

ISTI-TR-2020/001

ISTI Technical Reports

Know your neighbor: fast static prediction
of test flakiness

Antonia Bertolino, ISTI-CNR, Pisa, Italy
Emilio Cruciani, Gran Sasso Science Institute, L'Aquila, Italy

Breno Miranda, Federal University of Pernambuco, Recife, Brazil
Roberto Verdecchia, Gran Sasso Science Institute, L'Aquila, Italy

 ISTI-TR-2020/001

Know your neighbor: fast static prediction of test flakiness
Bertolino A., Cruciani E., Miranda B., Verdecchia R.
ISTI-TR-2020/001

Flaky tests plague regression testing in Continuous Integration environments by slowing down
change releases, wasting development effort, and also eroding testers trust in the test process. We
present FLAST, the first static approach to -akiness detection using test code similarity. Our
extensive evaluation on 24 projects taken from repositories used in three previous studies showed
that FLAST can identify -aky tests with up to 0.98 Median and 0.92 Mean precision. For six of those
projects it could already yield 0.98 average precision values with a training set containing less than
100 tests. Besides, where known -aky tests are classi ed according to their causes, the same
approach can also predict a -aky test category with alike precision values. The cost of the approach
is negligible: the average train time over a dataset of 1,700 test methods is less than one second,
while the average prediction time for a new test is less than one millisecond.

Keywords: Flaky test; Regression testing; Software testing.

Citation
Bertolino A., Cruciani E., Miranda B., Verdecchia R.. Know your neighbor: fast static prediction of test
flakiness. ISTI Technical Reports 2020/001. DOI: 10.32079/ISTI-TR-2020/001.

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”
Area della Ricerca CNR di Pisa
Via G. Moruzzi 1
56124 Pisa Italy
http://www.isti.cnr.it

Know Your Neighbor: Fast Static Prediction of Test Flakiness
Antonia Bertolino

ISTI - CNR
Pisa, Italy

antonia.bertolino@isti.cnr.it

Emilio Cruciani
Gran Sasso Science Institute

L’Aquila, Italy
emilio.cruciani@gssi.it

Breno Miranda∗
Federal University of Pernambuco

Recife, Brazil
bafm@cin.ufpe.br

Roberto Verdecchia†
Gran Sasso Science Institute

L’Aquila, Italy
roberto.verdecchia@gssi.it

ABSTRACT
Flaky tests plague regression testing in Continuous Integration en-
vironments by slowing down change releases, wasting development
e�ort, and also eroding testers trust in the test process. We present
FLAST, the �rst static approach to �akiness detection using test
code similarity. Our extensive evaluation on 24 projects taken from
repositories used in three previous studies showed that FLAST can
identify �aky tests with up to 0.98 Median and 0.92 Mean preci-
sion. For six of those projects it could already yield ∼0.98 average
precision values with a training set containing less than 100 tests.
Besides, where known �aky tests are classi�ed according to their
causes, the same approach can also predict a �aky test category
with alike precision values. The cost of the approach is negligible:
the average train time over a dataset of ∼1,700 test methods is less
than one second, while the average prediction time for a new test
is less than one millisecond.

1 INTRODUCTION
Flaky tests can intermittently pass or fail even for the same code
version [26]. A seminal study in 2014 by Luo et al. [26] analyzed
empirically the common causes and manifestations of test �akiness
and brought the attention of the research community onto this seri-
ous problem, which was already well-known among practitioners,
e.g., [10, 12, 40].

Flakiness hinders regression testing in many ways, especially in
a Continuous Integration (CI) environment where ideally all tests
must pass before a change can be integrated, or in other words
any failing test must be �xed before a release. Test cases that fail
non-deterministically jeopardize any good practice of prioritizing
those tests that recently failed, because as explained in [28] this
would end up in executing mainly �aky tests.

Indeed, in Google, almost 16% of individual tests contain some
form of �akiness [29], and these �aky tests are the cause of 84%
of all observed transitions (i.e., changes from pass to fail or the
vice versa for the test results across project commits) [23]. A non
negligible percentage of �aky tests is observed also in Microsoft:
while monitoring �ve projects over a one-month period, 4.6% indi-
vidual tests were identi�ed as �aky [21]. Open Source (OS) projects
do not escape �akiness either: a study of 61 projects using Travis
CI assessed that 13% of all observed failures were attributable to
�akiness [20]. A similar percentage of 12% �aky tests on average
∗Also with ISTI-CNR, Pisa, 56124, Italy
†Also with Vrije Universiteit Amsterdam, 1081HV, The Netherlands.

was observed for test cases executed in the IDE over 3,500+ both
industrial and OS projects [5].

