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Abstract 

Background:  The evaporative fraction (EF) represents an important biophysical parameter reflecting the distribu-
tion of surface available energy. In this study, we investigated the daily and seasonal patterns of EF in a multi-year 
corn cultivation located in southern Italy and evaluated the performance of five machine learning (ML) classes of 
algorithms: the linear regression (LR), regression tree (RT), support vector machine (SVM), ensembles of tree (ETs) and 
Gaussian process regression (GPR) to predict the EF at daily time step. The adopted methodology consisted of three 
main steps that include: (i) selection of the EF predictors; (ii) comparison of the different classes of ML; (iii) application, 
cross-validation of the selected ML algorithms and comparison with the observed data.

Results:  Our results indicate that SVM and GPR were the best classes of ML at predicting the EF, with a total of four 
different algorithms: cubic SVM, medium Gaussian SVM, the Matern 5/2 GPR, and the rational quadratic GPR. The com-
parison between observed and predicted EF in all four algorithms, during the training phase, were within the 95% 
confidence interval: the R2 value between observed and predicted EF was 0.76 (RMSE 0.05) for the medium Gaussian 
SVM, 0.99 (RMSE 0.01) for the rational quadratic GPR, 0.94 (RMSE 0.02) for the Matern 5/2 GPR, and 0.83 (RMSE 0.05) for 
the cubic SVM algorithms. Similar results were obtained during the testing phase. The results of the cross-validation 
analysis indicate that the R2 values obtained between all iterations for each of the four adopted ML algorithms were 
basically constant, confirming the ability of ML as a tool to predict EF.

Conclusion:  ML algorithms represent a valid alternative able to predict the EF especially when remote sensing data 
are not available, or the sky conditions are not suitable. The application to different geographical areas, or crops, 
requires further development of the model based on different data sources of soils, climate, and cropping systems.
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Background
Intensive agricultural systems in the Mediterranean 
areas represent the largest consumers of fresh water 
and, in some cases, threatening the availability of water 
resources for other uses (Nguyen et al. 2016; Alexandridis 
et  al. 2009). Projections of future climate change indi-
cate an increasing pressure on water use in the Mediter-
ranean regions as consequence of progressive increase 
in global temperatures and many countries of this area 
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have already experienced water shortages during the last 
20 years (Milano et al. 2013).

Several methodologies are currently available to meas-
ure the water use in agricultural systems: among them, 
the direct observation of the evapotranspiration or latent 
heat flux (LE) using the eddy covariance (EC) technique 
at ecosystem level, represents the most widely used 
approach worldwide (Baldocchi 2020). LE is a key com-
ponent of the energy, carbon, and hydrological cycle: 
several land surface processes are tightly linked to evapo-
transpiration through complex feedback mechanisms, 
such as precipitation (Zveryaev and Allan 2010), surface 
temperature (Seneviratne et  al. 2006), available energy 
(Gentine et al. 2011) and the amount of soil water avail-
able for the plants (de Tomás et al. 2014).

The evaporative fraction (EF), defined as the ratio 
between LE and the sum of LE and sensible heat flux (H), 
represents an important biophysical parameter reflect-
ing the distribution of surface available energy, and a 
good tool for interpreting the components of the energy 
budget (Gentine et  al. 2011). In terms of ecophysiologi-
cal processes, EF is coupled to drought events (Schwalm 
et  al. 2010; Trenberth and Guillemot 1996): when EF 
approaches unity, most of the available energy is par-
titioned to LE and water can flow without limitations 
through the soil–plant–atmosphere continuum; there-
fore, EF can be viewed as an index of water deficit, rang-
ing from 0, when no water is available, to 1 when there 
are no water limitations (Schwalm et  al. 2010). Several 
studies investigated the EF of cropland in the last decade. 
Zhou and Wang (2016) reported a positive correlation 
between monthly EF, air temperature, NDVI and relative 
humidity across a network of Ameriflux sites in North 
America. Yang et al. (2013) analyzed the diurnal patterns 
of EF, indicating that the self-preservation assumption no 
longer holds over growing seasons, and diurnal patterns 
of evapotranspiration are mainly influenced by stoma-
tal regulation. The EF has also been used to predict the 
evapotranspiration (ET) from remotely sensed instan-
taneous observations by the application of an improved 
constant EF Method that include the use of a decoupling 
factor (Ω) to represents the relative contribution of the 
radiative and aerodynamic terms to the overall ET (Tang 
et al. 2017a) or from remotely sensed real time observa-
tions with a simplified derivations of a theoretical model 
(Tang et al. 2017b).

The analysis of daily behavior of EF and its response 
to biophysical factors have been investigated by Gen-
tine et  al. (2011), showing that it is rarely constant and 
that its temporal power spectrum is wide. EF can either 
be derived from micrometeorological observations 
(Schwalm et al. 2010), satellite products such as MODIS 
(Nutini et  al. 2014; Lu et  al. 2013a) or from empirical 

models based on satellite observations and functional 
relationships (Zhou and Wang 2016). Ground-based 
observations of EF are normally conducted within exper-
imental observation network such as Fluxnet, ICOS and 
NEON. Over the past decades the increasing number of 
geoscientific, atmosphere, and land surface data availabil-
ity from the research network infrastructures, have co-
evolved with development of new machine learning (ML) 
algorithms (Reichstein et al. 2019).

