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Abstract: This study aimed to evaluate the impact of using an AI model, specifically ChatGPT-
3.5, in remote sensing (RS) applied to archaeological research. It assessed the model’s abilities in
several aspects, in accordance with a multi-level analysis of its usefulness: providing answers to
both general and specific questions related to archaeological research; identifying and referencing
the sources of information it uses; recommending appropriate tools based on the user’s desired
outcome; assisting users in performing basic functions and processes in RS for archaeology (RSA);
assisting users in carrying out complex processes for advanced RSA; and integrating with the tools
and libraries commonly used in RSA. ChatGPT-3.5 was selected due to its availability as a free
resource. The research also aimed to analyse the user’s prior skills, competencies, and language
proficiency required to effectively utilise the model for achieving their research goals. Additionally,
the study involved generating JavaScript code for interacting with the free Google Earth Engine tool
as part of its research objectives. Use of these free tools, it was possible to demonstrate the impact
that ChatGPT-3.5 can have when embedded in an archaeological RS flowchart on different levels. In
particular, it was shown to be useful both for the theoretical part and for the generation of simple and
complex processes and elaborations.
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1. Introduction

The last three decades have been strongly marked by the impact of technologies
on human life and, in particular, by their unprecedented and widespread vertical and
horizontal penetration into everyday life. This impact has obviously occurred in all human
activities, as well as in archaeology. With this respect, a massive technological revolution
has dramatically influenced documentation techniques (i) before, (ii) during, and (iii) after
excavation. Non-invasive archaeology has proven to be extremely useful in understanding
or hypothesising the presence of possible remains of archaeological interest under the
ground in the stages prior to archaeological excavation by providing information on the
nature of the surface and subsurface using remote sensing (RS) and earth observation (EO)
techniques [1–6].

RS and EO applied to archaeology are not a recent discipline. Studies in this field can
be found as early as the second half of the 19th century, such as those by F. Stolze and F. C.
Andreas in 1874, in Persepolis in Iran [5,7,8], and continuing with (ii) G. Boni in the Roman
Forum (1899), and later (1908 approx.) in Venice, Ostia, and Pompeii [7,9,10].
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A further development in RS for archaeology (RSA) occurred immediately after the
Second World War [4,11–24] and subsequently with the development of satellite missions
from the 1960s onwards [25–33].

The technological development of satellites and sensors has produced a major change
in remote sensing and opened up new perspectives for archaeological prospecting activ-
ities [34–37]. The launch of NASA’s (National Aeronautics and Space Administration)
Landsat missions represented a real change in the RS applied to the CH. In particular,
in 1972, the US government distributed the data to scholars from all over the world and
renamed the mission as Landsat [11,38–40].

During the 1980s, archaeologists started to structure a methodology of RSA [41–43].
During the same years, there was the First International Conference on Remote Sensing
and Cartography in Archaeology and the creation of the European Remote Sensing Centre
in Strasbourg, now the European Space Agency (ESA). In 1984, the first NASA-sponsored
conference on RSA was held, organised by Tom Sever and James Wiseman, entitled ‘Re-
mote Sensing and Archaeology: Potential for the Future’ [11,44]. During the 1990s, RS
applied to archaeology was particularly favoured by the development of several applied
studies on available satellite and airborne sensors, the development of performing software
and hardware and the combined use of existing technologies with the newly developed
GIS (Geographical Information System). The integration of data with GIS systems led
archaeologists to integrate satellite data into the concept of landscape-scale archaeology,
opening up the possibility for large-scale analyses and the creation of previously unex-
plored spatial correlations [11,45–47]. These developments generated a real change in the
RS approach applied to archaeology. This change of mindset towards a more modern
interpretation by archaeologists and scholars from other disciplines to the combination
of RS and archaeology has created a great development of research, materialised over
time in conferences [48,49], books [11,44,50–54], reviews, and papers [46,47,55–58]. It was
revolutionary for archaeology itself and for the discovery of buried cultural heritage (CH),
just as it profoundly changed the way these new technologies were conceived [52,59–63].
The availability of open big-data and the development of increasingly high-performance
computing and storage platforms has certainly contributed to boosting research in this field
in the last few years [2,57,64–68].