In addition to wasting developers’ e�ort in debugging a System-
under-Test (SUT) that is actually correct because an observed failure
is due to a �aky test and not to the latest introduced change, �aki-
ness also in�ates testing time: several CI platforms now routinely
rerun failing test cases a number of times to ascertain that failures
are not intermittent. This in turn produces other indirect costs in
either case that a test is eventually marked as �aky or non-�aky: if
�aky, after receiving several false alarms, testers tend to lose trust
in the process and be less reactive to failures [29]; if non-�aky, the
failure was real, but its debugging has been delayed.

As said, in practice �akiness is identi�ed by rerunning a failed
test several times, e.g., even up to 10 times [30]. Approaches have
been proposed to reduce the implied overhead, e.g., by coupling
test rerunning with code analysis [4, 22]. In this way even one
execution might be su�cient. In the following we denote �akiness
detection techniques that rely on test execution (one or more times)
as dynamic techniques.

In contrast, some approaches have recently been proposed to
recognize �akiness based on characteristics of known �aky tests,
e.g., [16, 18, 43]. Such approaches do not require test rerunning,
but either rely on manual identi�cation of such characteristics by
experts [18, 43], or learn them from a vast historical dataset [16].
In either case they require large e�ort to be generalized.

As wished by Harman and O’Hearn [14], research should �nd a
quick yet e�ective method for test �akiness assessment. Indeed, we
concur with Gyori and coauthors when they state - talking about
state-polluting test cases (i.e., tests that can originate �akiness) -
that “ideally a polluting test should be caught right when the developer
is about to add it to the test suite because that is when the developer is
in the best position to �x” it [13]. Accordingly, our aim is a method
that can timely predict �akiness even before a test is executed.

Toward such aim, we hypothesize that test �akiness can be early
detected by just looking at test code. Some recent studies [9, 31]
have shown that test code similarity can provide an e�ective in-
strument for test suite prioritization and reduction, however to the
best of our knowledge no previous work has considered to lever-
age test code similarity for identifying �aky tests. If the hypothesis
were con�rmed by the data, such an approach would only need a
train sample of test cases labeled as �aky and non-�aky (which can
be assumed in current industrial practice [30]) and neither expert

A. Bertolino, E. Cruciani, B. Miranda, and R. Verdecchia

consultancy nor test rerunning nor any further characterizations
of �aky tests beyond their test code.

Our contribution. This paper contributes with an approach called
FLAST that predicts if a test is �aky based on its similarity with
known �aky tests at the negligible cost of a fast training step: as
we describe in Section 3, we �rst map the tests in the train set
onto some metric space, where we �x the notions of source-code
similarity and distance among test cases; then, we train on it a
k-Nearest Neighbor classi�er [2] to predict the �aky or non-�aky
nature of any new test.

Our extensive analysis on 24 projects obtained from reposito-
ries used in previous studies [4, 22, 34] supports our hypothesis.
FLAST yields Median values for precision varying from 0.87 (with
0.70 recall) up to 0.98 (with 0.18 recall). Di�erent precision values
depend on a threshold we can tune to make the approach more
or less conservative: lower precision value of 0.87 corresponds to
no threshold; higher threshold values increase precision reducing
the percentage of false positives down to 0.03%, but at the cost of
missing about 40% of potential �aky tests. Indeed, if FLAST pre-
dictions are returned to developers for manual �x of �akiness, it
would be essential to contain false positives, i.e., claiming a test as
�aky when it is not, to the lowest possible degree. Instead, if FLAST
predictions are processed automatically higher recall values (even
though corresponding to lower precision) may be preferable.

In addition, provided that �aky tests in the train set are cate-
gorized according to their cause (e.g., as in the dataset provided
by [34]), FLAST can be trained to also detect the speci�c �akiness
categories. We got Median precision varying between 0.82 and 0.98.

