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Abstract— Thanks to the large number of satellites, the multi-

mission approach is becoming a viable method to integrate 
measurements and intensify the number of samples in space and 
time for monitoring the Earth system. In this study, we merged 
data from different satellite missions, i.e. optical sensors and 
altimetry, for estimating daily river discharge through the 
application of the Artificial Neural Networks (ANN) technique. 
ANN was selected among other retrieval techniques because it 
offers an easy but effective way of combining input data from 
different sources into the same retrieval algorithm. The network is 
trained in a calibration period and validated in an independent 
period against in situ observations of river discharge for two 
gauging sites: Lokoja along the Niger River and Pontelagoscuro 
along the Po River. For optical sensors, we found that the temporal 
resolution is more important than the spatial resolution for 
obtaining accurate discharge estimates. Our results show that 
Landsat fails in the estimation of extreme events by missing most 
of the peak values due to its long revisit time (14-16 days). Better 
performances are obtained from Moderate Resolution Imaging 
Spectroradiometer (MODIS) and Medium Resolution Imaging 
Spectrometer (MERIS). Radar altimetry provides results in 
between MODIS-TERRA and MODIS-AQUA at Lokoja, whereas 
outperforms all single optical sensors at Pontelagoscuro. The 
multi-mission approach, involving optical sensors and altimetry, is 
found to be the most reliable tool to estimate river discharge with 
relative root mean square error of 0.12% and 0.27% and Nash-
Sutcliffe coefficient of 0.98 and 0.83 for the Niger and Po rivers, 
respectively. 
 

Index Terms— Rivers, Radar altimetry, Remote sensing 
 

I. INTRODUCTION 
IVER discharge has been identified as a fundamental 
physical variable and is included among the Essential 

Climate Variables by the Global Climate Observing System 
(GCOS) [8, 9]. Notwithstanding river discharge is one of the 
most measured components of the hydrological cycle, its 
monitoring is still an open issue. Collection, archiving and 
distribution of river discharge data, globally, is limited [11], and 
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the network currently in operation is inadequate in many parts 
of the Earth and the number of sensors is declining [20, 28]. 
Remote sensing has great potential in offering new ways to 
monitor river discharge, through the measurements of the 
connected hydraulic variables. Indeed, because of its nature, 
river discharge cannot be directly measured, and both satellite 
and traditional monitoring are referred to measurements of 
other hydraulic variables, e.g. water level, flow velocity, water 
extent and slope, which are proficiently inserted in the 
traditional hydraulic formulas to derive river discharge [2, 3, 7, 
10]. In this context, the strong advantage provided by remote 
sensing sensors is the regular, uniform and global monitoring 
of observables for a long period due to the large number of 
satellites launched during the last 20 years. Moreover, the 
different nature of the available sensors permits taking 
advantage of their complementarity in the observations and to 
benefit from the potential of combining them. 

 The recent advances in radar altimetry technology offer 
important information for water level monitoring of rivers and 
the increased accuracy of the sensors encourages its use as a 
validation tool for many applications from simple routing 
approaches [2, 21] to complex hydraulic models [5, 6, 18]. 
However, the spatial-temporal sampling of the altimetry 
mission is currently a limitation. The number of measurements 
along the rivers is dependent on the inter-track distance of the 
orbit which at the equator ranges from 80 km (ENVISAT-series 
including SARAL/AltiKa) to 315 km (TOPEX-series including 
JASON satellites). The temporal resolution ranges from 10 to 
35 days depending on the satellite mission (i.e. JASON-2 and 
ENVISAT). With such temporal resolution, the fast dynamic 
behavior of rivers (from some days to some hours) remains 
unmonitored. Recent studies conducted by Tourian et al. [25, 
26] partially overcame this issue by introducing the concept of 
altimetry data densification along the river to improve the 
temporal resolution to about 3 days. Despite the approach 
considers a simplified law for the flow routing, it has the 
potential to be applied for different sections along the river and 
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for rivers of medium to large size (up to a width of 300 m), 
depending on the accuracy of the altimetry measurements. 

Alternatively, optical sensors, thanks to their frequent revisit 
time (nearly daily) and large spatial coverage, could support the 
evaluation of river discharge variations [22, 23, 27]. Studies 
conducted on the Moderate Resolution Imaging 
Spectroradiometer (MODIS) demonstrated that the reflectance 
variation can be a proxy of discharge and can be used not only 
for river discharge estimation but also for forecasting purposes 
[12, 24]. Van Dijk et al. [27] proposed the evaluation of 
monthly discharge for over 8,000 gauging stations located all 
over the world using optical MODIS instrument and passive 
microwave sensor. Despite the coarse spatial resolution of the 
microwave data, their complementary use with optical data 
enables to improve the results in areas where cloud cover is a 
limitation for optical sensors. Indeed, in the case of cloudy sky, 
the optical images are not usable, resulting in data outages in 
the measurements. A possible remedy in these conditions is to 
collect data from more satellite missions of the same nature 
(optical), to enlarge the sample size or to benefit from satellite 
missions with different characteristics (active and passive 
microwave sensors). In a similar context, a multi-mission 
approach, if implemented with sensors that work in different 
electromagnetic bands, fosters the monitoring also in different 
conditions [1, 19]. Therefore, an alternative approach is to 
merge the optical image observation with altimetry data in order 
to catch information also during flood events, when the cloud 
coverage can last several days. 

