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Percolation on networks is a common framework to model a wide range of processes, from cascading
failures to epidemic spreading. Standard percolation assumes short-range interactions, implying that
nodes can merge into clusters only if they are nearest-neighbors. Cumulative Merging Percolation
(CMP) is an new percolation process that assumes long-range interactions, such that nodes can
merge into clusters even if they are topologically distant. Hence in CMP percolation clusters do not
coincide with the topological connected components of the network. Previous work has shown that a
specific formulation of CMP features peculiar mechanisms for the formation of the giant cluster, and
allows to model different network dynamics such as recurrent epidemic processes. Here we develop a
more general formulation of CMP in terms of the functional form of the cluster interaction range,
showing an even richer phase transition scenario with competition of different mechanisms resulting
in crossover phenomena. Our analytic predictions are confirmed by numerical simulations.

I. INTRODUCTION

Percolation theory is among the most developed fields
of statistical mechanics and mathematical physics. A
percolation process can be defined as follows: We have a
collection of elements and some connections among them.
This object is called a graph, the elements are called
vertices (or nodes) and the connections are called edges
(or links). We then remove some nodes according to a
certain probabilistic or deterministic rule. For instance,
we can remove all nodes with more than a given number
of connections, or we can remove nodes uniformly at
random. At the end of the removal process we wonder
about which connectivity properties are preserved. The
main problem of percolation theory is to understand if a
giant component (GC), that is a connected component of
extensive size, still exists in the graph after the removal
process.

Originally, percolation was studied on various types of
low-dimensional lattices. The powerful methods of statisti-
cal mechanics of phase transitions and critical phenomena,
such as mean-field approximations, renormalization group,
asymptotic expansions and scaling theory, provide us with
a complete understanding of the percolation process on
regular lattice topologies [1]. In the past 20 years, the
interest about complex networks has led to a great deal of
activity concerning percolation processes on graphs [2–6].
Percolation processes are used to model a wide range

of natural phenomena, just by changing the underlying
graph or the probabilistic rule that determines the removal
of nodes. For instance, percolation on a regular lattice
can model transport processes in porous media, such as
electrical and hydraulic conduction, air permeability and
diffusion [7]. On the other hand, percolation on random
graphs [8] can be used to investigate the robustness of a
networked system under intentional or random attacks [2].
Additionally, a deep connection exists between perco-

lation and epidemic spreading. Indeed, the fundamental
susceptible-infected-recovered (SIR) epidemic model on
networks [9] can be mapped onto a bond percolation
process [10]. Such a mapping allows to use the tools of
percolation theory to get a full understanding of static
properties of the SIR model. For epidemic processes which
admit a stationary steady state, such as the susceptible-
infected-susceptible (SIS) model, this mapping is less
immediate, and has been realized only through a new
percolation model recently proposed [11].

Such a model, called cumulative merging percolation
(CMP), is a truly long-range percolation process. This
specification (long-range percolation) is often used for
models where, in a lattice, additional links connecting
sites separated by any euclidean distance are added, with
a probability depending on the distance [12, 13]. In
CMP instead, distances are only topological and two
nodes can belong to the same cluster even if no path of
nearest-neighbor nodes connecting them belongs to the
cluster itself. Models of similar type, called extended-
neighborhood percolation models, have been studied on
regular lattices [14–17]. In such models percolation clus-
ters do not need to coincide with topologically connected
components, as two nodes may form a cluster even if they
are not nearest-neighbors but separated by paths of finite
length (typically 2 or 3). In CMP this length can be
arbitrarily large.

CMP has been recently studied in a specific degree-
ordered case [18] to elucidate the behavior of the SIS
model on random uncorrelated networks with power-law
degree distribution P (k) ∼ k−γ . By means of a scaling
approach and numerical simulations, it was shown that
the long-range nature of the model guarantees, for any
γ > 2, the existence of a percolating cluster for any value
of the control parameter (i.e., the degree threshold that
determines node removal), at variance with what hap-
pens for the short-range counterpart [19, 20]. The aim of
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the present work is to define in full generality CMP on
networks. We present a scaling theory that extends the
one introduced in Ref. [18] to more general forms of the
interaction range. We then consider in detail two paradig-
matic functional forms of the interaction range, deriving
predictions concerning the existence of a phase-transition
at finite or infinite value of the control parameter and
the associated critical behavior. We obtain a rich sce-
nario with competition of different mechanisms resulting
in crossover phenomena, which is confirmed by means of
numerical simulations.
The paper is organized as follows: In Sec. II, we first

define the CMP process in the most general form and
present the detailed specifications considered in the rest of
the paper. In Sec. III we write a general scaling approach
used to analyze the process. Sec. IV is dedicated to a
detailed analysis of two classes of CMP, characterized
by algebraically and logarithmically growing interaction
range. Finally, in Sec V, we summarize our main results
and present some possible future research paths.

II. CUMULATIVE MERGING PERCOLATION

In classical (short-range) percolation, a cluster coincides
with a topologically connected component C, i.e., a subset
of nodes such that for any two nodes i and j there exists a
path connecting them, made of nearest-neighboring nodes
belonging to C. Thus, for instance, if all nearest neighbors
of a node are removed, this node cannot be a part of any
cluster – except the one formed by itself only. In order to
introduce a long-range model, we need to go beyond such
a definition. In this section, we define a general procedure
to define clusters that may be composed of topologically
disconnected and arbitrarily distant components.