Summarizing, we provide the following contributions:
• Idea: �rst method for similarity-based �akiness detection
based on static analysis of test code: we can predict both if a
test is �aky, and its cause (in case the train set also includes
�akiness labels as in [34]).
• Implementation: a tool prototype of FLAST that embeds �ne-
tuned heuristics to enhance precision and e�ciency.
• Evaluation: a study over 24 projects including in total more
than 60K test methods, 3,700+ of which �aky. The whole
dataset and all results are made available along with the tool
for study replication.

Given its lightweight nature, generality, and high precision, we
envisage that FLAST can be embedded within any CI platform
with great returns in reducing the incidence of test �akiness and
maintaining code velocity.

In the next section we overview related work. Then we present
the FLAST approach (Section 3) and the methodology followed to
evaluate it (Section 4). We provide study results (along with threats-
to-validity) in Section 5. Finally, we discuss application of FLAST
in CI practice (Section 6) and draw conclusions (Section 7).

2 RELATEDWORK
Until the cited study by Luo et al. [26], the scienti�c literature
almost ignored test �akiness. A few works mentioned the problem
as an aside issue, but to our knowledge no research paper centrally
focused on �akiness. Instead, in the last �ve years �aky tests are
drawing increasing attention, also triggered by practitioners’ alerts
about the relevance and spread of the problem [10, 14, 29].

Aiming at a comprehensive review of e�orts undertaken so far
to address �aky tests, we launched a query over three wide digital
libraries, namely ACMDL,1 IEEExplore,2 and Scopus.3 We searched
for string “�aky test” OR “�aky tests” OR �akiness in the abstract
(ACM DL) or in the metadata (IEEExplore and Scopus).

As a result, after removing duplicates and excluding not relevant
works, we collected a total of 19 primary studies that are mainly or
in large part dealing with �akiness. This result is not to be meant
as a systematic survey of the topic, which is beyond the scope
of the present section and would deserve a dedicated paper: for
instance we did not search for common “�aky” synonyms such as
“intermittent” or “non-deterministic,” nor we performed full-cycle
snowballing iterations (but in part we did).

For ease of exposition, we can classify such 19 studies into three
main groups: i) empirical studies on �aky tests [20, 26, 33, 34, 36,
37, 41, 42], ii) approaches to detect �aky tests [4, 16, 18, 22, 39, 43],
and iii) approaches to prevent, mitigate, repair or, in a single word,
manage �aky tests [11, 13, 21, 27, 38]. We brie�y overview these
categories.

Empirical studies. Luo et al. [26] provide the �rst extensive study
of �akiness by inspecting more than one thousand commits that
likely �xed �aky tests over the central repository of the Apache Soft-
ware Foundation. Their results provide a must-read to understand
the phenomenon of �aky tests, and is highly cited especially with
reference to their ten categories of �akiness root causes ranked
by incidence. Over the same repository, Vahabzadeh et al. [42]
studied more broadly all possible types of bugs in test code and ob-
served that �aky tests, together with semantic bugs, constitute the
dominant cause of tests provoking false alarms. Thorve et al. [41]
conducted a study of �aky tests in Android apps. They observed
that some causes of Android tests �akiness are similar to those
identi�ed in [26], but two new causes are Program Logic and UI.
Presler-Marshall et al. [36] report on a speci�c study on �akiness in
web testing using the Selenium tool. They provide several hints on
the e�ect of di�erent test environment con�gurations. The study by
Labuschagne et al. [20] of 61 projects from GitHub Archive focuses
on the costs of maintaining a regression test suite; they observe that
∼13% of test failures are due to �aky tests. Rahman and Rigby [37]
studied the crash reports submitted by Firefox users in Beta and pro-
duction stages, asking among other things how many of them are
associated with �aky tests. They observed that developers are more
conservative with known �aky tests when releasing production
builds than Beta builds. In a series of two studies [33, 34], Palomba
and Zaidman analyze the relation between �akiness and test smells,
i.e., suboptimal choices in test development. Notably they observed
that 75% of the �aky tests were due to presence of smells; they
also drew a di�erent ranking of possible �akiness causes than that
in [26].

Detecting �aky tests. In practice �aky tests are detected by re-
running either all failed test cases or the suspect ones (e.g., the
tests that transited from pass to fail) a number of times, e.g., 10
times [30]. Following [4], we call this generic strategy as Rerun.

1https://dl.acm.org
2https://ieeexplore.ieee.org
3https://www.scopus.com. Note that in Scopus the search was limited to the Computer
Science subject area.