On these bases, this study has two main purposes: (a) 
compare the performance of different satellite optical sensors 
for river discharge estimation, analyzing the impact of the 
spatial and temporal resolution; and (b) merge satellite optical 
and altimetry data in order to obtain daily discharge estimates. 
To this end, we focus on the near-infrared (NIR) bands of the 
optical satellite sensors, i.e. MODIS, MERIS and Landsat, and 
on the altimetry data from ERS-2, Topex/Poseidon, Envisat/Ra-
2, Cryosat-2 and Jason-2, for estimating river discharge. Our 
approach is tested in two different countries - Nigeria (Niger 
River) and Italy (Po River) - to demonstrate its efficacy in two 
completely different rivers in terms of dynamics and 
morphology. The procedure of merging is carried out using the 
Artificial Neural Network (ANN) technique, which represents 
an effective method for merging data from multiple sources into 
a single retrieval approach, by simply adding or removing 
inputs in the ANN configuration and updating the training 
accordingly. Therefore, ANN is also particularly suitable for 
evaluating the significance of each sensor to the final estimate 
of river discharge. 

II. MATERIALS AND METHODS 
This section contains a brief description of the study area and 

the observed time series of river discharge, satellite data from 
optical and altimetry sensors, procedure for the estimation of 
river discharge, ANN technique and the performance indices 
used for the assessment of the results. 

A. Study areas and in situ datasets 
We focused on two study sites: (a) Nigeria and, specifically, 

along the confluence between the Niger and Benue rivers at 
Lokoja station; and (b) Italy along the Po River at 
Pontelagoscuro station. The two study sites were selected for 
two main reasons: (i) they have been monitored with an in situ 
gauging station for more than 15 years; and (ii) they represent 
two different regimes of discharge.  

Niger River at Lokoja has a width of about 2,800 m and the 
discharge ranges from 820 to 31,692 m3/s, which is strongly 
affected by the seasonal cycle due to the monsoon season that 
alternates from long periods of high flows (July to October) to 
long periods of low flows (November to June) (Fig. 1(a)). The 
analysis investigates the discharge anomalies (total discharge 
minus the seasonal cycle) in the period from January 2004 to 
April 2012. In situ discharge data are provided by the Nigeria 
Hydrological Services Agency (NIHSA) in cooperation with 
the Federal Ministry of Agriculture and Rural Development 
(FMARD), Nigeria. 

Po River at Pontelagoscuro has a width of about 350 m and 
moderate flow regimes ranging from 168 to 8674 m3/s with two 
seasonal peaks during spring (May-June) and autumn 
(November) [15]. The seasonal cycle of the Po River is less 
significant than the Niger River (see Fig. 1(c)). The analysis 
investigates the total discharge of the Po River at 
Pontelagoscuro in the period from January 2006 to April 2012. 
In situ river discharge data are published each year by the Po 
River Basin Authority (Agenzia Interregionale per il Fiume Po 
[AIPO]) and are also available online 
(https://www.arpae.it/documenti.asp - in Italian). 

 

 
 
Fig. 1.  Discharge and altimetry-derived water level for Niger (a and b), and 
Po (c and d) Rivers. 
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B. Satellite radar altimeter dataset for water level 
We used data from different satellite altimetric missions to 

derive water level time series: two in the Niger River and five 
in the Po River. In the following the main characteristics of the 
altimetric sensors are described, whereas more information of 
the altimetry data can be drawn from Tourian et al. [25, 26]. 

TOPEX/POSEIDON (August 1992 – September 2002) and 
Jason-2 (June 2008 – October 2016) are joint satellite missions 
between National Aeronautics and Space Administration, 
NASA and Centre national d'études spatiales, CNES. They use 
the orbit configuration with a cross-track resolution of about 
315 km at the equator and a repeat cycle of 10 days. From 
September 2002 to October 2005, TOPEX/POSEIDON 
assumed a new orbit midway between its original ground 
tracks. We distinguished this different orbit by calling 
TOPEX/POSEIDON-XT.  

ERS-2 and ENVISAT were two European Space Agency, 
ESA, missions flew from April 1995 to September 2007 and 
May 2002 to October 2010, respectively. They used the same 
orbit configuration with a cross-track resolution of about 80 km 
and a repeat cycle of 35 days. In 2010, ENVISAT changed its 
orbit, until April 2012 when the signal totally disappeared. We 
called the temporal series from drifted orbit as ENVISAT-XT. 

Cryosat-2 is an ESA mission launched in April 2010. Its orbit 
has a full repeat cycle of 369 days, resulting in a so-called 
drifting ground track and a very dense spatial sampling pattern 
with an across-track distance of only 7.5 km at the equator. 

Over the Niger River, overall, 68 virtual stations were 
defined among them 6 for Jason-2 and the rest for ENVISAT. 
Over the Po River, 40 virtual stations from TOPEX/Poseidon, 
TOPEX/Poseidon-XT, ENVISAT, and ENVISAT-XT together 
with around 400 measurements from multiple crosses of 
CryoSat-2 are used to obtain densified water level time series. 

 

C. Satellite optical datasets and pre-processing 
The analysis considered three different satellite missions for 

the optical images, that are described below, mainly focusing 
on the spatial and temporal resolutions (see Table I). 

MODIS is a multispectral sensor on board the TERRA and 
AQUA satellites, acquiring image data in 36 bands ranging in 
wavelength from 0.4 µm (visible) to 14.4 µm (thermal infrared). 
Data are available from the year 2000 (2002) from TERRA 
(AQUA) with spatial resolutions of 250, 500 and 1,000 m, and 
a temporal resolution of 1-2 days. In this study, level-2 products 

MOD09GQ and MYD09GQ from TERRA and AQUA, 
respectively, at a daily resolution are used. Specifically, band 1 
and band 2 surface reflectance in NIR (620-670 and 841-876 
nm) at 250 m are exploited (available at the Earth Data website 
- https://earthdata.nasa.gov/). Band 2 provides the river 
discharge signal, but the filtering of the clouds is carried out by 
exploiting band 1. The total number of images after the cloud 
filtering is reduced to about 50%. The subsample is again quite 
robust for the analysis (see Table I). 