A. General definition

We denote a graph by G(V,E), where V is the set of
nodes and E is the set of edges. Each node i ∈ V is
endowed with a non-negative mass mi ≥ 0. The mass of
the set composed by two nodes i and j is given by the
sum of their masses

m = mi +mj . (1)

A partition of the graph P(G) is a collection of subsets
of nodes

P(G) = {A}A⊆V

such that: (i) the sets in P cover V ; (ii) every element
in V belongs to exactly one subset in P. Each element
of P is called cluster, denoting with Ci the cluster to
which node i belongs. Notice that by definition each node
belongs only to one cluster. Because of Eq. (1), the mass
of a cluster is the sum of the masses of all nodes belonging
to it. We define the interaction range of a cluster to be

a non-decreasing function of its mass, r(m). We stress
that these clusters need not be topologically connected
components.

Given a pair of nodes (i, j), the merging operator Mi,j ,
acting on the space of all partitions of the graph, merges
the two clusters Ci and Cj if and only if

di,j ≤ min{r(mCi), r(mCj )}; (2)

where di,j is the topological distance between i and j. If
the condition eqrefmarging is not fulfilled, the merging
operator leaves the two clusters unaltered. Notice that
the merging occurs only if node i is within the interac-
tion range of the cluster Cj and vice-versa, and that two
clusters may be merged together even if they are at arbi-
trary topological distance with each other, provided the
interaction ranges are sufficiently large.

We define the cumulative merging procedure as follows:

1. fix an infinite sequence (it, jt)t∈N of pairs of nodes
of V ;

2. start from the finest partition P0 := {{i}, i ∈ V };

3. iteratively apply the merging operator

Pt+1 = Mit,jt(Pt). (3)

The asymptotic partition

P∞ := lim
t→∞

Pt, (4)

depends, in principle, on the sequence (it, jt)t∈N. Consider
for instance the case in which all nodes have an infinite
interaction range, except node a and node b, which are
distant nodes with small interaction range. The sequence
(it, jt) = (a, b) for every t leads to P∞ = P0, while it is
immediate to realize that P∞ will be different for other
sequences. A way to overcome this difficulty is to con-
sider only recurrent sequences: we say that the sequence
(it, jt)t∈N is recurrent if {it, jt} = {k, l} infinitely many
times, for every k, l ∈ V with k ̸= l. An important result
on the asymptotic partition, whose proof can be found in
Ref. [11], guarantees that the cumulative merging proce-
dure is well defined, i.e. sequence-independent, provided
that the sequence is recurrent.

In summary, given a graph, a collection of node masses,
and the function r(m), the cumulative merging procedure
generates a unique partition of the graph in clusters, not
necessarily topologically connected. Notice that nodes
with r(mi) < 1 by construction do not play any role
(i.e., they necessarily form clusters of size 1), apart from
determining the topological distances among other nodes.
We denote them as inactive, while nodes with r(mi) ≥ 1
are active, as they may participate in merging events and
form clusters of size larger than 1.
The CMP model defined above can be seen as a per-

colation process: Depending on the function r(m), the
node masses and the underlying graph, the asymptotic
partition may be composed of microscopic clusters only
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or include a giant cluster encompassing a finite fraction of
the total number of nodes. It is a long-range percolation
model because clusters may be composed by different and
arbitrarily distant topologically connected components.
This is qualitatively different from extended-range perco-
lation models which allow only finite distances between
disconnected components.

B. A specific class of CMP models

Following Refs. [11, 18], we set node masses to be equal
to their degree, i.e. mi = ki. In this way, the mass of a
cluster is the sum of the degrees of the nodes that belong
to it. Moreover, we take the interaction range to be a
function of the ratio between m and a parameter ka, that
plays the role of control parameter in the percolation
problem,

r(m) = f(m/ka), (5)

where f(x) is a non-decreasing function, with f(1) = 1
and f(x) < 1 for x < 1. According to this definition all
nodes with degree ki < ka have interaction range r < 1
and are thus inactive. Nodes with degree larger than or
equal to ka are active.

In this way percolation occurs in a degree-ordered way:
Increasing the control parameter ka is equivalent to remov-
ing nodes of increasingly higher degree. For the minimal
value ka = kmin, all nodes are active and hence the clus-
ters coincide with the components of the underlying graph.
For large ka → ∞ the number of active nodes gets smaller
and smaller and the nontrivial question is whether an ex-
tensive cluster still exists. With all these specifications,
given a network and the value of ka, the final partition of
the CMP is univocally defined. Fig. 1 reports an example
of how the CMP process unfolds and what is the final
partition of the graph.
Other choices for the initial masses, the interaction

range and the underlying graph are possible, leading
to a wealth of different models with different critical
properties. For example, if r(m) = 1, for any m ≥ 1,
CMP coincides with standard site percolation, either in its
degree-ordered version [19, 20], if the initial mass of node i
is mi = kiΘ(ki − ka), or in its random version, if mi = ki
with probability ϕ and 0 otherwise. Taking instead a
generic interaction range r(m) and again mi = ki with
probability ϕ and 0 otherwise, one has a truly long-range
CMP with random activation. The investigation of these
and other variants constitutes an interesting avenue for
future research.
In the following we study this class of degree-ordered

CMP processes on power-law degree-distributed networks,
described by uncorrelated random graphs with degree
distribution, in the continuous approximation,

P (k) = (γ − 1)kγ−1
min k

−γ (6)

where γ > 2 and kmin is the minimum degree of nodes in
the network.