Know Your Neighbor: Fast Static Prediction of Test Flakiness

In the literature we found few works proposing approaches that
improve on Rerun, which is costly and not very precise. Among
these, the authors of [4, 22, 39] propose dynamic techniques, i.e.,
they still base the identi�cation on test case execution (one or more
times), but enhance precision with deeper analyses. In contrast,
the works in [16, 18, 43] leverage knowledge of �akiness to build
a static predictor. In [43], a set of problematic test code patterns
(actually not exclusively for �akiness, but broadly for test code
bugs) is manually elicited. The work in [16] is similar, but uses a
machine learning approach to mine association rules among in-
dividual test steps in tens of millions of false test alarms. Finally,
in [18] a Bayesian network is constructed.

Managing �aky tests. Some authors have proposed speci�c tech-
niques to tackle known root causes of test �akiness. One prevalent
problem is the existence of dependencies among tests. To prevent
it, Gyori et al. [13] propose the POLDET technique that timely de-
tects if a new added test case “pollutes” the state of heap shared by
more tests. Instead Gambi et al. [11] develop the PRADET approach,
which discovers test dependencies by �ow analysis and iterative
testing of possible dependencies. Lam et al. [21] detect the root
causes of �aky tests by executing them after instrumentation and
comparing the logs of passing and failing runs. A di�erent thread of
research can be noted in [27, 38]: as prospected in [14], test �akiness
is such a pervasive and complex problem that any test technique
should include appropriate means to manage it. These two works
go in this direction, and propose measures to mitigate the impact
of �aky tests on test mutation [38], and on learning-based test
selection [27].

This work. We leverage results from the empirical studies, in
particular the dataset provided by [34]. Our aim is detecting �aky
tests as in [4, 16, 18, 22, 39, 43]. However, FLAST di�ers from all of
them, as to identify a �aky test it does not need neither to execute
the test case nor any expert knowledge or extensive domain data.
We make a more detailed comparison in Section 5, after having
explained how FLAST works. In this paper we do not focus on
managing the detected �aky tests, but our approach could be used
to provide developers with information about how similar �aky
tests have been repaired in the past.

3 APPROACH
Let T be a test suite of which we know the �aky nature, i.e., we
know whether each test t ∈ T is �aky or non-�aky. More formally,
let ` : T → {0, 1} be the function such that `(t) = 1 if t is �aky
and `(t) = 0 otherwise, for every t ∈ T . Given an unknown test
s < T , i.e., a test of which we do not know the nature, the idea
on which our approach is based is that if s is “similar” (for some
notion of similarity) to a test t ∈ T such that `(t) = 1, then there is
a good chance for s to be �aky as well, because they could share
the traits that make both their behaviors non-deterministic: for
example, they could be testing the same functionality of the SUT
or be both dependent on other test cases or be accessing a same
shared resource. In the same way, if s is similar to a test t such that
`(t) = 0, then s has a good chance to be non-�aky.

To actualize such idea we need to �nd a notion of similarity
that can capture the �aky nature of a test: as anticipated in the

Flaky	Test
Non-Flaky	Test
Predicted	Flaky	Test

Nearest	Tests	(k=7)
Predicted	Non-Flaky	Test

Figure 1: Visual representation of FLAST prediction

Introduction, we model the tests inT as points in some metric space,
where we �x a notion of source-code similarity and distance among
test cases, and then train on T a k-Nearest Neighbor classi�er [2].
We provide a visual representation of how FLAST works in Figure 1.
The full black symbols are the tests in T , represented as points in a
plane; the white symbols, instead, are the tests not in T of which
we predict the nature. We look at the neighborhood of each of these
tests, i.e., at the tests that are similar according to our representation,
and predict if each of them is �aky or not according to the nature
of the similar neighbors.

Vector space modeling. Similarly to what has been done in [9],
we model the tests in T as points in an n-dimensional vector space
using the bag-of-words model [24]: each test case t is represented
as the multiset (i.e., a set that allows multiple instances of its ele-
ments) of the tokens composing its source code, split by whitespace
characters. According to this model, the dimensionality n of the
space induced by T is equal to the number of distinct tokens in the
source code of T . Each test t ∈ T is then represented as a vector
t ∈ Rn with component relative to token i weighted proportionally
to the multiplicity of i among the tokens of t .