Medium Resolution Imaging Spectrometer (MERIS) was 
one of the main instruments on board the European Space 
Agency (ESA) ENVISAT platform. It produced multispectral 
images in 15 selected spectral bands between 390 nm and 1,040 
nm. The spatial resolution of this instrument was about 260 m 
x 300 m over land. The swath width was equal to 1,150 km and 
allowed MERIS to reach global coverage every 3 days. MERIS 
data has been available worldwide from May 2002 to April 
2012, but due to the long time needed for data processing, 
periods starting from 2004 for Niger and 2006 for Po were 
extracted. Images from the level 2 Full Resolution Full Swath 
Geophysical (FRS) products were pre-processed through the 
Basic ERS & ENVISAT (A) ATSR and MERIS Toolbox, 
BEAM (http://www.brockmann-consult.de/cms/web/beam/). 
Specifically, the ortho-rectification was carried out by selecting 
the UTM-WGS84 geodetic datum and the GETASSE30 Digital 
Elevation Model. Band 13 (band center 855 nm, bandwidth 20 
nm) and band 7 (band center 655 nm, bandwidth 10 nm) are 
chosen to make the analysis consistent with the MODIS bands. 
In particular, band 7 is used to realize a filter able to exclude the 
images of MERIS affected by cloud coverage. After filtering, 
the final number of selected images is drastically reduced to 
72% for Lokoja and 60% for Pontelagoscuro (see Table I). 

LANDSAT is a series of satellites that provide the longest 
temporal record of moderate resolution multispectral data of the 
Earth’s surface on a global basis (40 years). Within the selected 
period, in Nigeria, only LANDSAT 7 ETM+ is available. The 
observation bands of this sensor are seven. We analyzed band 3 
(band center 660 nm, bandwidth 30 nm) and band 4 (band 
center 837.5 nm, bandwidth 62.5 nm). The sensor on this 
satellite has a high spatial resolution, i.e. 30 m, but also a long 
grounding track repeat cycle. This low temporal resolution 
reduces the number of available images at Lokoja to 123, 
further reduced by the cloud filter to 55 images. Due to the big 
computational effort for processing Landsat images, the 
analysis is limited to the Niger River. 

Each optical image is extracted to a box with a dimension of 

TABLE I 
MAIN CHARACTERISTICS OF THE OPTICAL SATELLITE SENSORS USED IN THE ANALYSIS 

 MODIS TERRA MODIS AQUA MERIS LANDSAT 

Product MOD09GQ MYD09GQ MER_FRS_2P Landsat / ETM+ 
No. band (spectral range [nm]) 2 (841-876) 2 (841-876) 13 (855-875) 4 (772-898) 
Spatial resolution [m] 250 250 270 30 
Temporal resolution 1 per day 1 per day 1 per 2 days 1 per 15 days 
Total number of images 2,286 (Niger) 

2,304 (Po) 
2,286 (Niger) 
2,309 (Po) 

1,874 (Niger) 
1,227 (Po) 

123 (Niger) 
 

Cloud-free images 900 (Niger)  
1,149 (Po) 

1,167 (Niger)  
1,083 (Po) 

521 (Niger)  
495 (Po) 

55 (Niger)  
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40 x 40 km for the Niger River and 20 x 20 km for the Po River, 
centered on the gauged stations of Lokoja (Niger) and 
Pontelagoscuro (Po) in order to compare the simulated and 
observed discharge. We prefer to consider two sizes for the 
boxes because the case studies are significantly different. 
Indeed, Lokoja is near the confluence of two large rivers and 
the scene takes into account the width of the two branches. At 
Pontelagoscuro station, the river has a moderate width and it 
flows in a large meander without any division of flows in more 
watercourses. 

The cloud filter logic is the same for every optical dataset. A 
threshold on the band in NIR close to 660 nm is fixed at 0.2 to 
remove all the pixels with a high value of reflectance, typical of 
the cloud pixels. These pixels are masked out in the images at 
~850 nm band. Finally, a visual inspection polished the non-
filtered images in which the river is not clearly visible. 

D. Water level from radar altimetry 
Water levels are derived using a multi-mission approach 

developed by Tourian et al. [25, 26] that connects hydraulically 
more individual altimetric time series along the river in order to 
obtain a water level time series with an improved temporal 
resolution (about every three days). Altimetric measurements 
along the river are stacked after shifting their water level 
hydrographs according to a corresponding time lag. The time 
lag represents the time that stream flows from one virtual 
station to another downstream. For the time lag estimation, 
average river width from imagery together with the slope 
derived from satellite altimetry are used as inputs into a 
simplified hydraulic model. The temporal series for the Niger 
River is derived by considering ENVISAT/RA-2 and JASON-
2 missions. For the Po River, 40 virtual stations along the river 
every ~11 km are used for reconstructing the water level time 
series, including ERS-2, Cryosat-2 and Topex-Poseidon [25]. 
Both the time series are available online at the HydroSat 
website (http://hydrosat.gis.uni-stuttgart.de/php/index.php). 

Fig. 1(b) and (d) display the water level time series 
reconstructed for the gauged stations of Lokoja and 
Pontelagoscuro from radar altimetry. 

E. Optical time series as a proxy for the discharge 
The approach used for the estimation of river discharge is 

based on the different characteristics of the wet and dry pixels 
in the NIR band. The reflectance of a dry pixel (C) is higher 
than that of a wet pixel (M), even if noises due to vegetation 
and atmosphere affect the signals. The difference in reflectance 
between the two pixels is leveraged through the ratio C/M that 
allows a reduction in the noises. 

Separately for each optical dataset, all the images have been 

collected around the location of the gauged stations. Here, the 
pixels M and C have been selected based on the instructions 
described on previous papers [22, 24]. Unlike these studies in 
which the locations of C and M were calibrated in order to 
obtain the highest correlation with the in situ observations of 
river discharge, in this study, no calibration is used for selecting 
the pixels. Following the indications contained in these 
previous studies, the best location for the wet pixel M is near 
the river in a zone not completely full of water but sensitive to 
variations of inundated area during flood events. The dry pixel 
C of calibration is located outside the river in areas not 
surrounded by water and over urban areas, that are not affected 
by the seasonal cycle of vegetation. So, it is expected that the 
locations could be not optimal as in the previous studies and the 
ratio C/M could provide worst performance on the estimation 
of river discharge, if considered singularly. 