Considerable progress has been made in the ability to identify a wide range of proxy
indicators of the presence of buried archaeological sites. As is well known, the identification
of buried archaeological features by optical satellite data is based on the observation of
changes in reflectance that are useful to highlight changes: (i) in the health and phenological
cycle of vegetation; (ii) and in soil moisture retention [62,69,70]. These changes are par-
ticularly evident in the red, green, near-infrared (NIR), red edge and short-wave infrared
(SWIR) bands [34,71–74]. In recent years, RS studies in archaeology have focused on the use
of different systems to improve the visibility of features of archaeological interest. The most
common practices are (i) spectral enhancement via the creation of indices (mathematical
combination between bands) such as indices derived from the use of NIR, Red, and Green
(e.g., NDVI, GNDVI, and SAVI) [63,75–79] or indices based on SWIR (e.g., NDMI and
MSI) [80–82]; (ii) radiometric enhancement obtained using linear and non-linear stretch-
ing or equalisation of the histogram to increase the contrast between pixel classes [83,84];
(iii) transformation, aggregation or reduction in data using various techniques such as
TCT (Tasseled Cap Transformation) [85], PCA (Principal Component Analysis) and SPCA
(Selective PCA) [86–89], local and global spatial autocorrelation indices (e.g., Anselin Local
Moran’s I, Getis-Ord’s index and Geary’s index); and (iv) classification (e.g., K-Means,
Isodata, and machine- and deep-learning based classification) [90,91].

Last but not least, a huge contribution has been provided to the development of
increasingly complex machine- and deep-learning systems associated with increasingly
simple and, in many cases, completely free software and tools, such as QGIS and Google
Earth Engine (GEE) [1,92–100]. The entry of AI (Artificial Intelligence) into many fields,
including the fields of RSA, has undoubtedly been a subject of discussion in recent years,
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when systems based on pre-trained language models have entered the world scene, be-
coming very popular even among non-specialists, with solutions suitable for operating
in various fields (e.g., graphics, text, copywriting, marketing, data analysis) [101]. These
systems provide different types of output (e.g., images and text) from text or voice input by
the user. For this reason, they are extremely easy to use and affordable for everyone.

The aim of this study was to analyse some aspects of the impact that an AI model based
on pre-trained language models such as ChatGPT-3.5 (Generative Pre-trained Transformer)
can have in the RSA, in particular the model’s ability to provide: (i) answers to (general and
specific) questions on the issue; (ii) information about the references from which he/she
has taken information; (iii) information about the tools to be used depending on the user’s
desired outcome; and help the user to perform simple and complex processes for RSA
investigations interacting with the different tools and libraries. For the purposes of the
research, ChatGPT was asked to generate codes mainly in JavaScript in order to interact
with the free GEE tool. In addition, the aim of the research was also to cross-sectionally
assess the extent to which prior skills, competences, and language properties the user must
have in order to achieve the required goal of the model.

2. Materials and Methods

The study followed the flowchart illustrated in Figure 1.
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The following tools were used: (i) OpenAI ChatGPT-3.5 as a pre-trained language
model and (ii) GEE. All conversations made between authors and ChatGPT-3.5 are shown
in the SIs (Supplementary Information).
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2.1. OpenAI ChatGPT-3

ChatGPT is a Generative Pre-trained Transformer (GPT) based on a natural language
processing (NLP) [102–106], i.e., a large language model (LLM) that, using deep-learning,
understands a text or voice input and reproduces output based on what has been under-
stood. It was released in 2020 by OpenAI [102,107,108]. OpenAI’s main goal is to develop
artificial intelligence that is safe, beneficial and accessible to all [109].

Starting in 2018, OpenAI created GPT-1, GPT-2, and released GPT-3. Version 3.5
of ChatGPT was used for this paper since it is free. It was released in 2022, and today,
version 4 is already available. ChatGPT 3.5 is an upgraded version of ChatGPT 3, with
several improvements in terms of accuracy, safety, and usability. ChatGPT 3.5 is generally
considered to be more accurate than ChatGPT 3. This is due to a number of factors,
including (i) a more sophisticated training process that uses reinforcement learning with
human feedback, (ii) larger dataset of training data, (iii) improved algorithms for handling
natural language. ChatGPT 3.5 is designed to be more usable than ChatGPT 3. ChatGPT-3.5
training data stopped in 2021, and many limitations are imposed on the system with regard
to the language to be used in responses, the type of responses to be given, and some formal
language conventions. Billions of BPE (byte-pair-encoded) tokens were used for training
(Table 1).

Table 1. ChatGPT-3.5 training data from [107].

