub-shot-noise variance. If one is
simply interested in the detection of squeezing, measuring
the variance of the quadrature distribution remains sufficient.
However, as discussed below, in contrast to a mere variance
classifier, the NN can learn how to identify further nonclassi-
cality features. It is more flexible than the squeezing condition
which recognizes only one specific nonclassical feature, and it
can be advantageous in scenarios where the underlying quan-
tum state is not known and cannot be captured by a simple
variance condition.

B. SPACS

Let us now analyze the prediction of the network for ex-
perimentally generated SPACS, which are the result of the

single application of the photon creation operator onto a
coherent state. In principle, such states are always nonclas-
sical, independent of the input coherent state; however, they
present an evident Wigner negativity and resemble single-
photon Fock states only for small coherent state amplitudes.
On the other hand, for intermediate amplitudes, they also
present quadrature squeezing. Exhibiting a variety of differ-
ent quantum features in different parameter regions, SPACS
are therefore particularly interesting candidates for testing
the performance of the NN. The experimental data consist
of quadrature values, measured via homodyne detection, for
the states N â†|α〉 (N is a normalization constant) with 14
different values of α ∈ R+. To experimentally generate such
optical states, we injected the signal mode of a parametric
down conversion crystal with coherent states obtained from
the 786 nm emission of a Ti:Sa mode-locked laser [62]. When
the same crystal is pumped with an intense ultraviolet beam,
obtained by frequency doubling the same laser, the detection
of an idler photon heralds the addition of a single photon
onto the seed coherent state. In other words, each idler de-
tection event announces the presence of SPACS along the
signal mode. Performing heralded homodyne detection on
this mode, we measured the quadrature distributions along 11
different quadrature angles φ for each value of α [62]. Mode
mismatch between the seed coherent states and the pump
and LO beams, optical losses, electronic noise, and limited
detector quantum efficiency in the homodyne measurement
setup are the main causes for a nonunit overall efficiency of
ηexp ≈ 0.6 in the experiment. For each state, 15 963 detection
events are used to construct the network input vector.

In Fig. 4(a), we show the (binary) prediction of the network
for the experimental SPACS data together with exemplary
quadrature distributions p(x) for different combinations of α

and φ. We observe that the ability of the NN to identify non-
classicality depends crucially on the homodyne phase setting.
For sin φ ≈ 0, SPACS are identified as nonclassical in a wide
range of α; cf. Fig. 4(b) for the detailed NN predictions for
this case. On the other hand, for suboptimal directions, SPACS
are rarely recognized as nonclassical by the NN (except for
small α). Also, for large α, SPACS are generally classified
as classical in all directions. As a comparison, we show the
NN prediction for experimental homodyne data generated by
coherent states in Fig. 4(c) for the same parameters as used in
Fig. 4(b). The network correctly recognizes coherent states as
classical.

The phase-dependent behavior of the NN output for the
experimental SPACS can be explained by the fact that, for
sin φ ≈ 0, the quadrature distributions differ significantly
from the one produced by a coherent state, while for other
directions, the corresponding quadrature distributions resem-
ble closely the ones of coherent states [62–64]. For small
α < 0.5, SPACS resemble single-photon states and are thus
recognized as nonclassical at all quadrature angles [see p(x)
for α = 0.32 in Fig. 4]. On the other hand, for large α, the
quadrature distribution of the SPACS approaches the one of
coherent states also in the optimal direction (φ = 0), and
therefore, the NN eventually does not indicate nonclassicality
anymore. In this regime, it is known that SPACS can be a good
approximation of a coherent state of a larger amplitude [65].
The similarity of the SPACS quadrature distribution p(x) for
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FIG. 4. (a) (bottom) Binary neural network (NN) prediction
for experimentally generated single-photon-added coherent states
(SPACS; â†|α〉 with 14 different values of α measured along 11
quadrature angles φ). Yellow (teal) points indicate that the prediction
r of the NN is above (below) the threshold t = 0.9. (top) Addition-
ally, we exemplarily display the quadrature distribution p(x) for some
representative α and φ. (b) Cut of the network prediction for SPACS
along sin φ = 0. (c) Prediction of the NN for experimental data from
coherent states for the same parameters as in (b).

large α and the distribution from a coherent state explains the
difficulty for the NN to classify SPACS as nonclassical in this
regime.