Multiple images are analyzed to obtain time series of C/M 
that is smoothed with a low pass filter (averaging moving 
window), in order to achieve C/M* time series. The 
performances of the time series of C/M* from the different 
satellites in the estimation of river discharge is carried out 
through the comparison with the observed discharges. 

F. Merging multiple satellite through an artificial neural 
network for the discharge estimation 

The merging procedure is feasible if all the datasets are 
available for the same dates. The C/M* ratio extracted from 
optical satellite sensors is affected by cloudy images while the 
water level altimetry time series is constrained to the passage of 
satellites over the river. These conditions generate missing data 
and make the time series not continuous. Moreover, the 
altimetry multi-mission satellites can be heterogeneous in terms 
of both the accuracy, depending from the altimeter used, and 
the number of satellites available in the same period. Looking 
at the Niger (Fig. 1), water level before October 2010 has much 
more high frequencies variability than later this date, mainly 
due to the working period of ENVISAT. For the Po the 
frequency is also lower (see Table II), due to the low number of 
altimeters available in the period. 

The time series derived by optical sensors, have different 
temporal resolution, due to the repeat cycle of the satellites. 
Table II shows their temporal frequency: MODIS-derived time 
series have temporal resolution comparable to the altimetric 
time series in Niger, whereas it is lower in the Po. Landsat has 
on average a low temporal resolution (more than one month), 
whereas for MERIS the mean time step among the 
measurements is 5-6 days. 

The differences in the frequency and accuracy between the 

TABLE II 
TEMPORAL RESOLUTION (IN DAYS) OF THE ALTIMETRIC AND OPTICAL DATASETS. FOR OPTICAL DATASET THE MEAN AND THE 

STANDARD DEVIATION IS CALCULATED AFTER THE REMOVING F CLOUDY IMAGES  
  

Altimetry 
MODIS 
TERRA 

MODIS 
AQUA 

MERIS LANDSAT 

Niger 
mean 2.27 2.56 2.00 5.80 42.07 

standard deviation 2.21 3.05 1.67 9.76 45.29 
Po mean 5.94 3.20 4.14 4.67 - 

standard deviation 8.25 4.13 5.59 6.66 - 
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altimetric and optical sensors, can be mitigated by the multi-
mission approach. Therefore, in order to make the time series at 
the same frequency, all the satellite datasets are interpolated 
linearly at daily scale, in a way which makes them consistent 
with the temporal resolution of ground observations. The 
missing daily data are replaced by interpolated values between 
the closer previous and next values in a linear way. 

The daily datasets represent the inputs to the ANN. 
ANN can be regarded as a statistical approach aimed at 

providing the minimum variance solution to the given problem. 
When properly trained, ANNs are able to reproduce almost any 
kind of input-output relationship [13, 14]. In particular, ANNs 
were largely employed for remote sensing applications, since 
they offer an easy but effective possibility of combining input 
data from different sources into the same retrieval algorithm [4, 
16, 17]. 

In this study, we made use of the feed-forward multi-layer 
perceptron neural networks (MLP-ANNs) available in the 
Matlab® Neural Networks toolbox. In MLP-ANNs, each input 
is weighted and passed to the neurons of the first hidden layer, 
where is added to the other neuron inputs to produce an output 
value, also called activation. The activation value is then passed 
through a non-linear function known as transfer function and 
passed to the neurons of the second hidden layer (if present) or 
to the output layer. The most common transfer functions are 
linear, hyperbolic tangent sigmoid (tansig), and log-sigmoid 
(logsig). 

The tansig is expressed by equation (1) and returns an output 
value between -1 and 1 when the input a value goes from –∞ to 
+∞: 

 

( ) ( )
( )aa

aa

ee
eea −

−

+
−

=tanh   (1) 

 
Logsig is expressed by equation (2) and its output goes from 

0 to 1 when a varies between –∞ and +∞. 
 

( ) ( )ae
ag

+
=

1
1

  (2) 

 
The MLP-ANNs training is based on the back propagation 

(BP) learning rule: BP is a gradient descendent algorithm that 
adjusts iteratively the ANN weights and connection strengths 

for minimizing the Mean Square Error (MSE) between the 
ANN output and the corresponding target value. 

Several combinations of inputs have been implemented, 
considering each satellite sensor alone or in combination with 
others. For each combination, a dedicated ANN has been 
implemented and trained. In detail, ANNs have been 
implemented in nine different configurations. For each 
configuration, the optimal number of hidden layers and neurons 
have been defined through an iterative process that repeated the 
training by increasing the ANN architecture until the minimum 
error is found. Table III summarizes input combinations and 
optimal configuration for each ANN implementation. 50% of 
the data available for each configuration of inputs was 
considered for training the algorithm and the remaining 50% for 
validating it, by predicting the river discharge from a set of 
satellite data not considered for the training. In order to train the 
network efficiently, the training dataset must cover the whole 
range of discharge. In the case of Niger, the division of the 
dataset in two sequential periods, 2004-2008 for training and 
2008-2012 for the validation, is not the best choice. Indeed, the 
river discharge has highest values during 2010 and 2011 and a 
neural network trained in the first period would fail during the 
following periods. Similar considerations can be done in the 
case of the Po, in which the period 2006-2008 has values of 
river discharge significantly lower with respect to the period 
2009-2012. 

Therefore, the training set is obtained by selecting data every 
other day, while the validation set comprised of the remaining 
data. 