ML is currently used to simulate a wide range of bio-
physical and environmental processes, and has been 
rapidly expanding, covering a wide range of scientific 
disciplines. ML can be defined as the subset of Artificial 
Intelligence that provides computer systems the ability to 
simulate human intelligence (Dash et al. 2021). In recent 
years ML has been applied in more and more scientific 
fields including, for example, bioinformatics (Kong et al. 
2007), biochemistry (Richardson et al. 2016; Wildenhain 
et  al. 2015), medicine (Kang et  al. 2015), meteorology 
(Kramer et  al. 2017; Aybar-Ruiz et  al. 2016), economic 
sciences (Barboza et al. 2017), robotics (Takahashi et al. 
2017), aquaculture (López-Cortés et al. 2017), and clima-
tology (Fang et al. 2017). The supervised ML can be clas-
sified in two main groups: “classification model” where 
the target variables are categories, and “regression model” 
where predictor and target are continuous variables (Lia-
kos et  al. 2018). Regression models are among the hot-
test topics in the development of algorithms able to learn 
from data and build predictions without being explicitly 
parameterized for that task. This makes the models able 
to predict future outcomes after being trained on the 
basis of past experimental observations where predictor 
variables are used to train the model with the aim of pro-
ducing a function that is approximate enough to be able 
to predict an output (target variables) from new inputs 
when they are introduced (Sen et al. 2020).

Over the last few years, literature related to the use 
of ML in agricultural sciences has been growing signifi-
cantly, and several efforts to predict the energy balance 
components have been made: Zhao et  al. (2019) devel-
oped a physics-constrained ML model, able to predict 
the ET across a series of Fluxnet sites; a similar study 
was conducted by Tramontana et  al. (2016) where sev-
eral ML methods were used to predict CO2 and energy 
exchange (i.e., LE and H) across multiple Fluxnet sites. 
More recently, Pan et  al. (2020) used an ensemble of 
remote sensing, ML and land surface modeling to simu-
late the ET at global level, while Mosre and Suárez (2021) 
report the use of ML with in situ remote sensing data to 
determine the actual ET in arid cold regions. ML algo-
rithms have been also used to predict CO2 (Guevara-
Escobar et  al. 2020), latent heat flux (Zhao et  al. 2019; 
Dou and Yang 2018; Yin et al. 2021; Fu et al. 2021; Mosre 
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and Suárez 2021), reference evapotranspiration (Anurag 
et al. 2021; Borges et al. 2020), and to evaluate terrestrial 
evapotranspiration at global scale (Pan et al. 2020).

Nevertheless, to our best knowledge, there is still a 
lack of ML application to predict the daily EF for agri-
cultural crops in Mediterranean regions. The application 
of new methods to determine EF could represent a valid 
alternative to conventional remote sensing-based mod-
els, especially when the sky conditions are unsuitable, or 
data are not available. The aim of this study is, therefore, 
to investigate the daily and seasonal patterns of EF on a 
multi-year corn cultivation located in southern Italy and 
evaluate the performance of different ML algorithms to 
predict the EF at daily time step. In this study, instead of 
choosing one particular model, we have first trained our 
dataset to several ML models in parallel, and then we 
have chosen to develop only the models with the higher 
performances.

Methods
Experimental site
Data collection occurred during the period 2004–2009 
on a farm located in southern Italy (40° 31′ 25.5″ N, 14° 
57′ 26.8″ E) that is the European southernmost cropland 
observation candidate site of the ICOS (Integrated Car-
bon Observation System) European infrastructure. The 
area is characterized by typical Mediterranean climate: 
over the last 30  years, the average annual precipitation 
was 908 mm with an overall mean air temperature of 15.5 
°C. Most of the precipitation occurs in October–Novem-
ber while the driest month is July. The site was cultivated 
with silage corn (Zea mays) as main crop; the vegetative 
season was defined according to its growing cycle (i.e., 
day of sowing, and day of harvest).

The site was equipped with an EC system composed of 
a fast response sonic anemometer (R3, Gill Instruments 
Ltd., Lymington, UK) and open-path infrared CO2/H2O 
gas analyzer (Li-7500, Li-Cor Inc., Lincoln, NE, USA) to 
measure energy fluxes (Latent Heat Flux, LE and Sensi-
ble Heat Flux, H) and the CO2 net ecosystem exchange 
(NEE). More detailed information about the EC system 
and ancillary sensors can be found in Vitale et al. (2007) 
and Vitale et al. (2016). To achieve a satisfactory upwind 
fetch, the height of eddy covariance sensors was set to 
2 m above the ground while the canopy was shorter than 
1  m and later moved following the crop growth up to 
3.9  m at harvest time. The experimental field covers an 
area of 10 ha, whereas the average footprint was 182 m 
along the prevalent wind direction (NE–SW).