Dataset Tokens Training Weight

Common Crawl 410 billion 60%
WebText2 19 billion 22%

Books1 12 billion 8%
Books2 55 billion 8%

Wikipedia 3 billion 3%

Since ChatGPT was released, the scientific community has been using it, and articles
have been published on it [107] on several topics [106,110–120], as well as ethical issues
that have arisen very recently [121–126]. To date, there are few studies that demonstrate
the usefulness of GPT or derived tools (e.g., Visual ChatGPT) in the field of RS and satellite
image classification [127–130]. A useful tool made available by the world community
via the web (e.g., GitHub or several Google extensions) is the possibility of being able to
use prompts (i.e., texts explaining to ChatGPT what to do) that are already pre-compiled
so as to (i) save time and (ii) prevent the system from being trained wrongly or giving
wrong answers.

ChatGPT is used to obtain different types of output [106]:

(i) Generated Text: It can generate coherent and relevant responses and text based on the
given questions or instructions. It can be used to answer specific questions, provide
explanations, generate creative content, or even play the role of a virtual character in
a conversational interaction;

(ii) Translations: By utilising ChatGPT’s translation API, it is possible to provide text in a
particular language and obtain a translation in another specified language. This can
be useful in supporting multilingual communication and facilitating understanding
between individuals who speak different languages;

(iii) Speech Synthesis: It can be used to generate text-to-speech synthesis;
(iv) Content Research and Generation: It can be used to conduct research on specific topics

and generate content based on the results;
(v) Interactive Assistance: ChatGPT’s APIs enable the creation of interactive applications

that leverage its conversational capabilities to engage in conversations and respond to
user queries. This can be used to develop chatbots, virtual assistants, or interactive
support tools.
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2.2. GEE and Sentinel-2 L2A

GEE [96] is a powerful open-source tool provided by Google. It provides a web-based
interface and interactive development environment (IDE) that allows users to access and
work with a wide range of datasets spanning over forty years of global data. These datasets
include satellite data from missions such as MODIS, ALOS, Landsat and Sentinels, as well
as other useful data such as digital terrain models, shapefiles, meteorological data and land
cover information [131].

GEE is known for its high-performance computing capabilities and its ability to handle
large amounts of data, making it a valuable tool in the field of remote sensing and big
data analysis [94–98]. It has gained popularity in various disciplines, with the number of
scientific papers on GEE increasing significantly over the years. Researchers have used
GEE in several fields, such as vegetation [132–136], land use and land cover [137,138],
hydrology [139–141], climate [142,143], and cultural heritage analysis [92,93,144,145].

The availability of GEE has also led to the creation and sharing of many free tools,
which can be found on the GEE website [146].

For the present study, GEE was chosen because it runs in the JavaScript programming
language, and its codes can be generated via ChatGPT-3.5, simultaneously overcoming
the (i) problem of computing satellite data locally and (ii) writing code. The aim here is
to assess the impact ChatGPT-3.5 can have on research in the field of archaeology and RS.
The data used for this study were data from the ESA Sentinel-2 (S2) L2A satellites, now
considered the best in terms of spatial, spectral, and temporal resolution among the free
data for RS archaeology contained in GEE [147,148]. The dataset used in all analyses is the
‘COPERNICUS/S2_SR_HARMONIZED’ dataset, which covers a time span from March
2017 to the present (Table 2).

Table 2. Sentinel-2 satellite specifications (table generated using ChatGPT-3.5, SI B, question 8).

Parameter Description

Spatial Resolution 10 m (bands 2, 3, 4, 8), 20 m (bands 5, 6, 7)

Spectral Bands

Coastal aerosol (Band 1), Blue (Band 2), Green (Band 3), Red (Band 4),
Red-edge 1 (Band 5), Red-edge 2 (Band 6), Red-edge 3 (Band 7), NIR (Band 8),

NIR narrow (Band 8A), Water vapour (Band 9), SWIR 1 (Band 11), SWIR 2
(Band 12)

Temporal Resolution 5 days (global coverage)
Swath Width 290 km (single satellite)
Revisit Time 2–5 days (depending on latitude)
Data Format Level-1C (Top of Atmosphere), Level-2A (Bottom of Atmosphere)

Data Source Copernicus Open Access Hub (https://scihub.copernicus.eu/,
accessed on 25 September 2023)

Acquisition Modes Global (Full Swath), Europe (Granules)
Mission Lifetime 7 years (planned)