Similarity and distance. Given two vectors s, t ∈ Rn , we measure
their similarity using the cosine of the angle θ between them, i.e.,
via the cosine similarity Sc (s, t) = cosθ , whereby: cosθ = 〈s,t 〉

‖s ‖ · ‖t ‖ ,
〈s, t〉 =

∑n
i=1 siti is the dot product between s and t , and ‖s‖ =√∑n

i=1 s
2
i is the Euclidean norm of s . Instead, we measure their

distance via the cosine distance Dc (s, t) = 1 − Sc (s, t).

Dimensionality reduction. To mitigate the e�ects of the curse
of dimensionality in the neighbor search [7] and obtain gains in
terms of e�ciency and storage overhead we apply a dimensionality
reduction technique called sparse random projection [1, 25]. Roughly
speaking, points are projected onto a random d-dimensional sub-
space of Rn , with d � n, such that the pairwise distance of the
projected points is preserved up to a multiplicative factor ε [17].
Herein, we set ε = 0.33, but it can be customized to have a di�erent
e�ectiveness/e�ciency tradeo� in the distance measurement. The
dimensionality d of the random subspace onto which points are
projected is independent from the initial dimensionality n, i.e, from
the content of the tests, but only depends on the number of tests in
T and its much smaller that them, being d ∈ Ω

(
log |T |
ε2

)
.

Flakiness prediction. After modeling the tests in T as vectors
and reducing their dimensionality, we predict the nature of an
unknown test case s < T . In particular, as previously mentioned,

A. Bertolino, E. Cruciani, B. Miranda, and R. Verdecchia

Algorithm 1 FLAST Prediction
Input: Test suite T ; Function `; Test s ; #Neighbors k ; Threshold σ
Output: Flakiness prediction for s
1: Ns ← argmin

R⊆T : |R |=k

∑
t ∈R

Dc (s, t) . k nearest neighbors

2: ϕs ←
∑

t ∈Ns : `(s)=1

1
Dc (s, t)

. �akiness measure

3: ψs ←
∑

t ∈Ns : `(s)=0

1
Dc (s, t)

. non-�akiness measure

4: if ϕs
ϕs+ψs

> σ : return True . predict the test is �aky
5: else: return False . predict the test is non-�aky

we use a k-Nearest Neighbors classi�er and train it on the vector
representation of the tests in T . The value of k sets the tradeo�
between variance and bias in the classi�cation: a low value of k
makes the classi�cation more subject to noise (increased variance),
while a high value of k smooths the decision boundaries (increased
bias). As a general rule of thumb one would set k =

√
|T |, but in this

paper we set k = 7 (without optimizing it through cross validation)
given the unbalance in the datasets used in the experiments (some
projects has less than 7 �aky tests in the train set). The �akiness
prediction performed by FLAST is sketched in Algorithm 1.

First, the unknown test case s in mapped to a vector s in the
same vector space used for the tests in T .4 Then, FLAST searches
for the set Ns of k tests that are closer to t according to the cosine
distance of their vector representations (Line 1); we look for the
neighbors via a naive linear search, but the same operation could
be done using other techniques. The �akiness and non-�akiness
measures of s , i.e., ϕs andψs (Lines 2-3), are computed as a function
of the neighborhood of s , weighting the nature of each neighbor by
the inverse of its cosine distance to s . Test s is predicted to be �aky
if ϕs
ϕs+ψs

> σ , for some threshold σ ∈ [0, 1], and to be non-�aky
otherwise (Lines 4-5); using ϕs andψs we emphasize the similarity
between s and its �aky/non-�aky neighbors, rather than their sole
number; a threshold parameter σ > 0.5 makes the algorithm more
conservative in predicting a test as �aky.

Flakiness category identi�cation. There may exist di�erent root
causes of �aky tests, such as concurrency and test order dependency,
that allow for a classi�cation into multiple �akiness categories,
as done, e.g., in [26, 34]. In the scenario that for each �aky test
t ∈ T we also know its �akiness category, in addition to predicting
the nature of an unknown test case s < T , we can also identify
its �akiness category via a majority voting strategy. Let Cs be
the multiset of possible �akiness categories of s , computed as the
union (with multiplicities) of all �akiness categories of its k nearest
neighbors: we predict the category of �akiness of s as the most
frequent �akiness category in Cs .