Data streams from both IRGA and sonic anemometer 
were logged at a frequency of 20  Hz via the Eddymeas 
software, and the fluxes calculated using the software 
EddySoft (Kolle and Rebmann 2007). Corrections for 

flux losses as well as for sensor separation (Horst and 
Lenschow 2009) and low-pass frequency filters (Moncri-
eff et  al. 2004) were also applied. High-frequency spec-
tral correction was performed according to the model 
of Eugster and Senn (1995). The flux footprint was com-
puted according to the analytical model of Schuepp et al. 
(1990), and quality control was applied to half-hourly (30-
min) fluxes following Göckede et al. (2004), by assigning 
a quality flag (0 for good data, 1 for acceptable data, 2 for 
bad data) to each flux value. The standard WPL terms 
were considered to correct for density fluctuations (see 
Webb et al. 1980).

EC data used in this study were part of the Fluxnet 2015 
Dataset (https://​fluxn​et.​org/​data/​fluxn​et2015-​datas​et/). 
Time series were processed according to the approaches 
reported in Pastorello et  al. (2020). This methodology 
includes a preliminary processing block, where data 
quality assurance and quality control (QA/QC) for all 
the variables investigated are carried out by means of a 
variable-specific despiking routines. Energy fluxes (H 
and LE), used in this study were then gap-filled using the 
MDS method (Reichstein et al. 2005) and the values were 
adjusted according to a methodology that corrects for 
un-closure of the energy budget, by assuming a correct 
Bowen ratio. The corrected fluxes are obtained by multi-
plying the original, gap-filled LE and H data by an energy 
balance closure correction factor (EBC_CF), which is 
calculated on a subset of observations—where all the 
components needed to calculate the energy balance clo-
sure are available—namely: measured net radiation (Rn) 
and soil heat flux (G), and measured or good-quality 
gap-filled latent heat and sensible heat fluxes. The cor-
rection factor is calculated for each half-hour as (Rn – G) 
/ (H + LE), and the time series is filtered removing the 
values that are outside 1.5 times the interquartile range, 
then used as a basis to calculate the corrected H and LE 
fluxes.

Environmental variables were measured at 1  Hz and 
averaged every half-hour: precipitation was monitored 
using a rain gauge (Rain Collector II, Davis Instruments, 
CA, USA) located on the ground, soil temperature and 
volumetric water content (SWC) at 0.3-m depth were 
also determined by means of TCAV, 105E thermocouple 
probes and CS 616 water content reflectometer (Camp-
bell Scientific, Ltd., Shepshed, UK), respectively.

Soil heat flux density was monitored with heat flux 
plates (HFT3 Campbell Sci. Ltd., Shepshed, UK) at 
5  cm below the soil surface. Data were collected at 
three different locations within the footprint area of the 
EC tower and with a time step of 30 min. G values com-
ing from the plate were first corrected for the change 
in heat storage in the soil layer above the plate follow-
ing the methodology reported in the Instruction for 

https://fluxnet.org/data/fluxnet2015-dataset/
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soil-meteorological measurements of the ICOS) proto-
col (Op de Beeck et al. 2017).

The main components of the solar radiation, i.e., 
incoming, reflected and net radiation, were monitored 
using an Eppley pyranometer (Eppley Laboratory Inc., 
USA) CNR1 net radiometer (Kipp & Zonen, NL), all 
located at 4 m from the ground, while air temperature 
and vapor pressure were monitored using the Bowen 
Ratio System (Campbell Scientific Ltd., Shepshed, UK).

Leaf area index (LAI), monitored for the entire crop 
cycle by sampling plants at different locations of the 
field to cover the spatial variability, was determined 
using a Li-3100 leaf area meter (Li-Cor Biosciences, 
Lincoln, Nebraska, USA). For the years 2008–2009, LAI 
data were obtained from high spatial resolution data 
acquired by SPOT family satellite, as the field data were 
too sparse. Map elaborations were based on an empiri-
cal relationship between LAI and one-view angle meas-
urements of reflectance (rλ) in the red and infrared 
bands (for more specific information, see Vitale et  al. 
2016).

Evaporative fraction
The partitioning of incoming energy was evaluated 
using the EF approach. The instantaneous EF (dimen-
sionless) was calculated from LE (W m−2) and H (W 
m−2) fluxes, measured by the above-described EC sta-
tion, as follows:

where the time difference t2–t1 in the present study refers 
to the time from 08:00 to 18:00 (UTC + 1) (Zenone et al. 
2015). An ideal energy balance closure can be achieved 
when the available energy is equal to the turbulent fluxes, 
and then, EF can be expressed as:

where Rn is the net radiation and G is the soil heat flux. 
EF is a biophysical parameter related to the partitioning 
of available energy and therefore to the energy balance 
closure at the measuring point. EC fluxes of energy typi-
cally do not satisfy the energy balance closure, due to dif-
ferent levels of sensor errors, unmeasured storage terms, 
mismatches in source area and landscape heterogeneity 
(Foken 2008).