The training set was further subsampled randomly in 60%, 
20% and 20% subsets: the first subset served for iteratively 
adjusting the ANN weights and connection strengths using BP; 
and the second and third subsets were used for validating the 
training and having a posteriori test at each training iteration. 
Based on the so-called “early stopping” rule, the training stops 
as soon as the errors on the three subsets are diverging, in order 
to prevent overfitting. The optimal ANN for the given problem 
was defined by increasing iteratively the ANN configuration 
from one hidden layer with a number of neurons equal to the 
number of inputs up to two hidden layers with a number of 
neurons each equal to three times the number of inputs. For 
reducing the risk of BP to find local minima of MSE, the 
training of each configuration was repeated 100 times, by 
resetting each time the initial ANN weights. This process was 
repeated for each transfer function available, among linear 
linear, tansig and the logsig: output of this process was the ANN 
giving the best results for each input configuration. 

The transfer functions providing the best results were the 
hyperbolic tangent sigmoid (tansig) and the log-sigmoid 
(logsig), depending on the given configuration of inputs. 

The ANN validation, to which the results presented in the 
following sections are referred, was obtained by applying each 
saved ANN to the corresponding validation set, comprised of 
the data excluded from the training, in order to keep training 
and validation as independent as possible. 

TABLE III 
INPUT CONFIGURATION AND CORRESPONDING OPTIMAL NUMBER OF 

NEURONS AND HIDDEN LAYERS 

Inputs No. of hidden layers No. of neurons 

MODIS-TERRA (MOD) 2 6 
MODIS-AQUA (MYD) 2 6 

MERIS (MER) 2 6 
ALTIMETRY (ALT) 2 6 

ME + ALT 2 8 
MOD + MYD 2 8 

MOD + MYD + MER 2 9 
MOD + MYD + MER+ALT  2 12 
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G. Performance indices 
The capability to reproduce the observed temporal pattern of 

discharge is evaluated through the calculation of four 
performance indices at daily time scale: (1) Pearson coefficient 
of correlation (R); (2) root mean square error (RMSE); (3) 
relative RMSE (RRMSE), defined as the ratio between the 
RMSE and the mean of the simulated discharge; and (4) the 
Nash-Sutcliffe efficiency (NS). 

Additionally, three categorical metrics are examined: 
Probability of Detection (POD) defining the fraction of events 
correctly predicted (optimal value equal to 1), False Alarm 
Ratio (FAR) referring to the fraction of predicted events that are 
actually non-events (optimal value equal to 0) and Threat Score 
(TS) representing the number of events successfully estimated 
over the total of hit, missed and false events (optimal value 
equal to 1). For “events” we refer to the values of river 
discharge above a threshold (different for Lokoja and 
Pontelagoscuro). Taking in account the importance of the 
estimation of high discharge values for the flood risk purpose, 
our interest is to evaluate the performance of the procedure 
considering different thresholds, selected between the 50th and 
the 98th percentile of the observed total discharge. 

III. RESULTS AND DISCUSSION 
This section describes the following: (i) comparison among 

the images of the four optical products (MOD, MYD, MERIS 
and Landsat); (ii) ratio of reflectance of dry and wet period is 
computed for each dataset, and compared against each other in 
order to select the satellite to be employed for the estimation of 
discharge; and (iii) results of the merging procedure used to 
calculate river discharge. In order to evaluate the performance 
of the procedure, in the following, all the analyses of the results 
refer to the independent period of validation. Only if expressly 
specified, we refer to training datasets. 

A. Comparison of optical satellites 
A consistent comparison among the optical datasets includes 

a direct evaluation of the images during the same day of 

acquisition. Because of the shift in the overpassing time, the 
images can observe different scenes due to the presence of 
clouds. An example is provided in Fig. 2 where the comparison 
in terms of reflectance between the images for a box 
surrounding the Lokoja station during two specific days is 
shown. The river was characterized by medium flow for 
November 21, 2011. However, for the image acquired on 
March 28, 2012, low flow conditions were observed. Despite 
the different time of acquisition of the satellites (MERIS 
overpassed the area at 9:29 UTC, Landsat overpassed at 9:44 
UTC, MODIS-TERRA at 10:05 UTC and MODIS-AQUA in 
the afternoon at 13:05 UTC), the scenes are very similar. 

Based on the reflectance, even if the bands of the satellite are 
close, some differences are found between the products. In one 
case (November 21, 2011), MODIS-AQUA, MODIS-TERRA 
and Landsat have very similar patterns, with median values 
between 0.22 and 0.26, whereas MERIS has higher values 
outside the river of about 0.30 as underlined also by the 
histograms shown in Fig. 3. For the image with low flow 
(March 28, 2012), MERIS (median of 0.28) is more similar to 
MODIS-AQUA (0.26), with values higher than MODIS-
TERRA (0.24) and Landsat (0.23). As illustrated in Fig. 3, 
MERIS has the larger variability of the reflectance with respect 
to the other sensors: the standard deviation is equal to 0.05 and 
0.07 for moderate and high flow, respectively, which is 
different from the other sensors for which the standard 
deviation ranges between 0.04 and 0.05. Moreover, the clear 
distinction between water and land (wet and dry pixels) is 
shown by the bimodal behavior of the histograms, visible in 
MODIS and MERIS, but not easily detectable in Landsat 
images. 

 

B. Temporal series of C/M* for optical sensors 
In order to compare the performances of the different 

satellites, the computation of the time series for C/M* is carried 
out selecting two boxes, one near the river in areas showing 
significant variation of water extent during flood events (wet 
pixel, M) and the other far from the river in areas not covered 

 
 
Fig. 2. Reflectance values at Lokoja box. Comparison between the four images from (a) and (e) MODIS-AQUA, (b) and (f) MODIS-TERRA, (c) and (g) MERIS, 
and (d) and (h) Landsat, acquired on November 21, 2011 (top) and March 28, 2012 (bottom). 
  