Radiometric Resolution 12 bits

2.3. Approach to ChatGPT-3.5

In literature, the approach followed relies on the human-GPT interaction to generate a
conversation on a given topic (e.g., RSA) and report the conversation by drawing conclu-
sions about the validity of the model’s answers [110]. Instead, in this paper, the authors
have tried to achieve a higher level of technicality and depth in order to estimate the impact
of artificial intelligence (AI) in the context of RSA research. User and language model
interactions were mainly based on a multi-level approach based on three stages, aimed at
demonstrating the potential of the use of AI for such research for users of all levels (e.g.,
archaeologists with little experience in RS, archaeologists experienced in RS, engineers and
programmers experienced in RS), that can be defined as follows:

(i) Entry level: (a) RS and archaeology (general theory and methods), (b) current research
trends (up to 2021), (c) used references;

https://scihub.copernicus.eu/
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(ii) Medium level: (a) provide information about the tools to be used depending on the
user’s desired outcome, (b) help the user to use simple functions and processes in
JavaScript underlying RS applied to archaeology;

(iii) Advanced level: (a) help the user to perform complex processes for advanced RS work
applied to archaeology (e.g., classification and statistics) and to create a complete
process by recreating the methodology described in a scientific paper on the topic
step-by-step, (c) interoperability between different tools and libraries currently used
for RS in archaeology.

The evaluation also took into account the level of previous competence and the type
of language used by the user to assess how the user and machine balance each other in
achieving a result [149–151].

The evaluation scale used was based on a method inspired by the Likert scale, based
on a psychometric technique for measuring attitude [152]. It is a multi-point accuracy scale,
generally rated from 1 to 5 or 1 to 7 points, where answers are graded from the lowest
value, completely wrong answer, to the highest value, completely correct answer. For the
present study, a scale of 0 to 4 (5 points) was used, as follows (Figure 2):

(1) Not correct (0%);
(2) Almost completely incorrect. The system starts by providing minimal information,

but the essential parts are missing or incorrect (25%);
(3) It’s not quite correct, but it’s not totally incorrect. The system provides correct infor-

mation but mistakes or omits some important information (50%);
(4) Almost completely correct (75%);
(5) Correct. The system explains the required topic comprehensively (100%);
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In the case of open or descriptive answers, this scale was used in this way, where each
point corresponds to a 25% increase in the goodness of the answer. In the case of questions
involving a binary answer (e.g., yes and no), the values considered are 0 (incorrect) and
4 (correct).

The same rating scale was also used for the code tasks so that uniform results could be
obtained for evaluation purposes. In this case, the scale was created as follows:

(1) Not working (0%);
(2) Partially functional or functional after intensive user interaction (25%);
(3) Partially working or working after further explanation by the user at ChatGPT (50%);
(4) Almost completely correct even without user interaction (75%);
(5) Fully functional as generated by AI (100%);

During the process, questions or tasks with scores as shown in Figure 1 were: (i) re-
submitted in a similar but not equal way; (ii) an in-depth examination or correction was
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requested; (iii) changes in the answer or in the generated code were requested. This
approach was repeated two to four times each time a response was unsatisfactory.

In order to ask and evaluate questions on several levels, the authors of this study have
different levels of knowledge of remote sensing for archaeology. Respectively:

(i) F.V. has no experience in the use of RS for archaeology and has asked and evaluated
entry-level questions. These were joined by those with more experience in order to
avoid giving positive marks even in the case of wrong answers;

(ii) A.M.A. and M.S. already have experience with RS for archaeology, but none about
data processing tools and therefore assessed the mid-level answers, always under the
supervision of the most experienced;

(iii) N.A., M.D., R.L., and N.M. can be considered experts in RS for archaeology and
assessed the answers for the advanced level.

The scores were then established by mutual agreement between the authors.

2.3.1. Entry Level

The first set of questions focused on the general use of RSA. The purpose of this
approach was to assess the reliability of methodological discourse and how useful AI can
be for the training of a researcher approaching the subject.