To overcome this issue, EF can be rewritten as

(1)EFdaytime =
t2
t1LE(t)dt

t2
t1[H(t)+ LE(t)]dt

,

(2)EF =
LE

H + LE
=

LE

Rn − G
,

We could then assume that the errors on LE and H pre-
sent similar magnitude (Hollinger and Richardson 2005; 
Richardson et al. 2006; Foken 2008) and are uncorrelated; 
this allows to mathematically cancel out the errors linked 
to the lack of energy balance closure (Schwalm et  al. 
2010).

Methodology flowchart adopted for the ML algorithms 
application
The ML methodology adopted to predict the EF using the 
ML algorithms consists of 3 main steps (Fig. 1):

Step 1: Predictors selection. A preliminary analysis was 
conducted to determine which input variables (Table 1) 
have the highest statistical significance on the prediction 
of EF. This involved the use of the neighborhood compo-
nent analysis (NCA,  see Wang and Tan 2017), the mini-
mum redundancy maximum relevance (MRMR, see Jo 
et al. 2019) algorithms, and a correlation matrix to deter-
mine the Pearson coefficient as well as the variance infla-
tion factor (VIF) to check the multicollinearity among 
the predictors.

Step 2: Selection of the best ML algorithms. In this sec-
ond step we made a preliminary application of the differ-
ent ML models to compare their performance, to then 
identify the best ML algorithm. This included five dif-
ferent classes of ML algorithms: linear regression (LR), 
regression trees (RT), Gaussian process regression (GPR), 
support vector machines (SVM), and ensembles of tree 
(ETs) models. The methods that provided values of 
R2 > 0.65 during the training process were further devel-
oped and investigated: two classes of ML algorithm were 
selected, the GPR and the SVM.

Step 3: ML application

GPR models
To investigate the relationship between the environmen-
tal features selected and the EF variability, a GPR model 
(Rasmussen and Williams 2006) was adopted. GPR 
model assume that the output y of a function f with input 
x can be expressed as

where x is the input vector, f is the function value and y is 
the observed target value.

We have supposed that the observed y values differ 
from the function values f(x) by additive noise, and we 
will further assume that this noise follows an independ-
ent, identically distributed Gaussian distribution with 
zero mean, variance σ 2

n   and ε ∼ (0, σ 2
n).

(3)EF =
1

1+H/LE
.

(4)y = f (x)+ ∈,
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GPR model assume also that not only the error term ∈ , 
but also f  is considered as a random variable (Ballabio 
et  al. 2019). The GPR f (x) is distributed as a Gaussian 
process:

where f(x) is defined by its mean μ(x) and covariance 
k(x,x∗).

The covariance function k, is known as the kernel 
function of the GPR models and analyzes the depend-
ence of the function values between different values of x. 
The kernel function of a GPR model can be considered 

(5)f (x) ∼ gp(µ(x), k(x, x∗),

equivalent to Kriging (Stein 1999). While Kriging is, in 
general, performed on a geographical space, the GPR is 
applied arbitrarily to a number of different covariates. 
The choice of the appropriate kernel function is based on 
the structure, or peculiar patterns of the data investigated 
(Ballabio et al. 2019).

In this study, two kernel functions, the Matern 5/2 
(Eqs. 6, 7) and the rational quadratic (Eq. 8) were used: 

(6)

k
(

xi, xj
)

= σ 2
f

(

1+
√
5r

σl
+

5r2

3σ 2
l

)

exp

(

−
√
5r

σl

)

,

Fig. 1  Flowchart of the methodology adopted to select the predictor variables and select the ML algorithms

Table 1  Abbreviation and description of the predictor variables used in the machine learning algorithm of the study

*Predictor variable selected after Step 1

Abbreviated 
variable

Description Variable category Unit Sampling frequencies

LAI Leaf area index Biophysical Number (#) Bi-monthly

NEE* CO2 net ecosystem exchange Biophysical μmol m−2 s−1 30 min

SWC* Soil water content Environmental/management % 30 min

Ta* Air temperature Meteorology oC 30 min

Rn Net radiation Meteorology W m−2 30 min

G* Soil heat fluxes Meteorology W m−2 30 min

VPD* Vapor pressure deficit Meteorology Pascal 30 min
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where

is the Euclidean distance between xi and xj and σl is the 
characteristic length scale.

where σl  is the characteristic length scale, α  is a positive 
scale-mixture parameter, and

is the Euclidean distance between xi and xj.
It is possible to use a separate length scale σm for each 

predictor m (m = 1, 2, …,d).
The built-in kernel (covariance) functions with a separate 

length scale for each predictor implement automatic rel-
evance determination. The unconstrained parametrization 
θ in this case is