To summarize, for an optimal homodyne phase setting,
SPACS are identified as nonclassical in a wide range of
parameters. It is a direct and simple method for testing
nonclassicality of SPACS directly based on quadrature distri-
butions. As we discuss below, this identification is successful
even in a parameter regime where the homodyne distribution
does not show sub-shot-noise or similarity to Fock states.
Therefore, the NN prediction proves operational for several
different states and nonclassicality features.

V. INFLUENCE OF THE TRAINING SET AND
APPLICATION TO UNTRAINED DATA

In this section, we first discuss the ability of the NN
to recognize different features of nonclassicality at the

FIG. 5. Nonclassicality prediction of a network trained without
single-photon-added coherent states (SPACS; rnoSPACS, teal) for sim-
ulated SPACS as a function of α (φ = 0) together with the quadrature
variance of the corresponding distributions (yellow). Shaded regions
are indicating nonclassicality seen by the network (teal) and by the
variance criterion (yellow).

same time. Then we test its performance to recognize
nonclassicality of states that were not seen in the training
phase and of measurement data consisting of varying sample
sizes.

A. Beyond single-feature recognition

To get some insights into which features are learned by the
NN, we examine the performance in recognizing simulated
SPACS of a network trained without SPACS; see Fig. 5. We
observe that a network which is not trained with SPACS
recognizes the latter only in specific parameter regions (teal
dots). For |α| ∈ [0, 0.5], SPACS are recognized as nonclas-
sical states due to their similarity to single-photon states.
On the other hand, in the parameter domain |α| ∈ [1, 2],
their nonclassicality is recognized because the variance of
the quadrature distribution is significantly smaller than the
vacuum variance. Beyond that, the distribution does not re-
semble Fock states and has a large quadrature variance and
is, therefore, not classified as nonclassical. For |α| > 3, the
variance approaches the vacuum variance, making a correct
classification as nonclassical impossible.

In total, we see that the network can identify some SPACS
even if they were not part of the training set. The network
effectively identifies similarity to Fock states and sub-shot-
noise variances. This is one example of the general fact that
common features can lead to the identification of untrained
data. In comparison, a NN that also used SPACS for its train-
ing can only achieve its performance (c.f. Fig. 2) by learning
how to recognize similarity to SPACS where they do not
resemble Fock or squeezed states. Therefore, we conclude
that the network is sensitive to different nonclassical features
at the same time and, thus, identifies nonclassicality beyond
single features. Hence, a properly trained network can be ad-
vantageous, as it can recognize different nonclassical features
for which one would otherwise need to implement different
test conditions. This is particularly useful if the nonclassical
features of the state to be tested are unknown. As we have
just seen, a state must not be part of the training set to be
recognized by the network. The above analysis also indicates
the necessity to train a deep NN to perform this task since
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FIG. 6. Prediction r of the neural network (NN) for simulated
quadrature measurements of the cat state |α−〉 as a function of α,
for (a) φ = π/2 and (b) φ = π/4. Above the subplots, we show the
quadrature distribution p(x) for different α (solid) in comparison
with the quadrature distribution using the same parameters but a
quantum efficiency η = 1 (dashed).

simple baseline models like, e.g., sub-shot-noise variance only
provide single-feature recognition.

B. Application to untrained data

Now we discuss the performance of the NN on states which
are not used in the training. We apply the network to the family
of so-called (odd) cat states

|α−〉 = 1√
2 − 2 exp (−2|α|2)

(|α〉 − |−α〉), (1)

where α ∈ R+. As all states in this family consist of a coherent
superposition of coherent states; they are all nonclassical.