In this section, the questions posed to ChatGPT were about the theory, methods,
and references of RSA, alternating with requests for more in-depth information based
on the answers given by the AI itself. The topics covered are presented in full in SI A.
The questions were: (i) provide an overview explaining the history of studies and the
discipline from the late 19th century to 2021; (ii) deepen optical multispectral satellite
remote sensing in archaeology; (iii) list the best free data for satellite remote sensing in
archaeology; (iv) provide a real case study of a remote sensing study for archaeology, carried
out from satellite data; (v) provide an example of a remote sensing study for archaeology,
carried out with Sentinel-2 from satellite data; (vi) give information on the use of Sentinel-2
for the discovery of buried archaeological features by providing a step-by-step explanation,
including tools and software to be used, where to start from and how to obtain at least the
most commonly used vegetation indices. Finally, also add bibliographical references. An
in-depth analysis of the relationship between AI and references was therefore analysed
separately and is not part of the overall statistics. The question asked in this case was,
“Please report 10 important scientific references for each year starting written in the N about
‘Remote Sensing’ and ‘Archaeology’ using scheme author(s), year, title, journal”, where N is a
year between 2010 and 2020 (SI D).

2.3.2. Medium Level

The second level (SI B) of in-depth study was based on the assumption that the user
is already familiar with the main issues concerning RSA. The questions were, therefore,
of a theoretical-practical nature and were aimed at having the user create code strings for
relatively simple operations. These operations mainly concern the use of satellite data to
create outputs useful for RS studies for archaeology, such as (i) RGB images, (ii) infrared
false colour images, and (iii) vegetation indices. GEE was used as a tool for satellite
data analysis.

The questions were structured along the same lines as previously described, as follows:
(i) describe the main tools and software used as part of RS for archaeology with Sentinel-2
data; (ii) illustrate the open source tools used as part of RS for archaeology with Sentinel-2
data; (iii) describe the most commonly used packages, libraries and modules used as part
of RS for archaeology in (a) Python, (b) R and Rstudio and (c) JavaScript; (iv) show the
specifications of the Sentinel-2 satellite; (v) create a code base in JavaScript, compatible
with GEE, to select, filter and crop the S2-L2A dataset on a geometry called an Area of
Interest (AOI); (vi) display (map.AddLayer function) RGB and Infrared False Colour (R:
Nir, G: Red, B: Green) annual averages on a map; (vii) finally, add to the collection the most
commonly used vegetation indices for archaeological RS for a flat agricultural landscape.
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2.3.3. Advanced Level

The advanced level (SI C) was a much more technical and practical approach than the
previous ones. At this stage, ChatGPT was asked to reproduce a methodological approach
used in other studies of RSA. Reference was made to the papers [144]. In particular, the
methodology used in [92,93,144] and generally applicable to other contexts was followed.

The methodological approach used in these papers involves the following steps with
the aim of improving the visibility of features of archaeological interest far beyond the
possibilities offered by individual vegetation indices, i.e.,: (i) choice of dataset; (ii) choice
of period of interest; (iii) dataset filtering (cloudiness and AOI); (iv) creation of vegetation
indices throughout the collection considered; (v) selection, on the basis of already known
or identifiable evidence of areas of archaeological interest and areas of no archaeological
interest, (vi) analysis of spectra and creation of M statistic to evaluate the images in the
collection where there is the greatest difference in signal, where M is described in [153];
(vii) selection of images with M > n, where n is a value close to 1; (viii) merging all
images into one multi-band image; (ix) data normalisation (as suggested by ChatGPT-3.5);
(x) Create a Selective Principal Component Analysis (SPCA); (xi) Calculate statistics of
image neighbourhoods; (xiii) and produce a classification (unsupervised and supervised).
Produce an unsupervised and supervised classification. In the latter case, ChatGPT-3.5
chose to use a K-means as the unsupervised classification [154] and an SVF (Support Vector
Machine) [155,156] as the supervised one. All operations were carried out with the aim of
having ChatGPT create a single JavaScript code that could be used in GEE. The aim was to
prove its usefulness in the creation of complex flowcharts.

3. Results

The final results of ChatGPT-3.5’s answers to the questions asked show interesting
behaviour and are shown in Table 3. The complete transcripts are shown in SIs A, B, and C.

Table 3. Final results.

Level Number of Questions Asked Mean Score StdDev

Entry 19 2.263157895 1.617083315
Medium 23 3.260869565 1.2420881273

Advanced 54 2.611111111 1.7131142

The result of the entry-level answers achieved a score of 43 out of a maximum of 76
and are described in Section 2.3.1. and SI A. The average result was 2.26. The system was
able to answer the questions posed, although it made some errors.