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. XX, MONTH 2018 
 

7 

by water and in correspondence of urban areas (dry pixel, C). 
Fig. 4 shows the location of C and M pixels for Lokoja and 
Pontelagoscuro stations. Due to the different width of the rivers, 
the boxes are of different size: for Lokoja, the urban area on the 
right bank of the confluence (left of the image) is included in 
the box for C (about 2.5 km x 2.5 km), whereas a larger box is 
selected for M (5 km x 5 km). For the Po River, the size of the 
two boxes is smaller and equal to 600 m x 600 m. 

For each image, and hence each time step, the reference value 
for the dry and wet pixel is calculated by the average of the 
reflectance of the pixels included within the boxes for C and M. 
The ratio C/M is filtered through the moving average window 
filter with N equal to 16 days in order to smooth the effect of 
the noise in the time series. The choice of 16 days comes from 
the revisit time of MODIS and can be well adapted for MERIS 
for which we used the same. Due to the temporal frequency of 
the Landsat (55 cloud-free images in 6 years), the filter cannot 
be applied because the period between one measurement and 
the successive one is on average of 42 days (Table II).  

The resulting time series of C/M* are shown for the Niger 
River at Lokoja in Fig. 5, including C/M for Landsat. Because 
of the dissimilarity between the sensors, the temporal series of 
C/M* show large differences in the range of variability: the 
highest for MERIS and the lowest for MODIS. All the satellites 
capture very similar seasonal behavior of the river with periods 
of high and low flow. MODIS-AQUA and MODIS-TERRA 
well match even if flood events in 2004 and 2009 show some 
substantial differences in the high values. MERIS well follow 
the shape of the floods, but disagreements are found in the rising 
limb. Indeed, in the period 2006-2011, MERIS showed higher 
values than MODIS. Although the sensors of MERIS and 
MODIS are similar, the algorithm used to derive the reflectance 
of the water bodies is differences and this leads to sensitive 
variations in the reflectance values. For Landsat, despite the 
good agreement with MODIS in the falling limbs, 
dissimilarities are observed in 2006 and 2008. Due to the 
impossibility to apply the filter, the outliers are not smoothed 

and the time series appear very different to the others. These 
high values of C/M are consistent to the C/M of the other 
sensors, but they cannot be used to capture the discharge 
variations. For Landsat, the high spatial resolution, and hence 
more detailed information, does not compensate its low 
temporal resolution that becomes unsuitable for the estimation 
of river discharge. Therefore, we decided not to consider the 
Landsat time series in the merging process. As an input to ANN, 
only MERIS, MODIS from TERRA (MOD), MODIS from 
AQUA (MYD) and time series of altimetry are processed. 

C. Merging optical sensors and altimetry data for river 
discharge estimation 

Fig. 6 and 7 show the outcomes of the ANN application. 
Specifically, in subplots a to d of both Fig. 6 and 7, ANN was 
applied to the four single products for both the anomaly 
discharge in the case of Niger River and the total discharge in 

 
Fig. 5. Time series of C/M* derived by different optical products for Niger River at Lokoja: MODIS-TERRA (MOD), MODIS-AQUA (MYD), MERIS and 
Landsat. 
 
  

 

 
 
Fig. 3.  Histogram of the images in Fig. 1 for Lokoja station and for the four 
images from (a) and (e) MODIS-AQUA, (b) and (f) MODIS-TERRA, (c) and 
(g) MERIS, and (d) and (h) Landsat, acquired on November 21, 2011 (left) and 
March 28, 2012 (right). 
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the case of Po River. Unlike previous studies conducted by 
Tarpanelli et al. [17, 19] where good discharge estimates were 
obtained using MODIS products, the use of a single product 
(MODIS or MERIS) here does not properly represent the river 
discharge. This is mainly due to two factors: first, the 
optimization of the location for M and C pixels, which is not 
carried out in this analysis and, second, the interpolation 
process of the input dataset for providing daily data which 
introduces a high number of interpolated values with respect to 
the original time series. In the case of single product of 
altimetry, the river discharge retrieved by ANN slightly 
improves the estimation with respect to the rating curve based 
on a simple regression law of second order between the water 
level and the discharge (R = 0.71, NS =0.50). Strong 
improvements are achieved, only if the products are combined. 
In particular, the merging of optical sensors MOD, MYD and 
MERIS provides discharge estimates with R equal to 0.87 and 
NS equal to 0.76 for the discharge anomalies of Niger River. 
With the contribution of the altimetry, the performances reach 
values quite satisfying with R equal to 0.89, NS equal to 0.78 
and RMSE equal to 728 m3/s. In Fig. 6h the scatter plot is close 
to the fit 1:1. 

Fig. 8 shows the same comparison but in terms of temporal 

series. The temporal behavior is well reproduced in terms of 
both anomalies and total discharge. If the total discharge is 
calculated by adding the observed seasonal cycle to the 
discharge anomalies, the performance increases: R and NS 
reach a value of 0.99 (for both the calibration and validation 
periods) and the observed and estimated time series appear 
coincident (see Fig. 8(b)). In terms of RRMSE, good 
performance is obtained equal to 0.11 in calibration and 0.12 in 
validation. 

For the Po River at Pontelagoscuro, similar conclusions are 
drawn from the analyses, where improvements in the results are 
obtained when more products are merged. Different from the 
Niger River, here, the network trained on the altimetry data 
shows good quality. Lower performances are observed for the 
two MODIS products (see Fig. 7). If they are merged with 
MERIS, the resulting discharge closely matches observations 
as demonstrated by the good performance indices. The best 
solution is again the merging of all the sensors considered in the 
analysis with coefficient of correlation equal to 0.91, NS equal 
to 0.83 and RRMSE of about 0.27. The resulting time series are 
compared with the observations in Fig. 8(c). 

Based on the inputs and the trained ANN of these two case 
studies, we calculated also the weights given by the ANN to 

 
 
Fig. 6. Observed and simulated discharge anomalies in the testing period for 
Niger River at Lokoja station (ALT is for altimetry, MYD is for MODIS-
AQUA, MOD is for MODIS-TERRA, and MER is for MERIS). 
  