FIG. 1. Visual representation of a CMP process on a graph
with ka = 3 and r(m) = m/ka. (a) All nodes in the graph are
shown. Colors depend on the degree k. (b) Initial configuration
of the merging process, with ka = 3, each node forming a
cluster. Empty circles are inactive nodes. Colored dashed
regions represent the interaction range of each active node.
(c) Intermediate configuration of the merging process. Dark
red regions represent clusters. (d) Final configuration of the
merging process. From (c) to (d) the long-range nature of the
process plays a crucial role. Note that the process ends since
the interaction range of the cluster with r = 2 does not reach
any node of the cluster with r = 22/3.

Our aim is to investigate the formation of a CMP giant
cluster (CMPGC) 1. Hence we focus on the quantity SCMP,
defined as the fraction of nodes belonging to the CMP
largest cluster, as a function of the control parameter
ka. In percolation theory it is customary to consider
the fraction of active (non removed) nodes, namely ϕ, as
control parameter. In the large N limit,

ϕ =
Na

N
=

∫ ∞

ka

dkP (k) =

(
ka
kmin

)1−γ

, (7)

where Na is the number of active nodes. From this equa-
tion, it follows that we can express SCMP as a function of
ϕ by just replacing ka/kmin with ϕ1/(1−γ). In particular,
the behavior for large ka corresponds to the behavior
for small fraction ϕ of active nodes. Defining ϕc as the
threshold value at which a macroscopic CMPGC first
appears, we expect that, close to the transition

SCMP ∼ (ϕ− ϕc)
β , (8)

where β is a characteristic exponent. In the case ϕc = 0,
we expect

SCMP ∼ ϕβ ∼ kβ(1−γ)
a , (9)

1 This object was called CMP giant component in Ref. [18]. We pre-
fer to change denomination here to stress the difference between
topologically connected components and CMP clusters.
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that is, a decay of the CMPGC size as a function of ka.

III. GENERAL SCALING THEORY FOR
DEGREE-ORDERED CMP

A. CMP for γ ≤ 3

A simple observation allows us to characterize the be-
havior of SCMP on networks with 2 < γ ≤ 3. The short-
range counterpart, i.e. with r(m) = 1, of the CMP as
defined above is called degree-ordered percolation (DOP).
Its behavior on power-law distributed networks has been
studied in Refs. [19, 20], where a detailed investigation
of the critical properties of the DOP giant component
(DOPGC) can be found. In particular, it has been shown
that:

• for γ ≤ 3 a DOPGC always exists for any finite
value of ka;

• for γ > 3, a DOPGC exists only up to a finite
critical point (ka)

DOP
c .

From this result we can infer that for γ ≤ 3 a CMPGC
always exists for every value of ka. Indeed, since the
DOPGC is always a subset of the CMPGC, it follows that
SDOP ≤ SCMP for every ka, and since the short-range
model has an infinite critical point, so has the long-range
model. Furthermore, essentially all active nodes belong
to the DOPGC [18] and thus

SCMP ≃
(

ka
kmin

)1−γ

. (10)

Notice that this result is valid in full generality as long
as r(m) is a non-decreasing function. Instead, for γ >
3 the DOP has a transition to a phase with no giant
component at (ka)

DOP
c and this does not allow us to draw

any conclusions a priori on SCMP for large ka. In the
following section, we develop a general scaling theory to
understand the behavior of SCMP for γ > 3.

B. CMP for γ > 3

Following [18], we identify two different mechanisms
that may contribute to the formation of a CMPGC:

A: Extended DOP mechanism: it is essentially an ex-
tension of the DOP process involving the merging
of DOP clusters separated by distances larger than
1;

B: Merging of distant isolated nodes: it works for high
values of ka when essentially all active nodes are
isolated and, on average, at large distance from each
other.

We compute the scaling of the order parameter SCMP

with ka due to each mechanism separately, and we identify
the ranges of ka values where one of them dominates over
the other.

1. Extended DOP mechanism

In the DOP model for γ > 3 there is an extensive giant
cluster for ka up to (ka)

DOP
c . Above this threshold no

DOP cluster is extensive. In the CMP model, due to the
interaction range extending beyond 1, DOP clusters may
merge and this may lead to the formation of a CMPGC
even for ka > (ka)

DOP
c . The most natural candidates for

this merging are small clusters at distance 2 from each
other or massive isolated nodes at distance 2 from small
clusters. We consider these two contributions separately.