On the general questions about the theory (SI A, 1–6), ChatGPT-3.5 provides acceptable
answers, especially for students, researchers, and scholars who want to approach the subject.
It is capable of generating a credible, structured text that could easily be used as a basis for
developing further research. In 7 to 19 (SI A), ChatGPT-3.5: (i) correctly cited a study done
by S. H. Parcak [11], although providing a slightly wrong year of publication; (ii) incorrectly
quoted works by Drs. R. Lasaponara and N. Masini, giving plausible but not true titles,
although very close to the originals; (iii) gave his own interpretation of RS works for
archaeology, simulating possibly real cases.

In particular, references turned out to be a problem already encountered in other
papers, as ChatGPT-3.5 often provides information that is similar to the real, plausible,
but not true [157–159]. The conversation is shown in SI D and can be resumed as follows
(Table 4).
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Table 4. Evaluation of references provided using ChatGPT-3.5, year by year, with keywords “Remote
Sensing” and “Archaeology”. For each year, 10 texts were asked to be cited.

Year Number of Completely Correct References Number of Fake References

2010 0 10
2011 0 10
2012 1 9
2013 0 10
2014 0 10
2015 0 10
2016 0 10
2017 0 10
2018 0 10
2019 0 10
2020 NaN NaN

The results of an analysed sample of 100 texts produced by AI show a percentage
of 99% of invented texts or texts similar to real ones but not correct. Only in one case
did the AI correctly quote a text. SI D shows how GPT reworks authors, titles, years and
magazines in a way that creates plausible, but not real, references [157]. For the year 2020,
GPT provides no information but invites the applicant to consult Google Scholar and other
scientific reference repositories.

The result for the medium-level answers was 75 out of 92, with an average of 3.26.
Details are given in Section 2.3.2. and SI B.

ChatGPT-3.5 proved capable of: (i) provide general information on software used in
RS for archaeology (SI B, 1–3); (ii) indicating the required code in a console to be copy-and-
pasted directly into R, RStudio, Python, and GEE interfaces (SI B, 4–7); (iii) create tables
from scratch with the required data (e.g., Table 2 or SI B, 8); (iv) developing simple codes
such as those related to dataset selection or the selection of masks and areas of interest
(SI B, 9–12) (Figure 3); (v) creating functions to generate vegetation indices (SI B, 13–23);
and (iv) having the produced data displayed in the GEE map screen, such as true colour
visualisation (Figure 4b), false colour infrared (Figure 4c), grey scale indices (Figure 4d),
and print spectral index charts (SI B, 13–23) (Figure 5). In general, few major errors were
found, but overall, the system addressed all requests.

Finally, the advanced level achieved a result of 141 out of 216, with an average of 2.61.
The whole conversation is reported in SI C and explained in Section 2.3.3. The system
was able to generate complex codes, in some cases committing errors and forcing the
operator to intervene. ChatGPT-3.5 proved to be able to respond to and generate codes,
either from existing codes or based on textual user requests, and thus generate codes from
scratch. There were many mistakes made by the AI, mainly related to more complex
and/or unclear user requests. In most cases, the errors were either (i) addressed after
two or three requests, thus changing the way the task was requested, or (ii) resetting the
conversation (e.g., SI C, 38 and 39). The system has proven to: (i) be able to give general
information about the RS theory for archaeology or about sites, cities, and artefacts of
archaeological interest (SI C, 1–4), albeit in some cases with errors and inaccuracies (e.g.,
SI C, 1–2); (ii) quickly and efficiently understand, generate, and edit complex JavaScript
codes at the user’s textual request, also from methodologies described in scientific papers
(e.g., [144]), selecting datasets (e.g., Sentinel-2), applying masks (e.g., cloudiness), and
creating functions for creating vegetation indices and charts (SI C, 5–19); (iii) quickly create
advanced level codes to apply statistical extraction functions (e.g., mean, variance, standard
deviation, and M statistic) or functions on the entire data collection considered (SI C,
20–40); (iv) successfully generate code for complex functions such as Selective Principal
Component Analysis (SPCA) (Figure 6a), spatial analysis (Figure 6b), and classifications
(Figure 7) that are usually not easy to write in JavaScript for a beginner or mid-level user
(SI C, 41–54).
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for the present work; (b) true colours visualisation (R: Red, G: Green, B: Blue) annual (2017–2023)
average; (c) false colours visualisation (R: Nir, G: Red, B: Green) annual (2017–2023) average; (d) NDVI
annual (2017–2023) average. All the images were obtained in GEE from the code generated using
ChatGPT-3.5.
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Figure 5. (a) Area of interest in true colour visualisation with positioning of points of interest relating
to areas where features of archaeological interest have been identified and areas where there is
presumably no archaeological significance; (b) graph containing the average trend over time of the
NDVI index at the points indicated in a. All data were produced using GEE and the codes provided
by ChatGPT-3.5; the points were selected by hand by the user, based on [144]. This data was used as
the basis for the statistical calculations of the advanced level.
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4. Discussion