4Potential new tokens of s w.r.t. those ofT do not a�ect the distance computation after
the random projection. The new tokens (say they arem) would change the random
projection matrix and the vectors in T should be re-projected from the “augmented”
(n +m)-dimensional space; however, the new matrix would map the vectors in T
onto the same space they are currently projected on, since the components in the
augmented space relative to the new tokens of s would be 0.

4 EVALUATION
We aim at evaluating the e�ectiveness and e�ciency of FLAST as
an approach for predicting test �akiness. In this section we describe
the research questions, the methodology we followed to answer
them, and the experimental setting.

4.1 Research questions
The �rst obvious question is whether FLAST is actually able to
detect �aky tests, so we ask:
RQ1: How e�ective is FLAST in predicting test �akiness?
As prediction relies on similarity, we also inquire how large a train
sample of known �aky and non-�aky tests would FLAST need, i.e.:
RQ2: How does FLAST e�ectiveness vary with the size of the train

sample?
If the known �aky tests are classi�ed into categories, can we also
use FLAST to predict the cause of �akiness, or:
RQ3: How e�ective is FLAST in identifying a �aky test category?
For practical adoption we need also to evaluate the costs of FLAST,
but evaluating actual costs of putting it in production is a very
complex task. As a �rst step we ask:
RQ4: How e�cient is FLAST in terms of training time, prediction

time, and storage overhead?
Finally, it is also important to evaluate FLAST in comparison with
other existing approaches, so we also investigate:
RQ5: How does FLAST compare with other state-of-the-art tech-

niques?

4.2 Evaluation methodology
To answer RQ1. We measure Precision P and Recall R:

P =
TP

TP + FP
, R =

TP

TP + FN
,

where TP , FP , and FN respectively denote true positive, false posi-
tive, and false negative predictions. We will also derive Confusion
Matrices, which allow us to look in detail at the absolute num-
bers and percentages of FPs (which for a �akiness predictor we
would like to keep limited). We infer such metrics through Strati�ed
10-fold Cross Validation, a standard procedure for validating ML
methods [19]. The dataset is split into 10 folds, each used once as
the test set while the remaining 9 folds are used as the train set.
Strati�cation, instead, ensures that each fold is a good representa-
tive of the original dataset by preserving the proportion of �aky
tests and reducing both bias and variance of the classi�er [19].

To answer RQ2. We use the same metrics de�ned for RQ1, but
considering di�erent sizes of the train set, ranging from 10% to
90% (with a step size of 5%) of the size of the dataset. Di�erently
from RQ1, here we use Strati�ed Shu�e Split with 10 splits, an
alternative to k-fold Cross Validation that allows a �ner control
on the train/test split. In fact, this validation strategy allows us to
specify the train set size.

To answer RQ3. Whenever we classify a test as �aky we also
identify its �akiness category.5 To evaluate e�ectiveness we count
the fraction of tests predicted as �aky and for which the predicted
5We assume that �aky tests are labeled with their categories, as for instance in [34].

Know Your Neighbor: Fast Static Prediction of Test Flakiness

category is among the real ones. More formally, let S be a set of
tests predicted as �aky by FLAST. For each test t ∈ S , let Ft be the
set of real �aky categories of t and let ft be the �aky category of t
predicted by FLAST. Let F be the overall set of possible �aky cate-
gories, i.e., F =

⋃
t ∈S Ft . We measure the e�ectiveness of FLAST

in identifying a �aky test category as

AFC =
∑
t ∈S

1Ft (ft)
|S |

,

where 1Ft : F → {0, 1} is the indicator function of the �aky category,
i.e., 1Ft (ft) = 1 if ft ∈ Ft and 1Ft (ft) = 0 otherwise.

Moreover, we also compute FLAST precision in predicting each
individual �aky category found in the ground truth data, i.e., the
fraction of samples for which FLAST correctly guessed a category
among those that FLAST predicted in that category.

To answer RQ4. We measure the training time (time to vectorize
the tests in the train set and to build the data structure contain-
ing them), the prediction time (time to vectorize a new test, query
the data structure for the k nearest neighbors, and predict its na-
ture) and storage overhead (of the “trained model,” i.e., of the data
structure to be stored on disk after the training phase).