SVM regression
SVM analysis is a popular machine learning tool for clas-
sification and regression, first identified by Vapnik (1999). 
SVM regression is considered a non-parametric tech-
nique because, as GPR, it relies on kernel functions. SVM 
employs a model able to build a decision surface by map-
ping the input and target variables into a high-dimensional 
(or infinite-dimensional) feature space. Next, a linear 
regression is executed in the high-dimensional feature 
space. This mapping operation is required because in many 
cases, the relation between a multidimensional input (i.e., 
predictor variables) and the output (i.e., target variables) is 
unknown and very likely to be nonlinear. SVM regression 
aims at finding a linear hyperplane, which fits the multi-
dimensional input vectors to output values (Wauters and 
Vanhoucke 2014). Two SVM kernel functions, the cubic 
Gaussian (Eq. 12) and polynomial (Eq. 13) were used:

(7)r =
√

(xi − xj)T (xi − xj),

(8)k(xi, xj|θ) =σ 2
f

(

1+
r2

2ασ 2
l

)−α

,

(9)r =
√

(xi − xj)T (xi − xj).

(10)θm = log σm for m = 1, 2 . . . g ,

(11)θd+1 = logσf .

(12)G(xj , xk) = exp(−
∥

∥xj − xk�2),

(13)G(xj , xk) = (1+ x
′
j xk)

q .

where q is in the set {2,3,…} and G is a Gram matrix of an 
n-by-n matrix that contains elements gi,j = G(xi,xj). Each 
element gi,j is equal to the inner product of the predictors 
as transformed by φ. However, we do not need to know 
φ, because we can use the kernel function to generate 
Gram matrix directly. Using this method, nonlinear SVM 
finds the optimal function f(x) in the transformed predic-
tor space.

Quality assessment
For the evaluation of the results of the ML models, several 
criteria were used: the determination coefficient (R2), root 
mean squared error (RMSE), mean absolute error (MAE), 
and mean squared error (MSE). R2 is a key output in 
regression analysis, while RMSE is a measure of the aver-
age squared difference between the predicted and actual 
outputs of a model, the MAE measures the average error 
between them. In contrast to R2, lower values of RMSE 
and MAE indicate a better performance of an algorithm.

Cross‑validation analysis
In the current analysis, the evaluation of ML model per-
formance was based on EF data split into 5-year training 
set (2004 to 2008) and 1-year testing set (2009). However, 
this analysis remained only partially reliable since the 
predictive performance obtained for only one test set can 
be different to that obtained for another test set (Rod-
ríguez et al. 2010). In order to tackle this potential issue, 
we apply the K-fold cross-validation to the original data-
set; all the data collected were split into ten randomly 
partitioned sets (K = 10 folds) of almost equal size. In the 
first iteration, the first fold (K = 1) was used to test ML 
models and the remaining folds (K = 2 to 10) were used 
for the training. In the next iteration, the second fold 
(K = 2) served for the testing stage, while the rest (K = 1 
and K = 3 to 10) were used for the training. The process 
was repeated until the final iteration was reached.

Results
Based on the growing seasons full datasets, average diurnal 
cycles of LE + H, H and EF were calculated for each month, 
as shown in Fig.  2. Heat fluxes show the typical Gaussian 
shape, whereas EF features a characteristic concave U pro-
file, with higher values in the early morning (e.g., 0.7–0.8 for 
July and August) and late afternoon hours while lower val-
ues (e.g., 0.4–0.5) were observed in late spring (May), early 
summer (June) and early fall (September). Considering only 
data spanning across midday (i.e., from 11:00 to 13:00), the 
EF behavior appears to be more constant demonstrating a 
little variance of the daytime values, with the average values 
ranging between 0.4 and 0.6, during the entire growth cycle.
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Step 1: predictors selection
The correlation matrix reported in Table  2 indicated, 
as expected, a significant correlation between several 
of the predictors as indicated by the p values < 0.05. 
The correlation between the predictors and EF were 
all significant and the highest correlation was found 
between EF and G (R = 0.40, σ = 4 × 10–10). The VIF 
indicates an average value among all the predictors of 
1.858 and a collinearity tolerance of 0.580. The results 
from the other two feature selection methods, i.e., NCA 
and MRMR are illustrated in Fig.  3: both methodolo-
gies identified LAI and Rn as predictors with the low-
est weight (close to zero). The feature weights obtained 
from the NCA analysis suggested that (classified from 
highest to lowest values) air temperature (Ta), NEE, 
SWC, G and VPD were the most influencing factors on 
EF predictions (Fig.  3B). The feature weights obtained 
from the MRMR partially confirmed the NCA results, 
indicating NEE, Ta, and G as the main predictors, while 
VPD and SWC score was close to zero (Fig.  3A). In 
view of these findings, NEE, SWC, Ta, VPD, and G were 
selected for the ML predictive analysis on EF predic-
tion: NEE represents the net CO2 exchange between the 
ecosystem and the atmosphere, measured with the EC 
technique, to emphasize the role of the gas exchange, 

the volumetric SWC representing the amount of water 
potentially available for the vegetation, the Ta and VPD 
represents the atmospheric physical conditions, and G 
is component of the energy balance of the ecosystem 
investigated.