The conversations with ChatGPT revealed how this system has advantages and limita-
tions for a practical application such as RS for archaeology. The numerical results (Table 3)
obtained from the similar Likert scale, according to the flowchart and the evaluations
expressed in Figures 2 and 3, show that there were appreciable differences depending on
the use and type of questions asked.

The entry-level was the one with the lowest average total score. This was mainly
dictated by the incorrect information provided in the requests for scientific papers and ref-
erences. In the context of textual generation, in fact, these arguments were over-interpreted
by the AI to the extent that they were credible but not usable for scientific or research
work. This may be mainly due to the sources used for AI training, which probably do
not include precise references on the topic of Remote Sensing Archaeology. In this case,
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GPT re-processes on the basis of knowledge that it has consistent but not real elements.
It is conceivable that the IA has read contributions on the subject (e.g., from Wikipedia
pages or Google Books), as well as popular pages on the subject, in which there are no
clear references and then reworked the topic. In fact, ChatGPT-3.5 is able to bring back the
names of the major authors on the subject of RSA, as well as the main journals and the
main topics addressed in the literature, albeit with its own reinterpretation.

The next two levels, i.e., medium and advanced, also showed large differences in
scores. The highest score was achieved in the case of the medium level. This involved
relatively simple code-writing requests, often aimed at obtaining a single result. ChatGPT-
3.5 proved extremely useful, particularly in writing code related to (i) the selection and
filtering of datasets, (ii) the calculation of vegetation indices, and (iii) the visualisation and
export of data. The AI has proven to be a very versatile tool for writing RS-related code in
different languages and for converting code from one language to another. In particular, the
creation of codes for the creation of visualisation indices proved to be extremely useful as it
made it possible to create several different vegetation indices, already set with the bands
of the Sentinel-2 satellite, without any particular expenditure of user’s time in operations
such as searching for the bands of the satellite in use for the chosen indices and writing the
correct mathematical formulae in JavaScript. These operations, although not particularly
complex, are often time-consuming. Another strength of RSA is that at the end of each
piece of code, it provides an explanation and hints related to that code. An example is
given in SI C questions 48 and 49. In these is the request to write a code to create an SPCA
function. ChatGPT-3.5 suggests that the user also apply a data normalisation function in
order to make the PCA itself work: “[...] Keep in mind that PCA is sensitive to the scaling of
input data. Normalising the data before performing PCA, as you did earlier, is a good practice to
ensure meaningful results”. Furthermore, the results show that by exposing the methodology
in a textual manner to the GPT system and requiring it to generate step-by-step code, it
was possible to achieve results similar to those published using other tools [144].

A marked drop in performance was observed when writing complex codes with func-
tions linked together throughout the chat. This is mainly due to errors in the writing of the
code (e.g., Python functions that cannot be used in the GEE portal) or to user requests that
are not always clear or not always understood by GPT itself. Another problem encountered
(e.g., SI C, 38–39) was that of recursive error. That is, within the same conversation, once a
misunderstanding or an error has occurred, this is carried over throughout the series of
answers. This phenomenon is clearly emblematic of the essence of ChatGPT-3.5, which, in
addition to being pre-trained, learns and works from the conversation with the user. When
this point was reached, it was necessary to start a new conversation and provide GPT with
the code produced up to that point so that new questions could be asked. ChatGPT-3.5 was
able to read, understand, and explain the provided code to the user in text language. This
aspect has also proved useful in cases where the user already possesses a starting code (e.g.,
tutorials made available on the internet) and wants to analyse and understand its features
despite having limited knowledge of the programming language.