If two small clusters are topologically isolated but at
distance 2 from each other, the two clusters merge pro-
vided their interaction range is larger than their relative
distance. The merging of small clusters at distance 2 may
then make possible the merging of other, more distant
small clusters and so on. Assuming that in this way all
NNI topologically nonisolated nodes enter the CMPGC,
this mechanism gives a largest cluster of size (see Ref. [18]
for details)

NNI

N
≃
(

ka
kmin

)1−γ
[
γ − 1

γ − 2
kmin

(
ka
kmin

)3−γ
]

= ⟨k⟩
(

ka
kmin

)2(2−γ)

. (11)

The plausibility of this assumption strongly depends
on the shape of the function f(x) in Eq. (5) and on the
value of ka. If f(x) grows as x or faster, a cluster of two
nodes has by definition an interaction range equal at least
to 2. Hence such a cluster can merge if at distance 2
from another cluster. If instead f(x) grows more slowly
the interaction range of a cluster formed by two adjacent
nodes may be smaller than 2, and the extended DOP
mechanism becomes ineffective. In such a case Eq. (11)
is a rough overestimation of the largest cluster size. In
addition, for small ka there are many active nodes and
it is plausible that distances among connected clusters
are small. For large ka instead, clusters will tend to be
at larger distances from each other, and an interaction
range equal to 2 will not be sufficient to guarantee the
merging.

In a similar way, we can argue that also an isolated node
can merge with a DOP cluster at distance 2 from it, if it
is massive enough so that its interaction range is at least
2. If we define ke the value of k such that r(ke) = 2, and
assume that all isolated nodes with degree k ≥ ke become
in this way part of the CMPGC, we can estimate SCMP as
the fraction of isolated nodes with k ≥ ke. Following [18],
considering that ke is proportional to ka, and taking the
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limit ka ≫ kmin, we have [18]

Nr≥2

N
∼
(

ke
kmin

)1−γ [
1− γ − 1

γ − 2

ke
kc

]
, (12)

an expression that is also a clear overestimate of the true
contribution, getting worse for large ka.

Summing up the two contributions we obtain

S
(1)
CMP ≃ NNI

N
+

Nr≥2

N
. (13)

Since the decay of Nr≥2/N with ka is slower than the
decay of NNI/N , the first term in Eq. (13) dominates, in
principle, only up to a crossover scale k∗1 , which depends
on γ and on the detailed functional form of the interaction
range. However, as noticed in [18], one does not expect
to actually observe such a crossover as for asymptotically
large ka this mechanism cannot be active. Indeed, for
small values of ka (many active nodes), distances between
small clusters are typically small, favoring the merging
process. As ka is increased, in particular beyond (ka)

DOP
c ,

typical distances between active nodes grow larger and
the extended DOP mechanism is strongly suppressed.
Therefore, we can assume the contribution of the extended
DOP mechanism to the size of the CMPGC to be

S
(1)
CMP ≃ ⟨k⟩

(
ka
kmin

)2(2−γ)

(14)

up to a finite value of ka.

2. Merging of distant isolated nodes

An additional mechanism, which can be at work for
arbitrarily large ka, involves the formation of clusters
resulting from the cumulative merging of massive distant
nodes, with no role played by topologically connected
clusters. The average distance between a node of degree k
and its closest node with degree at least k is given by [18]

d(k) ≃ 1 + a(γ) ln

(
k

kmin

)
, (15)

where

a(γ) =
γ − 3

ln(κ)
(16)

and κ =
〈
k2
〉
/ ⟨k⟩ − 1 is the network branching factor.

If r(k) ≥ d(k), these two nodes merge in a single CMP
cluster. For this reason, if r(k) grows with k faster than
d(k), all nodes with a degree larger than kx, where kx is
the solution of the equation

r(kx) = d(kx), (17)

will be part of the same CMP cluster and

S
(2)
CMP =

∫ ∞

kx

dkP (k) =

(
kx(ka)

kmin

)1−γ

. (18)

Notice that, since r(m) depends on ka, also kx is a function
of ka.

If instead r(k) grows, for large k, more slowly than d(k)
then isolated massive nodes are too far away from each
other and this mechanism does not activate. In such a
case, since no mechanism is active for diverging ka, the
CMP threshold is necessarily finite.

3. Crossover between the two mechanisms

If Eq. (17) has a solution then the CMP asymptotic
regime for large ka is described by Eq. (18). As we will
see in specific examples below, the asymptotic behavior
may be preceded by an interval of ka values where the
extended DOP mechanism dominates. In such a case the
asymptotic regime is reached after a crossover at a degree
value k∗2 given by the solution of the equation

S
(1)
CMP(k

∗
2) = S

(2)
CMP(k

∗
2). (19)

Notice that, since Eq. (14) is an overestimate of the first
contribution due to the extended DOP mechanism, the
solution of Eq. (19) is actually an upper bound of the
true crossover scale k∗2 .
The picture presented above is valid in networks of

infinite size. In numerical simulations on finite networks
the asymptotic regime can be actually observed for large
ka only if the system is large enough that the maximum
degree kmax(N) is much larger than k∗2 . For random
graphs with γ > 3, generated using the Uncorrelated
Configuration Model (UCM) [21], the maximum degree
scales with N as kmax ∼ N1/(γ−1). Hence, to observe the
asymptotic regime it is necessary that N ≫ N∗

2 , where

N∗
2 = k

∗(γ−1)
2 . For the particular form of r(m) describing

SIS epidemic dynamics this value is much larger than
the sizes that can be simulated; as a consequence in
Ref. [18] only the preasymptotic extended DOP regime
was observed. We will see below that for various forms
of the function r(m) the truly asymptotic regime can be
cleanly observed in simulations.
The finite size of networks considered in simulations

induces also the presence of a size-dependent effective
threshold (ka)

CMP
c (N) even if there is no threshold in the

limit of infinite network size. This must be kept in mind
when interpreting simulation results. See Appendix A for
details.