Selection of the best ML algorithm
The results from the different ML algorithms proposed 
for the training phase are shown in Table  3, in terms 
of the different evaluation criteria adopted (see “Qual-
ity assessment” section). The linear regression models 
among the four methods (see Table  3) show an aver-
age R2 of 0.44 (± 0.06) and an average RMSE of 0.1 
(± 0.005), while for the regression tree group R2 was 
0.41 (± 0.05) and RMSE 0.19 (± 0.005). Similar results 
were found for the SVM model, with an average R2 of 
0.44 (± 0.11) and RMSE of 0.01 (± 0.002), while slightly 
better performance was found for the ensemble of tree 
models: R2 0.54 (± 0.15) and RMSE 0.009 (± 0.002). 
The best performances were found for two algorithms: 
cubic Gaussian SVM (Eq.  9) and polynomial (Eq.  10) 
SVM classes; and the Matern 5/2 (Eq.  6) and rational 
quadratic (Eq. 7) GPR classes. The results of the train-
ing-and-testing phase instead are reported in Table 4.

Fig. 2  Monthly diurnal cycles of available energy (LE + H), H, and daytime-EF, measured over the growing seasons of the corn crop. EF is calculated 
every half-hour from the fluxes, according to Eq. 1

Table 2  Pearson correlation coefficient (R) of all predictor variables selected for the application of the ML algorithm

EF is the dependent variable

*Significant correlation (p values < 0.05)

LAI Rn G VPD Ta NEE SWC EF

LAI 1 0.51* − 0.64* 0.12 0.27* 0.29* 0.22* − 0.35*

Rn 0.51* 1 − 0.35* − 0.11 0.01 0.11 0.32* − 0.29*

G − 0.64* − 0.35 1 0.02 0.05 − 0.55* − 0.08 0.40*

VPD 0.12 − 0.11* 0.02 1 0.57* − 0.15* − 0.08 − 0.26*

Ta 0.27* 0.01 0.05 0.57* 1 − 0.02 − 0.05 − 0.39*

NEE 0.29* 0.11 − 0.55* − 0.15* − 0.02 1 0.11 − 0.31*

SWC 0.22* 0.32 − 0.08 − 0.08 − 0.05 0.11 1 − 0.27*

EF − 0.35* − 0.29* 0.40* − 0.26* − 0.39* − 0.31* − 0.27* 1
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ML application
The results from the application of the selected 4 ML on 
the training phase are shown in Fig.  4, where the time 
series of daily EF values are plotted; the values of the EF, 
for the all years considered in the study, ranged from 0.07 
to 0.74: the comparison between observed and predicted 
EF shows that for all 4 models the predicted values were 
within the 95% confidence interval: with an average R2 
among the ML algorithms of 0.88 (± 0.1). The R2 and 
RMSE obtained for each ML model are reported in Fig. 4.

The results of the testing phase are shown instead in 
Fig. 5: the average R2 between observed and predicted 
daily EF of 0.66 (± 0.06). The results of the cross-vali-
dation analysis (see “Cross-validation analysis” section) 

are reported in Table 5: the R2 obtained among all the 
iterations for each of the 4 adopted ML algorithms 
were fundamentally constant with a very narrow range 
between the min and max R2 obtained.

The results confirm the superiority of the GPR rational 
quadratic model, as indicated by the highest R2 and low-
est RMSE values, compared to the other ML models.

Discussion
The different components of the land surface energy 
balance follow the diurnal trend of the incoming radia-
tion forcing with different amplitude and phase charac-
teristics (Gentine et al. 2011). The EF is considered as a 

Fig. 3  Results of the feature selection analysis by NCA and MRMR algorithms

Table 3  Results of the evaluation criteria applied on the different ML algorithms adopted for the training phase

Prediction model RMSE R2 MSE MAE
Training phase

Linear regression Linear 0.109 0.40 0.012 0.086

Interaction linear 0.101 0.48 0.010 0.076

Robust linear 0.110 0.39 0.012 0.086

Stepwise linear regression 0.098 0.52 0.009 0.074

Regression tree Fine Tree 0.103 0.48 0.010 0.077

Medium Tree 0.111 0.39 0.012 0.084

Coarse Tree 0.113 0.37 0.012 0.088

Support vector machine (SVM) Linear SVM 0.111 0.38 0.012 0.085

Quadratic SVM 0.088 0.61 0.007 0.065

Fine Gaussian SVM 0.113 0.35 0.012 0.086

Coarse Gaussian SVM 0.104 0.45 0.011 0.081

Ensemble of Trees Boosted Trees 0.085 0.64 0.007 0.063

Bagged Trees 0.107 0.43 0.011 0.086
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diagnostic of the surface energy balance and is rarely 
constant during daytime (Gentine et  al. 2011). Daytime 
self-preservation of the EF is mainly due to the high level 
of solar radiation around midday, while it is sensitive to 
the presence of warm and dry air above the atmospheric 
boundary layer (Gentine et  al. 2011), typical of drought 
periods and therefore has been used as water deficit index 
(Hu et al. 2019; Schwalm et al. 2010) or to determine the 

daily evapotranspiration (Liu et  al. 2020). Water avail-
ability increases EF values (Lhomme and Elguero 1999; 
Schwalm et al. 2010), and under concurrent conditions of 
a cloudless sky, it contributes to daily trends of EF fea-
turing a typical concave shape. On the other hand, when 
water is the limiting factor, an enhancement of EF in the 
late afternoon is often found from field studies (Gentine 
et al. 2007).