To answer RQ5. As described in Section 2, our search of literature
identi�ed seven approaches [4, 16, 18, 22, 30, 39, 43] as competing
approaches. Performing an empirical comparison of FLAST against
those entails a cumbersome and time consuming process, which
would not lead to meaningful results, due to the drastic di�erent
nature of the approaches, especially if we consider: i) their scopes
(FLAST is applied to every test case, whereas some of the approaches
are applied to only a test subset, e.g., those that failed, and some can
only identify speci�c types of �akiness), and ii) the required inputs
and utilized resources (e.g., FLAST exclusively relies on test source
code, while other approaches also require additional information,
such asmanual input provided by experts [18, 43]). Hence, to answer
RQ5, we leverage a qualitative methodology, carried out by eliciting
a set of prominent characteristics of �aky test detection approaches.

4.3 Experimental setting
Evaluation dataset. In order to answer RQ1. . .RQ4, we leverage

an experimental dataset encompassing over 3.7K real-life �aky
tests belonging to 24 distinct software projects. This dataset is
obtained by combining �aky tests datasets that are publicly avail-
able [4, 22, 34]. The integration of di�erent existing and already
used datasets allows us to e�ciently gather a large amount of data
for experimentation, while ensuring data heterogeneity and high-
quality. From the original datasets, we select those projects that
contain enough data for training FLAST: precisely we include in
our dataset all the projects that contain at least 7 �aky tests.6

Replication package. The entirety of the software projects in-
cluded in our dataset is hosted on GitHub.7 In the original dataset
each �aky method is mapped to a unique commit hash,8 a classpath,
6Due to space constraints, the list of all projects considered, as well as the comprehen-
sive list of �aky classes, �aky methods, commit hashes, and the entirety of the source
code utilized as data in our experiments, is made available in our replication package.
7https://github.com/ICSE2020-FLAST/FLAST
8As FLAST does not require historical data, if a �aky method is associated to more
than one commit hash in the original dataset, only the most recent hash is considered.

Table 1: Overview of the evaluation datasets

Source #Projects #Flaky Methods (SLOC) #Total Methods (SLOC)

Palomba et al. [34] 11 3,424 (72,865) 33,740 (717,655)
iDFlakies [22] 9 258 (4,824) 3,705 (52,023)
DeFlaker [4] 4 57 (891) 3,429 (36,079)

Total 24 3,739 (78,580) 40,874 (805,757)

and a method name. We use this information by performing the
following steps: i) checking out the version of the software projects
where �aky tests are present, ii) identifying the �aky methods via
their given classpath and method name, iii) parsing the �aky meth-
ods and storing each one in a separate �le for subsequent analysis,
and iv) parsing and storing the remaining methods of the classes
present in the test suites (which by exclusion are assumed as non-
�aky). An overview of the data selected from each original dataset
is provided in Table 1.

Threshold σ . As introduced, FLAST can be tuned to work in less
or more conservative way by setting a lower or higher value for the
threshold σ ∈ [0, 1]. We run all experiments under two scenarios:
σ = 0.5 and σ = 0.95. With reference to Algorithm 1, the former
scenario corresponds to using no threshold, i.e., we predict a test
s is �aky if ϕs > ψs ; the latter puts a high threshold so that a
test s is predicted as �aky only when we are highly con�dent. We
expect that the second scenario will predict less �aky tests, but with
higher precision than the �rst one (and hence less false positives).
Contrariwise, for the σ = 0.5 scenario we expect higher recall.

Hardware. All experiments were run on a MacBook Pro with a
2.7 GHz Intel Core i5, 8 GB RAM, running macOS Mojave 10.14.6.

Qualitative comparison. To answer RQ5, we elicited a set of fea-
tures that we consider relevant in choosing an approach for �aky
test prediction: these features were derived by consensus among
the authors, and are are quickly described below:

• Analysis type: Possible values are Static (no test execution
needed) or Dynamic (test must be executed at least once).
• SUT coverage: Possible values are YES (approach uses SUT
coverage reports) or NO otherwise.
• Flakiness type: Possible values are Generic (approach targets
any type of �aky test) or Speci�c (only some speci�c types
of �akiness can be detected).
• Scope: Possible values are All (approach is applied to all tests)
or Subset (only a part of tests is analyzed).
• Action type: Possible values are Proactive (approach actively
searches for �aky tests) or Reactive (approach is invoked
only in reaction to transitions).
• Expert knowledge: Possible values are YES (approach needs
expert consultancy) or NO otherwise.
• Train set: Possible values are YES (approach needs to be
trained on a set of known �aky tests) or NO otherwise.
• Precision: Provide where available (or n.a. otherwise) the
precision results obtained by the approach authors.
• Overhead: Provide where available (or n.a. otherwise) the
overhead estimations claimed by the approach authors.

https://github.com/ICSE2020-FLAST/FLAST

A. Bertolino, E. Cruciani, B. Miranda, and R. Verdecchia

With regard to precision and overhead, wewarn that the reported
values may not be comparable among each other, as they were
obtained under di�erent experimental conditions. These features
constitute the columns of Table 3 discussed in Section 5.5.