IV. RESULTS FOR TWO SPECIFIC FORMS OF
THE INTERACTION RANGE

In this Section we analyze in detail what happens for
two specific choices of the functional dependence of the
interaction range r(m) on the mass. In each case, after
deriving the predictions of the scaling theory we compare
them with the results of numerical simulations of the CMP
process. These were performed by considering random
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networks built according to the UCM algorithm [21] with
minimum degree kmin = 3 and various sizes N . To avoid
the strong sample-to-sample fluctuations in the value of
the maximum degree [22] we extracted the degree distri-
bution imposing the degrees to be strictly constrained
between kmin and N1/(γ−1).

A. Algebraically growing interaction range

In this subsection we consider an interaction range
growing algebraically with the cluster mass

r(m) =

(
m

ka

)α

, (20)

where α > 0 is a fixed parameter. The case α = 1
corresponds to the linear case studied in Ref. [18].
The effectiveness of the extended DOP mechanism

strongly depends on the value of α. For α ≥ 1 a cluster
of size 2 has an interaction range at least equal to 2 and
it can merge with another cluster if at distance 2 from
it. Moreover, also isolated nodes with k > ke = 21/αka
and distance equal to 2 merge with DOP clusters. In-
stead if α < 1 the above statements are no longer true,
and only sufficiently massive clusters or isolated nodes at
distance 2 may participate to merging events. In such a
case Eq. (13) is an overestimation of the size of the CMP
largest cluster.
Concerning the second mechanism, since r(m) grows

algebraically, and the average distance grows logarith-
mically, the interaction range is, asymptotically, always
larger than the distance. Hence the equation r(kx) =
d(kx) always has a solution, and the second mechanism is
active for sufficiently large degrees, no matter the value
of α. Setting kx = ωka, from Eq. (17) we have the tran-
scendental equation

ωα = 1 + a(γ) ln (ω) + ln

(
ka
kmin

)
(21)

which can be solved for ω as (see Appendix B)

ω(ka) =
e−

1
a(γ)

ka/kmin
exp

[
− 1

α
Wj

(
−αe−

α
a(γ)

a(γ)

(
ka
kmin

)−α
)]

,

(22)
where Wj(z) is the Lambert W or product logarithm
function [23]. The branch corresponding to the physical
solution is the one with j = −1, since the branch with
j = 0 implies ω → 0 as ka → ∞, in contradiction with the
requirement that kx ≥ ka. Expanding W−1(z) for small
argument (that is for ka ≫ kmin), we get, see Appendix B,

ω ≃
[
1 +

a(γ)

α
ln

(
a(γ)

α

)
+ a(γ) ln

(
ka
kmin

)]1/α
. (23)

Thus we end up, neglecting constants and terms of lower
order, with a CMPGC of size

S
(2)
CMP ∼

[
a(γ) ln

(
ka
kmin

)](1−γ)/α(
ka
kmin

)1−γ

. (24)

Eq. (24) is in agreement with the results in [18], which
are recovered setting α = 1. We see that the introduction
of an exponent α tuning the interaction range does not
change the critical exponent β = 1, but only modifies
logarithmic corrections.

To calculate the crossover degree k∗2 , inserting Eq. (14)
and Eq. (18), evaluated for ka = k∗2 into Eq. (19) we
obtain, after some transformations,

k∗2 = kmin

[
ω̄1−γ

⟨k⟩

] 1
3−γ

, (25)

where ω̄ is the solution of

ω̄ =

[
1 +

1

ln(κ)
ln ⟨k⟩+ b(γ) ln (ω̄)

]1/α
, (26)

where we have defined

b(γ) =
2(γ − 2)

γ − 3
a(γ) =

2(γ − 2)

ln(κ)
. (27)

The equation for ω̄ can be solved analytically by using the
Lambert W function with the same strategy developed
in Appendix B. Alternatively, we can solve numerically
Eq. (26) as a fixed point equation for ω̄, and then insert
this value in Eq. (25). Fig. 2 shows that the minimum
graph size N∗

2 needed to observe the second mechanism at
work is indeed much beyond values that can be considered
in practice when α ≤ 1, while it attains feasible values
for α > 1 and γ close to 4.

Numerical simulations of the CMP process (see Fig. 3)
confirm the analytical predictions. For α = 0.5 and
γ = 3.7 the crossover to the asymptotic behavior happens
at N∗

2 ∼ 1025 (k∗2 is of the order of 1010). We thus have
only access to the first regime, dominated by the extended
DOP mechanism. Indeed, as predicted by Eq. (14), the
order parameter S decays with an exponent 2(2− γ) that
extends well beyond the DOP threshold. For α = 5
and γ = 4 instead the crossover value is predicted to be
k∗2 ≈ 23. Correspondingly we observe, for N ≫ N∗

2 ≈ 104,
the asymptotic decay to be well described by Eq. (24).
Notice that in this case also the logarithmic correction is
necessary to match the decay.