Table 4  Results of the evaluation criteria applied on the 4 ML algorithms selected during the training-and-testing phase

R2 RMSE MAE MSE

Training phase

Machine learning model

 Support vector machine Polynomial SVM 0.76 0.0530 0.0388 0.001

Cubic Gaussian SVM 0.83 0.0540 0.0472 0.002

 Gaussian process regression Matern 5/2 0.94 0.0293 0.0236 0.000

Rational quadratic 0.99 0.0134 0.0106 0.000

Testing phase

Machine learning model

 Support vector machine Cubic Gaussian SVM 0.66 0.0806 0.0678 0.004

Polynomial SVM 0.70 0.0741 0.0662 0.004

 Gaussian process regression Matern 5/2 0.82 0.0593 0.0458 0.002

Rational quadratic 0.72 0.0554 0.0418 0.001

Fig. 4  Comparison between observed and predicted daily EF, during the training phase, of the four different approaches: SVM polynomial model 
(A), GRP rational quadratic (B), GRP Matern 5/2 (C), and SVM cubic Gaussian (D). Colored circles represent the observed values, black circles the 
predicted values, and the dashed lines represent the 95% confidence interval
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It is generally accepted (Zhou and Wang 2016; Liu et al. 
2019; Liu et al. 2020, Peng et al. 2013) to refer operation-
ally to EFdaytime, i.e., the EF determined during daylight 
hours: considering that LE and H are near zero during 
nighttime, the estimated EF values can fluctuate greatly 
and can therefore be of little practical use. Moreover, 
during the transition periods from daytime to nighttime, 
the hourly EF is likely to be very unstable, and most of the 

times it fluctuates abruptly. For this reason, only EFdaytime 
values were considered and simulated in this study.

When not available from direct observation, the EF is 
commonly simulated using a wide range of remote-sens-
ing-based modeling schemes that have been proposed 
over past few decades, and goes from simple empirical 
formulas to complex land surface process models (Nor-
man et al. 1995; Bastiaanssen et al. 1998; Su 2002; Nishida 

Fig. 5  Scatter plot between observed and predicted EF, during the testing phase of the four different approaches: the SVM polynomial model (A), 
GRP rational quadratic (B), GRP Matern 5/2 (C), and SVM cubic Gaussian (D)

Table 5  R2 of the K-fold cross-validation analysis

RMSE values are in parentheses

K-fold iteration ML algorithms

Cubic Gaussian SVM Polynomial SVM Matern 5/2 Rational quadratic

1st iteration 0.84 (0.052) 0.76 (0.057) 0.94 (0.03) 0.96 (0.02)

2nd iteration 0.82 (0.056) 0.75 (0.05) 0.91 (0.03) 0.90 (0.03)

3rd iteration 0.82 (0.053) 0.76 (0.05) 0.94 (0.03) 0.97 (0.02)

4th iteration 0.75 (0.067) 0.75 (0.05) 0.93 (0.03) 0.97 (0.02)

5th iteration 0.82 (0.056) 0.75 (0.05) 0.91 (0.03) 0.97 (0.02)

6th iteration 0.81 (0.056) 0.74 (0.05) 0.94 (0.03) 0.89 (0.04)

7th iteration 0.82 (0.054) 0.76 (0.05) 0.90 (0.03) 0.97 (0.02)

8th iteration 0.83 (0.053) 0.75 (0.05) 0.91 (0.03) 0.96 (0.02)

9th iteration 0.80 (0.057) 0.76 (0.05) 0.93 (0.03) 0.96 (0.02)

10th iteration 0.82 (0.052) 0.76 (0.05) 0.92 (0.03) 0.93 (0.03)

R2 mean 0.81 0.75 0.92 0.94

RMSE mean 0.05 0.05 0.03 0.02
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et  al. 2003; Allen et  al. 2007; Anderson et  al. 2007; Mu 
et al. 2007; Bateni et al. 2013; Xu et al. 2014). Moreover, 
several studies have documented the advantages of the 
surface temperature-vegetation index method, and its 
applicability in the estimation of EF has been tested in 
several different regions across the world. (Rahimzadeh-
Bajgiran et al. 2012; Yang et al. 2015; Liu et al. 2017; Hu 
et al. 2018; Carlson and Petropoulos 2019).

Our results demonstrate a potential for using ML to 
predict the EF. When tested against 6 years of EF meas-
urements, the selected ML models were able to explain 
up to 99% (on the best case, and 81% on average) of the 
observed variability of the daily EF values.