5. Conclusions

ChatGPT-3.5 proves to be a valid tool for beginners as well as intermediate or advanced
users. It is able to provide useful information about software, tools, and techniques to
be used in working with RS archaeology. As shown in the previous paragraph and SIs,
however, the user must be cautious in using the information as it is provided, as the data
may be distorted by arbitrary interpretation generated by the AI due to the information
databases it contains. In fact, the system always tries to provide an answer to the question
asked, although it does not always return valid and scientifically reliable information. In
particular, the biggest problems occurred when GPT was asked to illustrate a topic related
to a scientific paper. In these cases, the system created a plausible argument, probably
similar to the truth, but reinterpreting it. However, ChatGPT-3.5 itself advises the user to
pay attention since, as GPT itself admits, it is a speech with an artificial intelligence system.



Heritage 2023, 6 7653

It is possible that the limitations encountered are due to privacy restrictions or an internal
policy related to the laws of the different states where the system is used. As pointed out
by other authors, ChatGPT-3.5 tends to give a high percentage of references with similar
detail to the original (e.g., confabulated) [157].

Finally, ChatGPT-3.5 proved to be a very valuable tool in obtaining a fairly summarised
overview of certain topics, such as the general themes of RS and archaeological RS, the sites
of interest to be analysed and the tools that can be used. Similarly, it proved to be a useful
and fast tool for generating tables on certain topics, such as Table 2, which shows data on
the ESA Sentinel-2 satellites.

ChatGPT-3.5 proved to be able to respond to and generate simple and complex codes,
either from existing codes or based on textual user requests, and thus generate codes from
scratch. It can be a valuable support for both beginners and advanced users. In particular,
it proved useful mainly for operations of a medium level of difficulty. In this segment,
ChatGPT-3.5 is at its best, managing to address requests in an optimal manner and saving
the user effort and time. The case of an advanced or expert user of both the programming
language and RS archaeology is different. These users may find utility mainly for two
operations: (i) converting code from one language to another and (ii) calling up particular
functions that are difficult to write or remember (e.g., remembering bands in calculating
vegetation indices). On the other hand, in the case of writing code from scratch, advanced
users may probably encounter problems in using ChatGPT-3.5 and end up slowing down
their work. In addition, ChatGPT-3.5 has shown that it can be used as an interpretation
tool for an already-described methodology. This feature, a sort of methodological reverse
engineering, could be particularly useful in the field of archaeological RS as it can enable
scholars to explain a methodology described in a paper to the AI system and generate the
code to replicate it, as demonstrated with the replication of the methodology of one of the
reference papers [144].

ChatGPT version 3.5 is not the best performing in terms of text comprehension and
response, and better performance in RS for archaeology can be achieved using ChatGPT-4,
which is not free. A further increase in performance could be achieved using GPT-4 with
its API (Application Programming Interface) connected to other services or using similar
systems such as the connection between ChatGPT-4 and Bing or Google’s Bard. Recently,
several tools and plug-ins have been developed for geoscience, including RS, based pre-
cisely on the use of the ChatGPT-4 API. An example of this is the QGIS plug-in called
QChatGPT, which allows the GIS environment to be connected to AI. Certainly, given recent
fast development trends, AI of this type can be implemented in the automatic identification
processes of features of archaeological interest and in the classification, segmentation, and
recognition of features of archaeological interest in remote sensing images. In addition, to
facilitate such use, ready-to-use prompts for the RS archaeology can be created and made
available to users in the same way as they currently already exist in the form of template
prompts relating to a wide variety of topics (e.g., communication, social media, automated
responses to emails).

In conclusion, the paper demonstrates how this tool can be carefully incorporated
into the workflows of the RSA, especially for low- and mid-level users. In particular,
ChatGPT-3.5, and also GTP-4, can be successfully used (i) to obtain an overview of certain
issues, (ii) generate lines of code, (iii) convert codes from different programming languages,
and (iv) understand already written codes in order to rework or modify them. These
are all activities that can be inscribed in RS workflows for archaeology by students and
researchers. Although GPT has proven to be useful, there is a need for some important
considerations as a warning for users to be cautious. It is important to emphasise that,
especially for entry (low) and medium levels, ChatGPT can also be a harmful tool. In fact, it
must be emphasised that many of the theoretical or reference answers were wrongly given
by the system, even though they were proposed to the user as true or correct. It is only
the side-by-side evaluation between the non-expert user and the expert user that made it
possible to understand the problem in GPT’s answer. This problem may depend on two
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interrelated factors that are detrimental to the user in the case of incorrect information: (i)
GPT’s propensity to always answer and very rarely admit to having no answer, and (ii) AI
training datasets that may contain vague or incorrect information.
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