 
 
Fig. 7. Observed and simulated discharge anomalies in the testing period for 
Po River at Pontelagoscuro station (ALT is for altimetry, MYD is for MODIS-
AQUA, MOD is for MODIS-TERRA, and MER is for MERIS). 
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each dataset. On average, all the datasets are needed and 
contribute similarly to the evaluation of the discharge. 
Specifically, MODIS-AQUA and MODIS-TERRA have 
similar weight for both the study areas around to 26-28 %, 
whereas altimetry has 26 % for Pontelagoscuro and 16 % for 
Lokoja. MERIS has lower weight for Pontelagoscuro (20 %) 
and higher weight for Lokoja (30 %). 

Table IV shows the performance metrics of the final merging 
for both the calibration and validation periods over the Niger 
(for anomalies and total discharge) and Po (total discharge) 
rivers. The performances are very similar, with no sensible 
deterioration in the validation period, most probably caused by 
the selection procedure of calibration and validation datasets. 
Indeed, as already known, ANN is influenced by the range of 
variability of the input and if this shows considerable 
differences between the calibration and validation periods, the 
risk is to obtain a non-trained network. As the period of analysis 
is limited to 8 years for Niger and 6 years for Po and in these 
years the discharges are quite different, no alternative can be 
found for a more reliable selection procedure of calibration and 
validation datasets. 

Generally, the performances are high, especially in the Niger 
River, for which improvement margins are obtained despite the 
seasonal cycle (in bracket) already showing high values of 
performance metric (RRMSE=0.25 and NS = 0.91 for both 

calibration and validation). Overall improvements are obtained 
with respect to the previous analysis, that are carried out over 
the same study areas with single instruments. Table V resumes 
the main performances of previously published studies. In the 
Niger River, the use of multi-sensors data enhances the 
assessment of the discharge with respect to only use of optical 
data by MODIS AQUA and TERRA. 

The merged time series show also improvements in terms of 
temporal resolution. The heterogeneity of the single time series 
(optical and altimetry), is overpassed by the interpolation at 
daily scale that has mitigated the effect of the not-consistent 
availability of the data. 

A further investigation is carried out by analyzing the 
simulated and observed river discharge for the two case studies 
in terms of monthly statistics and the ability to reproduce the 
extreme events. For each month, we calculated the maximum, 
minimum and mean values of total observed and simulated 
discharges. We observed that, for Lokoja, the monthly 
statistical values are well reproduced by the simulated time 
series with coefficient of correlation very high (higher than 
0.99) as shown in Fig. 9(a). On the other hand, the monthly 
analysis (Fig. 9(b)) underlines that the correlation between the 
simulated and observed discharge is dependent on the flows. 
Low flows in the period from January to June are characterized 
by coefficient of correlations lower than 0.65, whereas high 

 

 
 
Fig. 8. Comparison between the time series observed in situ and simulated by merging all the products through ANN, in terms of anomalies (a) and total 
discharge (b) for the Niger River and total discharge for the Po River (c). 
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flows during the period from July to December are very well 
reproduced with correlation higher than 0.7, highlighting that 
the approach is able to detect high flow conditions. For the Po 
River (Fig. 10), the mean discharge is well reproduced by the 
simulated time series (correlation higher than 0.99), whereas for 
the maximum and minimum discharge, slight differences are 
detected (correlation equal to 0.83 and 0.75). At monthly scale, 
the observed and simulated time series show a good match with 
correlation higher than 0.77 except for October with a value of 
0.64. As shown for the Niger River, the highest correlations are 
found for high flows in the period from April to July and in 
November. 

The good performances for high flows is further analyzed in 
terms of categorical metrics. Fig. 11 illustrates the boxplot of 
the three indices POD, FAR and TS, obtained by using a 
variable threshold from 5,000 to 20,000 m3/s for Lokoja (a) and 
from 1,000 to 5,000 m3/s for Pontelagoscuro (b). For Lokoja, 
the high number of hits and low number of false alarms 
contribute to obtaining good values of TS which is, on average, 
above 0.9. For the Po River, the performances are slightly worse 
and TS is in the range 0.5-0.7. In both cases, the peculiarity of 
the proposed approach is to reproduce the observations, 

especially for high flows, in order to obtain improvements in 
the estimation of extreme events and also forecasting these in 
future studies. 

D. Limitations and potential application of the methodology 
The procedure shown in the present study has potential 

applications also in other sites with different ranges of 
discharge and/or other climatic regions. Further tests should be 
carried out at large scale (more sites with different 
characteristics) to confirm the advantage to use more datasets 
with respect to single products. The current cloud computing 
platforms (i.e. Google Earth Engine, the new ESA Φ-lab, …) 
can be used for this purpose. Thanks to large storage, high 
performance and sizable computing resources, they are rather 
flexible to be employed for the development of applications at 
global scale. 

Moreover, the application at large scale will assist the 
evaluation of discharge also for ungauged basin. By grouping 
rivers with similar characteristics, specific networks can be 
built by exploiting the available data in gauged sites, with the 
final purpose to estimate discharge for all the currently 
dismissing stations or ungauged sites, mainly in the developing 

 
TABLE IV 

PERFORMANCES IN TERMS OF COEFFICIENT OF CORRELATION (R), ROOT MEAN SQUARE ERROR (RMSE), RELATIVE RMSE (RRMSE), NASH-SUTCLIFFE 
(NS) AND BIAS FOR NIGER AND PO RIVERS. PERFORMANCE OF THE SEASONAL CYCLE IN THE TOTAL DISCHARGE IN NIGER RIVER IS SHOWN WITHIN 

PARENTHESES 

 
Niger - anomalies Niger - total discharge Po - total discharge 

Calibration Validation Calibration Validation Calibration Validation 

R 0.91 0.89 0.99 (0.96) 0.99 (0.96) 0.90 0.91 
RRMSE - - 0.11 (0.25) 0.12 (0.25) 0.29 0.27 

RMSE [m3/s] 666 728 666 (1588) 728 (1585) 402 374 
NS 0.82 0.78 0.98 (0.91) 0.98 (0.91) 0.81 0.83 

Bias  0.01 0.00 0.00 (0.04) 0.00 (0.04) 0.02 0.01 
 

 

 
 
Fig. 9. Comparison between observed and simulated time series by merging 
discharge at Lokoja (Niger): (a) mean, maximum and minimum monthly 
discharge; (b) coefficient of correlation. 