B. Logarithmically growing interaction range

Another interesting class of CMP processes is the one
described by an interaction range growing logarithmically
with the mass, that is

r(m) = 1 + δ ln

(
m

ka

)
, (28)

where δ > 0 is a parameter tuning how fast the range
increases.
In this case, since the interaction range grows only

logarithmically with the cluster mass, the asymptotic in-
effectiveness of the extended DOP mechanism is expected
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FIG. 2. Analytical results for algebraically growing interac-
tion range. Plot of k∗

2 (a) and N∗
2 (b) as a function of γ for

algebraically growing interaction range and several values of
α.

to be even more severe than in the previous case for α < 1.
Concerning the merging of massive isolated distant nodes,
since in this case both r(m) and d(k) grow logarithmically,
it is not always true that a degree kx exists such that
r(k) ≥ d(k) for k ≥ kx. This condition holds when

δ ln

(
k

ka

)
≥ a(γ) ln

(
k

ka

)
+ a(γ) ln

(
ka
kmin

)
. (29)

This implies that kx exists only if

δ > a(γ). (30)

This result indicates a completely different phenomenol-
ogy from the one found in Section IVA. The critical line
δ = a(γ) divides the (δ, γ) plane in two regions (see Fig. 4):
For δ > a(γ), the mechanism responsible for the merging
of distant isolated nodes of large degree is active for large
ka; below δ = a(γ) instead, the interaction range grows
too slowly with respect to the average distance between
nodes of degree k and hence the merging of all massive
isolated nodes in a single CMP cluster does not occur. As
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c101 102

(a)

S
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N = 107

DOP, N = 107

10−7
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100

k∗2101 102

(b)

S
C
M

P

ka

N = 104
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N = 107

FIG. 3. Comparison of analytical and simulation results for
the size of the CMP largest cluster as a function of ka, for
algebraically growing interaction range and different combina-
tions of γ and α values: (a) γ = 3.7 and α = 0.5; (b) γ = 4
and α = 5. The red dashed line is the scaling with exponent
1− γ, the green dot-dashed line is the scaling with exponent

2(2 − γ) and the blue dashed line is the prediction of S
(2)
CMP

given by Eq. (18) where kx = ωka and ω is given by Eq. (22).
In panel (a) we also report the results of a simulation of the
DOP process on the network with size N = 107.

a consequence, we can argue that for δ > a(γ) the CMP
has an infinite threshold, while for δ < a(γ) the order
parameter SCMP must go to zero at some finite critical
value (ka)

CMP
c .

In the region δ > a(γ), we can solve the equation for

ω = kx/ka and compute the size S
(2)
CMP. We have

δ ln(ω) = a(γ) ln(ω) + a(γ) ln

(
ka
kmin

)
, (31)

from which it follows

kx = ωka =

(
ka
kmin

)a(γ)/[δ−a(γ)]

ka. (32)
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FIG. 4. Phase diagram of CMP with logarithmically growing
interaction range in the (δ, γ) plane. In the shadowed region
below the blue solid line, the second mechanism does not
activate at all. In the region between the solid and dashed lines
the second mechanism activates, but it is subleading compared
to the first mechanism (as long as the first mechanism is at
work). Above the dashed line the second mechanism activates
and is leading with respect to the extended DOP mechanism.

Inserting the last expression into Eq. (18)

S
(2)
CMP ≃

(
ka
kmin

) (1−γ)δ
[δ−a(γ)]

. (33)

Hence we find that the critical exponent

β =
δ

δ − a(γ)
(34)

(see Eq. (9)) is a continuously changing function of the
parameters γ and δ.

Also Eq. (19) for the crossover scale k∗2 can be exactly
solved in this case. Inserting the expressions (14) and (33)
into Eq. (19) and performing straighforward calculations
we obtain

k∗2 = kmin⟨k⟩µ(γ,δ), (35)

where

µ(γ, δ) =
δ − a(γ)

(γ − 3) [δ − b(γ)]
. (36)

See Fig. 5 for a plot of the function µ(γ, δ).
The expression for k∗2 in Eq. (35) actually applies only

for δ > b(γ). Indeed, as discussed above, for δ < a(γ)
the merging of distant nodes is not active. Hence the
CMP model is practically identical to DOP and we expect
(ka)

CMP
c ≈ (ka)

DOP
c . For a(γ) < δ < b(γ), instead, the

second mechanism activates asymptotically but it is sub-
leading with respect to the first. In this case the extended
DOP mechanism dominates for small values of ka but,

being asymptotically ineffective, at some point the second
mechanism takes over. This crossover does not occur at
the k∗2 predicted by Eq. (35) (which is smaller than kmin in
this case) but where the extended DOP mechanism stops
working. For δ > b(γ), we have at k∗2 a true crossover
between the two mechanisms: The merging of distant
isolated nodes governs the asymptotic behavior of SCMP.
As we can see in Fig. 5, plotting k∗2 and N∗