In Fig. 6, we show the α-dependent prediction r of the
NN for quadrature measurements simulated for |α−〉. We use
quadrature angles (a) φ = π/2 and (b) φ = π/4. For each
subfigure, we additionally display the quadrature distribution
p(x) for different values of α (solid) compared with p(x) for
the same parameters but using a quantum efficiency η = 1
(dashed). For both quadrature angles, the network correctly
classifies the states as nonclassical in a significant range of α.
Thus, this example shows that the NN can certify nonclassi-
cality also of untrained states. For larger α, cat states are not
identified as nonclassical. This behavior can be explained as
follows. For small α, the cat state resembles a single-photon
Fock state and can therefore be identified as nonclassical.
For larger α and measured along φ = π/2 with unit quan-
tum efficiency η = 1, the quadrature distribution develops a
nonclassical interference pattern (a, dashed). However, for
a realistic efficiency η = 0.6, this interference is smoothed

FIG. 7. Prediction r of the neural network (NN) for experimental
data from single-photon-added coherent states (SPACS; yellow) and
coherent states (teal) for α = 0.32 and φ = 0 as a function of the
measurement sample size. The dashed vertical line indicates the
sample size 16 000 that was used in the training phase.

away (a, solid) such that the states are eventually classified
as classical. Surprisingly, by choosing a different quadra-
ture angle of, e.g., φ = π/4, the cat states are classified as
nonclassical in a wider range of α [Fig. 6(b)]. This is because
the quadrature distribution still resembles a Fock state in this
direction. Note that the performance of the NN prediction for
cat states can be increased by including this family in the
training process.

In summary, the NN is able to identify the nonclassicality
also for states that were not used in the training process.
However, for an optimized performance, it remains practical
to adapt classes of states and parameter ranges in the training,
see Appendix A.

C. Influence of the sample size

Finally, we want to discuss the prediction of the NN if it
is given measurement data with a smaller sample size than
that used in the training phase. In Fig. 7, we show the NN
nonclassicality prediction r for experimental quadrature data
of a SPACS (yellow) and a coherent state (teal) for α = 0.32
and φ = 0. We observe that a NN trained with sample sizes
of 16 000 (dashed line) can correctly classify these two states
for measurement data starting from sample sizes as low as
∼800. Decreasing the sample size even further results in false
classification of coherent states as nonclassical and vice versa,
which renders the NN prediction unreliable in this regime.

This analysis shows the flexibility of the NN even once it
has been trained. Importantly, the NN can provide conclusive
predictions based on comparably very small sample sizes,
which opens the possibility of online classification during
measurements or fast (pre-)classification of data. Note that
the performance of the NN for small sample sizes can also be
improved by training it with the corresponding sample size.

VI. CONCLUSIONS

In this paper, we introduced an artificial NN-based non-
classicality identifier for single-mode quantum states of light
measured with balanced homodyne detection. We trained
the network using simulated homodyne detection data for
realistic noisy measurements of different classical and non-
classical states. We observed that the trained network can
correctly classify different classical and nonclassical states,
i.e., coherent states, squeezed states, and SPACS, from
real experimental data. Furthermore, the network recognizes
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certain nonclassical states that were not used in the training
phase of the network. Compared with typical nonclassicality
conditions based on homodyne tomography or other more
complex nonclassicality tests, the strength of our approach
lies in its simple implementation and the fact that only a
small amount of data is required. We would like to emphasize
that the NN nonclassicality prediction cannot certify non-
classicality and, if necessary, should be complemented by an
error-proof nonclassicality witness.

The ML-based classification offers a fast and accessible
method to sort and preselect experimental data, considering
that it circumvents the need to first perform homodyne to-
mography or the calculation of complex test conditions and,
as we showed, performs well also on small sample sizes. It
is furthermore easy to implement and applicable in multi-
ple experimental settings. ML has been used before for the
detection of quantum effects [50–52]. In this context, it is
important to highlight that the presented approach can detect
phase-sensitive nonclassical features, which was not possible
with previous results [50].

Further, the network approach can be used to search in-
teresting experimental parameter regimes, especially if the
production rate of detection events is small. To maximize the
accuracy of the NN prediction in experiments, any specific
information about possible states and noise (such as phase
or amplitude noise) should be included in the training phase.
Finally, note that the presented approach can be generalized
to multimode scenarios and might be adapted to the identi-
fication of entanglement in a similar fashion. Also, different
additional ML methods such as convolutional layers or regu-
larizations can be considered to optimize the performance of
the NN nonclassicality prediction and make it more applicable
to untrained data.
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APPENDIX A: CHOICE OF CLASSICAL STATES
IN THE TRAINING PHASE