When compared to ground observations of EC meas-
urements, the remote-sensing-based EF model showed 
results comparable with the ML algorithms proposed in 
our study. Peng and Loew (2014) reported,  for cropland 
sites, an R2 ranging from 0.84 to 0.79 between observed 
and MODIS-TOA EF. Lu et  al. (2013b) developed a 
method for estimating daily EF derived by day–night dif-
ferences in surface temperature, air temperature, and net 
radiation showing a good agreement with measurements 
from an EC system corrected by the residual energy 
method with an R2 of 0.857. Zhu et al. (2020) proposed 
a revised version of the surface temperature-vegetation 
index to retrieve simultaneously soil moisture and EF, 
showing an R2 around 0.70 between observed and esti-
mated EF. Remote-sensing-based EF models can there-
fore be considered the most widely used methodology to 
derive EF, especially as they allow the estimate at differ-
ent spatio-temporal scales, including areas not covered 
by experimental network sites (Zhu et al. 2020); however, 
they require complex parameterization schemes and 
clear sky conditions which are not always achievable. The 
comparable performance of the ML algorithms proposed 
in our study with conventional remote-sensing-based EF 
models shows the potential of ML algorithms as a valid 
alternative to the conventional remote-sensing models.

The ability of ML algorithms to predict any target varia-
ble depends on the functional relationships between pre-
dictor variables and the target variable itself, as learned 
from the data rather than depending on an underlying 
process-level understanding (Breiman 2001). The ability 
of ML algorithms to predict the target variable (in our 
case, EF), is therefore correlated with the input variables 
available (in our case NEE, SWC, Ta, VPD and G). This 
introduces a potential limit in predicting the effects of 
novel conditions, which instead does not affect conven-
tional models, with their ability to reproduce complex 
biophysical interactions. Nevertheless, ML algorithms 
might prove very useful when remote sensing data are 
not available. Indeed, in the ML models used in this 
study, key predictor variables are few (see Table 1): two 

weather variables (Ta and VPD), one component of the 
energy balance (G), SWC, and CO2 NEE. All these factors 
are well known drivers of EF, and conventionally meas-
ured in experimental sites within research infrastructure 
networks, such as ICOS, Fluxnet, NEON and LTER.

Previous studies by Williams et  al. (2015) and Puma 
et  al. (2013) focused on the influence of vegetation on 
EF showing that the state of the crop canopy (e.g., LAI) 
exercises a stronger control on EF than SWC, and that 
LAI variability led to seasonal differences in LE and H, 
and thus EF. Bagley et al. (2017) report that differences in 
LAI between winter wheat and grassland/pasture led to 
differences in LE and H, and therefore on the magnitude 
of the observed EF. In our study, the application of both 
the neighborhood component analysis and the minimum 
redundancy maximum relevance indicate a negligible 
contribution of LAI as predictor, and therefore it was 
not included among the predictor variables. Moreover, 
including the LAI among the predictors resulted only in 
a limited improvement on the ML models: in particular 
the R2 increased from 0.72 to 0.77 for the GPR Matern 
5/2; from 0.75 to 0.79 for the GPR Rational quadratic; 
from 0.68 to 0.71 for the polynomial SVM; for the cubic 
Gaussian SVM instead, we observed a reduction of the R2 
from 0.72 to 0.67 (data not shown). Another important 
variable, able to predict up to 40% of the EF variability 
is the normalized difference vegetation index (NDVI), 
as reported by Zhou and Wang (2016) in a study over a 
series of agricultural sites within the Ameriflux network. 
In this study, we have intentionally avoided using NDVI, 
or other predictors that cannot be easily measured at site 
level from conventional meteorological observations, in 
the attempt to produce a simple model to predict the EF 
from field observations.

While our challenge was to test the ML models ability 
to reliably reproduce the EF at a specific site, it would be 
naïve to believe that the proposed ML algorithms from 
this study might be successfully applied to different soils, 
climates, or crop production systems considering that 
they were trained only on a dataset from a single corn 
crop site. Further research in this direction should focus 
on analyses including multiple sites across different ter-
restrial ecosystems, in order to extend the applicability of 
ML algorithms to effectively predict the EF.

Conclusions
From this study, daily EF predictions have been reliably 
derived for a corn crop in a Mediterranean region using 
ML algorithms. The application to other geographical 
areas and crops requires further improvements, apply-
ing model training based on diverse data sources from 
different soils, climate, cropping systems and agronomic 
managements. Our results show that support vector 
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machine and Gaussian process regression algorithms are 
able, with limited input measurement data, to explain a 
substantial portion of the EF variability. The performance 
of the tested ML algorithms has proven to be compara-
ble to the conventional remote sensing-based models and 
can be used when the sky conditions are not suitable for 
remote sensing observations. In addition, ML algorithms 
facilitate the interpretation of interactions between the 
predictors and the EF. Our results also  suggest that in 
principle the integration of ML algorithms with remote 
sensing-based models could be an opportunity to 
improve the predictability of EF.
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