2 as a function
of γ in the region δ > b(γ) shows that for small values
of δ the crossover is largely out of reach in simulations;
instead for larger values of δ, N∗

2 is strongly reduced and
hence it is possible to observe the asymptotic regime in
simulations.
Results of numerical simulations, reported in Fig. 6,

confirm this overall picture. In Fig. 6(a), corresponding to
δ < a(γ), the behavior of CMP practically coincides with
that of DOP. For a(γ) < δ < b(γ), Fig. 6(b), the extended
DOP mechanism dominates, up to a finite threshold. The
true asymptotic behavior here is the one predicted by
Eq. (33), but it would be observed only for much larger
system size N . For δ > b(γ) instead, SCMP nicely follows
the asymptotic prediction of Eq. (33), after the crossover
scale.

Finally, let us point out that the behavior of the CMP
model as δ → a(γ)− is nontrivial. Let us consider a fixed
value of γ. For δ = 0 the DOP process has a finite critical
point (ka)

DOP
c . For δ > a(γ), we have instead an infinite

critical point and a CMPGC always exists. What happens
in the intermediate region? How does the finite critical
point (ka)

CMP
c change in the region as a function of δ?

We know that (ka)
CMP
c → (ka)

DOP
c as δ → 0, but what

happens for δ → a(γ)−? As long as δ < a(γ) the merging
of distant isolated nodes is not at work for large degrees.
Hence the transition is governed by the extended DOP
mechanism and occurs not far from the DOP critical
point. As a consequence, we expect (ka)

CMP
c to be a

discontinuous function of δ at fixed γ, jumping from a
finite value to ∞ when δ reaches a(γ). A direct numerical
verification of this conjecture is however impossible, due
to finite-size effects.

V. DISCUSSION AND CONCLUSIONS

In this paper, extending the work of Refs. [11, 18],
we introduced a general formulation for a new class of
percolation processes in networks, dubbed cumulative
merging percolation (CMP), characterized by the fact
that nodes belonging to a cluster need not be topolog-
ically connected. Clusters are instead defined via an
iterative procedure that may merge network subsets even
if they are far apart in the network. In this sense CMP is
a long-range percolation process, qualitatively different
from extended-neighborhood processes, which have only
a finite interaction range. We then considered a specific
subclass of CMP models, characterized by node masses
equal to node degrees and a degree-ordered activation of
nodes. This class generalizes the CMP model introduced
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FIG. 5. Analytical results for logarithmically growing interac-
tion range. (a) Three-dimensional representation of µ(γ, δ) of
Eq. (36). (b) Plot of k∗

2 and N∗
2 as a function of γ for δ = 2.

(c) Plot of k∗
2 and N∗

2 as a function of γ for δ = 20. In both
panels b) and c) the condition δ > b(γ) is verified. The red
vertical lines represent the value of γ for which δ = b(γ) and
thus k∗

2 and N∗
2 diverge.

in Ref. [18] by allowing for an arbitrary (non-decreasing)
functional dependence r(m) of the interaction range on
the cluster mass. Building on [18] we developed a scaling
theory for this class of CMP models on power-law degree-
distributed networks, which allows us to determine the
behavior of the order parameter SCMP and the associated
critical properties.

We then considered two specific functional forms for
r(m). We first focused on the case in which r(m) grows
algebraically with m. We showed that a giant cluster
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FIG. 6. Comparison of analytical and simulation results for
the size of the CMP largest cluster as a function of ka, for
logarithmically growing interaction range and different com-
binations of γ and α values: (a) γ = 3.7 and δ = 0.3, so that
δ < a(γ), the system size is N = 107; (b) γ = 3.7 and δ = 1, so
that a(γ) < δ < b(γ); (c) γ = 4 and δ = 20, so that δ > b(γ).
The vertical dashed line in panel (c) is the value of k∗

2 . The
red dashed line is the scaling with exponent 1− γ, the green
dot-dashed line is the scaling with exponent 2(2− γ) and the

blue dashed line is the prediction of S
(2)
CMP given in Eq. (33).

(CMPGC) always exists for any value of ka (the control
parameter that sets the degree threshold for node acti-
vation), even if the interaction range grows sublinearly,
and the critical exponent β is the same of the linear case.
Furthermore, for proper choices of model parameters, we
were able to actually observe the crossover to the true
asymptotic regime in numerical simulations, in perfect
agreement with the theoretical predictions. Note that



10

this observation is not possible with the linear interaction
range used in Ref. [18], since it would require network
sizes out of reach for numerical simulations. We then
considered a logarithmically growing interaction range,
in order to study the nontrivial competition between the
distance among active nodes and their interaction range
itself. We discovered that a CMPGC exists for arbitrarily
large ka only if the interaction range grows “fast enough”
with respect to the distance. We identified a critical line
in the parameters space that separates a region in which a
CMPGC always exists from a region in which a CMPGC
exists only up to a finite critical point (ka)

CMP
c .