 
 
Fig. 10. Comparison between observed and simulated time series by merging 
discharge at Pontelagoscuro (Po): (a) mean, maximum and minimum monthly 
discharge; (b) coefficient of correlation. 
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countries. 
The spread application at large scale, will allow also to 

evaluate where the approach is more efficient. It is expected that 
in regions which are heavily covered with clouds during long 
periods, like Ganges, Brahmaputra or arctic rivers, the 
estimation of accurate and frequent river discharge is critical. 
Indeed, the linear interpolation of the datasets at daily scale 
could be not suitable for rivers affected by frequent cloud cover, 
where missing values can exceed the period of one week. In 
these cases, the linear interpolation can be too rough for 
representing the dynamic of the river. More elaborated 
interpolation algorithm should be considered. 

A further limitation of the approach lies in the merging 
technique. Although ANN provides good results at Niger and 
Po rivers in the examined period, we should bear in mind that it 
cannot simulate accurately values outside the range of training 
dataset. Therefore, if a flood higher than the one measured will 
be experienced, the river discharge estimation can be not 
accurate enough. On this context, other machine learning 
approaches should be tested in order to find a good tradeoff 
between good performance and accuracy. 

IV. CONCLUSIONS 
The potential to estimate river discharge by merging more 

information coming from different satellite missions was 
demonstrated. The multi-mission approach which uses optical 
and radar altimetry within the ANNs demonstrated its value for 
river discharge estimation at the Niger (at Lokoja) and Po (at 
Pontelagoscuro) rivers. 

In particular, the comparison between the optical sensors, i.e. 
MODIS (AQUA and TERRA), MERIS and Landsat, showed 
that the performances are more affected by the temporal 
resolution rather than the spatial resolution. Indeed, even if all 
images are contaminated by cloud cover that limits the number 
of available images, optical sensors such as Landsat fail in the 
estimation of extreme events, missing most of the peak values 
due to the long revisit time (~ 14-16 days). The best 
performances are obtained with the NIR bands from MODIS 
and MERIS that give similar results in the retrieval of C/M* 
reflectance ratio, even if low performances are applied 
singularly, without any optimization for the location of the wet 
pixel (M) and dry pixel (C). 

The ANN technique is demonstrated as being suitable to 
investigate the performance of the sensors. When it is applied  
to single sensors, it provides moderate performance, as 

demonstrated by the comparison with the observations. The 
combination of multiple sensors increases the performance as 
tested for the two case studies for which the regimes are very 
different: Niger River, with strong seasonality and high values 
of discharge (higher than 30,000 m3/s); and Po River, 
characterized by variable discharge during the year and 
maximum values of about 7,000 m3/s. Despite of different 
regimes of discharge, the multi-mission approach, merging 
sensors of different characteristics (radar altimetry and optical 
sensors), reproduces the daily river discharge observations well, 
considering both the discharge anomalies and the total values. 
The simulated discharge values obtained by the multi-mission 
approach are validated against in situ data, where NS of about 
0.83 and 0.98 and RMSE equal to 374 and 666 m3/s are obtained 
for Po and Niger rivers, respectively. 

Further, the discharge estimates are easily used for water 
resources management and flood forecasting, especially in 
medium and large basins. Further tests are required to identify 
whether the procedure can be used at a global level. In this 
context, cloud platforms and artificial intelligence, and Internet 
of Things (IoT) can enhance flood forecasting and early 
warning, and improve the dissemination of information to end 
users. 

 
 
Fig. 11. Box plot of POD, FAR and TS for a discharge threshold ranging from 
5,000 to 20,000 m3/s for Lokoja (Niger) (a) and from 1,000 to 5,000 m3/s for 
Pontelagoscuro (Po) (b). 
 
 

 
TABLE V 

COMPARISON OF THE PERFORMANCES IN TERMS OF COEFFICIENT OF CORRELATION (R) AND NASH-SUTCLIFFE (NS) FOR NIGER AND PO RIVERS FOR 
PREVIOUS PUBLICATIONS OF THE SAME AUTHORS.  

 
Niger - anomalies Niger - total discharge Po - total discharge 

R NS R NS R NS 

Tarpanelli et al. 2013 RSE - - - - 0.73 0.78 
Tarpanelli et al. 2013 RS - - - - - 0.73-0.82 

Tarpanelli et al. 2015 JSTARS - - - - 0.91 0.75 

Tarpanelli et al. 2017 RSE 0.72 (Aqua) 
0.63 (Terra) 

0.52 (Aqua) 
0.4 (Terra) 

0.99 (Aqua) 
0.99 (Terra) 

0.97 (Aqua)  
0.97 (Terra) - - 
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Further investigations will be addressed to the new Sentinel 
missions. The high spatial resolution ranging from 10 to 60 m 
for the MultiSpectral Instrument (MSI) on board Sentinel-2 can 
be exploited for estimating the discharge in a narrow river 
(width <100 m). In those cases, the revisit time of 5 days (with 
the constellation A and B) is expected to improve the 
performance with respect to the Landsat 7 (analyzed here), but 
it should be tested. On the other hand, Sentinel-3, with the 
Synthetic Aperture Radar Altimeter (SRAL) and the 
multispectral Ocean and Land Colour Instrument (OLCI), can 
guarantee continuity in the river monitoring at global scale. 
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