Here, we want to emphasize the role of the choice of dif-
ferent classical states in the training data. In the main text, we
used, in addition to coherent and thermal states, mixtures of
coherent states of the form ρmix = (|α〉 〈α| + |−α〉 〈−α|)/2,
where α is sampled from the same parameter domain as for
coherent states. These states have to be included in the train-
ing because, otherwise, training only on classical states with
single-peaked quadrature distributions, the NN might interpret
double- or multipeak structures as features of nonclassicality.
However, the choice of which classical state to use here is
not unique. For instance, a different classical state that occurs
typically in experiments is a phase averaged coherent state
ρav = ∫ 2π

0 dφ |αeiφ〉 〈αeiφ | /2π . Using ρav instead of ρmix in
the training results in a similar performance of the NN as in
the main text, with the expectation that, for larger α, ρmix (and
therefore also cat states measured along φ = 0) are classified
as nonclassical.

This points to an important caveat of the NN classifica-
tion of nonclassicality: as mentioned in the main text, the
different states used in the training phase must be chosen
carefully, given the experimental conditions. Training with
more families of classical states decreases the probability of
false identification of nonclassicality for states that were not
seen in the training. At the same time, it makes it harder for
the NN to learn nonclassicality features of the corresponding
nonclassical training states. This discussion shows that the NN
nonclassicality classification, while representing a simple and
fast nonclassicality identification if possible input states are
known, is not universal and does not yield a strict nonclassi-
cality certification.

APPENDIX B: PARAMETERS AND PROBABILITIES
USED FOR THE SIMULATION OF QUADRATURE

MEASUREMENT DATA

Here, we specify the state-dependent quadrature probabil-
ity distributions and the corresponding parameters used in

TABLE I. For each family of states, the used parameter regions and the corresponding quadrature distributions p(x, φ) are shown, where x
is the quadrature value, and φ is the phase in the balanced homodyne detection. η is the overall quantum efficiency.

State Parameters Probability p(x, φ)

Coherent α ∈ [−5, 5]
√

2
π

exp[−2(x − √
ηα cos φ)2]

Thermal n̄ ∈ [0, 5]
√

2
π (1+2ηn̄) exp(− 2x2

1+2ηn̄ )

Fock n ∈ {1, . . . , 6}
√

2
π

∑n
k=0

(n
k

)
ηk

2k k!
e−2x2

H2k (
√

2x)

Squeezed coherent α ∈ [−5, 5], ξ ∈ [0.5, 1]
√

2
π (1−η+e2|ξ | cos2 φ+e−2|ξ | sin2 φ)

exp[− 2(x−√
ηα)2

1−η+e2|ξ | cos2 φ+e−2|ξ | sin2 φ
]

SPACS α ∈ [−3, 3] 1
1+α2

√
2
π

exp[−2(x − √
ηα cos φ)2]

×[η(2x cos φ − 2η−1√
η

α)2 + 4ηx2 sin2 φ + (1 − η)(1 + 4ηα2 sin2 φ)] [62]

Cat α ∈ [−5, 5]
√

2
π

1

2−2e−2α2 ( exp[−2(x − √
ηα cos φ)2]

−2e−2α2
Re{exp[−2(x + i

√
ηα sin φ)2]} + exp[−2(x + √

ηα cos φ)2])
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the simulation of quadrature measurement data for the differ-
ent states in the main text. In Table I, we list the different
states together with the corresponding parameter regions used
in the simulations and the quadrature distribution along the
quadrature angle φ. Note that we use a vacuum variance
of 1

4 .
For the simulation of the training data, we fixed a quadra-

ture angle φ = 0. For thermal and Fock states, this restriction
does not influence the distribution, as these states are phase
insensitive. For coherent states with amplitude α, the dis-
tribution along a nonzero φ is equivalent to the one of
a coherent state with amplitude α cos φ, measured along

a zero quadrature angle. For squeezed coherent states and
SPACS, this choice assures that only quadrature distribu-
tions which show nonclassical features are used in the
training.

As noted in Ref. [59], the different parameter limits are
chosen such that the probability for an event outside the con-
sidered measurement range |x| > 8 is small (<10−6). Note
that, for SPACS, we further restrict the parameters (|α| � 3) to
a domain where the network is able to separate them clearly
from the classical states. For the simulation of the squeezed
states, the squeezing parameter is chosen uniformly in ξ ∈
[0.5, 1].
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