Many aspects of the present work are worth future
exploration. Indeed the CMP process allows for countless
variations that may give rise to new nontrivial critical
phenomena. For instance, what happens if CMP is re-
alised when nodes are activated at random, rather than
in a degree-ordered way? What changes with a different
initial assignment of node masses, i.e., mi ≠ ki? What
if the mass of a cluster is given by the product, rather
than the sum of individual masses? The investigation
of these and other models described by other choices of
the CMP parameters is an interesting task for future re-
search. Another possible avenue for future investigations
is the exploration of connections between generic forms of
Cumulative Merging Percolation and epidemic processes.
For example, CMP with algebraically growing interaction
range can be seen as a description of a suitably defined
SIS model on uncorrelated weighted networks.

Appendix A: Finite-size effects

In the cases where the threshold is infinite (i.e., there
is a giant cluster for any ka), the finiteness of the network
induces the existence of a finite size-dependent threshold
(ka)

CMP
c (N), that diverges as N grows. Its detailed be-

havior depends on which mechanism dominates when ka
reaches the value kmax(N).

If kmax(N) < k∗2 , finite-size effects appear during the
preasymptotic regime where the extended DOP mecha-
nism rules. The effective threshold is thus given by the
condition kc = kmax(N), implying

(ka)
CMP
c = kmink

1/(γ−2)
max = kminN

1/[(γ−1)(γ−2)]. (A1)

If instead kmax(N) > k∗2 , finite-size effects appear when
the CMPGC is governed by the second mechanism. Thus
the asymptotic behavior ends when kx = kmax(N), im-
plying

kx[(ka)
CMP
c ] = N1/(γ−1). (A2)

A precise prediction of how the order parameter S
(2)
CMP

is cut off when kx approaches kmax(N) is obtained by
performing the integral in Eq. (18) only up to kmax(N)
(see Fig. 7).
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FIG. 7. Comparison of analytical and simulation results for
the size of the CMP largest cluster as a function of ka, for
algebraically growing interaction range, γ = 4 and α = 5.
Symbols are the results of numerical simulations in networks
of size N = 106 (black triangles) and N = 107 (purple squares).
Lines are the predictions given by Eq. (18) where kx = ωka,
ω is given by Eq. (22) and the integral is performed only up
to kmax(N). The solid orange line is for N = 106, the blue
dashed line is for N = 107.

For ka > (ka)
CMP
c neither of the two mechanisms is at

work and SCMP rapidly goes to zero 2.

Appendix B: Solution of transcendental equations
Eq. (21)

Let us consider the general equation

x = A+BeCx, (B1)

where A, B and C are complex numbers. Subtracting A
on both sides and multiplying by C we get

C(x−A) = BCeCx. (B2)

Setting t = C(x−A) and multiplying by −e−t we get

−te−t = −BCeAC . (B3)

Eq. (B3) can be solved using the Lambert W or product
logarithm function, defined as the function fulfilling the
expression [23]

W (z)eW (z) = z. (B4)

The Lambert W function can be considered as the inverse
of the function f(z) = zez, in such a way that

W (zez) = z. (B5)

2 Of course, it does not go to zero in a finite N simulation because
it tends to 1/N , which is the minimum value for SCMP.
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The function f(z) = zez is not invertible for every z, and
therefore W (z) is multivalued and has several branches,
Wj(z). For real w and z, the equation w = zez can be
shown to have only two branches, W0(z), the so-called
principal branch, and W−1(z). In this case, it is easy to
prove that

• for z > 0 there exist only one solution w = W0(z);

• for −e−1 ≤ z ≤ 0 there are two solutions corre-
sponding to the two branches W0(z) and W−1(z);

• for z < −e−1 there is not any solution.

Now, applying W (z) to both sides of Eq. (B3), we
obtain

W
(
−te−t

)
= −t = W

(
−BCeAC

)
, (B6)

which, resolving for x = A + t/C, leads to the solution
for Eq. (B1)

x = A− 1

C
Wj

(
−BCeAC

)
. (B7)

If we are interested in real solutions, must require that
z ≥ −e−1, that is

BCeAC+1 ≤ 1. (B8)

In order to approximate the Lambert W function, we can
use the expansions for the real branches [23]

W0(z) =

∞∑
n=1

(−n)n−1

n!
zn = z − z2 +

3

2
z3 − ... (B9)

and

W−1(z) = L1 − L2 +

∞∑
l=0

∞∑
m=1

(−1)l
[
l+m
l+1

]
m!

L−l−m
1 Lm

2

= L1 − L2 +
L2

L1
+ ... (B10)

where L1 = ln(−z) and L2 = ln [− ln(−z)], and z → 0−

Turning finally to Eq. (21), namely

ωα = 1 + a(γ) ln (ω) + ln

(
ka
kmin

)
, (B11)

if we define ω = ex, i.e. x = ln(ω), we can write Eq. (B11)
in the form

x = −1

a

(
1 + ln

(
km
kmin

))
+

1

a
eαx. (B12)

This equation takes the exact form of Eq. (B1) if we define

A = −1

a

(
1 + ln

(
km
kmin

))
, B =

1

a
, C = α. (B13)

The solution of Eq. (B12) is thus immediately given by
Eq. (B7), and from here, reverting the change ω = ex, we
recover the solution Eq. (22).
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