5 RESULTS
We report below the results obtained to answer the �ve RQs and
then discuss potential threats to validity.

5.1 [RQ1] How e�ective is FLAST in predicting
test �akiness?

The box plots of Figure 2 show the distribution of precision and
recall values obtained by FLAST when applied over the evaluation
datasets. For these metrics, the higher the result (reported in the
vertical axis), the better. The performance results are presented on
the union of all datasets (“All”), and also grouped by dataset. For
each metric displayed (Precision or Recall), the left (blue) box refers
to the results for the scenario with threshold σ = 0.5, while the
right (orange) box refers to the scenario with threshold σ = 0.95. A
detailed breakdown of precision and recall values per threshold and
per project is available in Table 2. The number of �aky methods
and total number of methods per project is also available from the
same table, Columns 2 and 3, respectively.

When considering the consolidated results (“All”) for the less
conservative scenario (σ = 0.5), an overall average precision of
∼0.83 was obtained (i.e., when FLAST classi�ed a test as �aky, it got
it right ∼83% of the times). When we increase the threshold to σ =
0.95, the overall average precision increases to ∼0.92. Similar results
were observedwhen considering the evaluated datasets individually,
with the exception of the DeFlaker dataset for which the precision
actually decreased when FLAST became more conservative (this
unexpected result could be due to the very small number of �aky
tests in this dataset).

The confusion matrices displayed in Figure 3 provide a detailed
analysis of the performance of FLAST for each class (�aky or non-
�aky) individually. They show us the ways in which FLAST is
“confused” when it makes predictions. This is an important aspect
to be taken into account, specially for imbalanced problems like
ours. A �aky test correctly classi�ed as �aky by FLAST is counted
as a true positive (top left), whereas if it is classi�ed as non-�aky it
is counted as a false negative (bottom left). Analogously, if a non-
�aky test is correctly classi�ed as non-�aky it is counted as a true
negative (bottom right), whereas it counts as a false positive (top
right) if it is incorrectly classi�ed as �aky. False positives (FPs) and
false negatives (FNs) are sometimes referred to as Type I and Type
II Errors [35]. Committing a Type I Error is critical if tests predicted
as �aky are sent back to developers for manual analysis and repair,
as this could waste developer’s time looking for �akiness in a test
that is actually non-�aky [16]. Ideally, in such a case we would
like to have maximum precision even if this comes at the expense
of a diminished recall. Conversely, we could envisage a di�erent
scenario in which FLAST results are sent to a tool, e.g., for test
prioritization or for performing a dynamic analysis. In this case we
might prefer to trade-o� between Precision and Recall, containing
also Type II Errors.

All Palomba et al. dataset iDFlakies dataset DeFlaker dataset

Precision Recall Precision Recall Precision Recall Precision Recall

0.00

0.25

0.50

0.75

1.00

σ 0.5 0.95

Figure 2: FLAST e�ectiveness over the evaluation datasets

 Flaky Non-Flaky

 True

 Flaky

 Non-Flaky

 P
re

di
ct

ed

264.97
(0.89)

34.16
(0.11)

65.73
(0.02)

2921.45
(0.98) 0.2

0.4

0.6

0.8

 Flaky Non-Flaky

 True

 Flaky

 Non-Flaky

 P
re

di
ct

ed

157.40
(0.97)

4.50
(0.03)

217.80
(0.06)

3709.17
(0.94)

0.2

0.4

0.6

0.8

Figure 3: Confusion matrices from experimental results of
FLAST, with absolute and normalized values in each cell (on
the left (blue) σ = 0.5; on the right (orange) σ = 0.95)

From Figure 3 we can see clearly that by increasing the threshold
from σ = 0.5 to σ = 0.95, the percentage of TPs9 is improved
from 0.89 to 0.97, implying that the percentage of FPs goes from
0.11 down to 0.03. Looking at the absolute numbers we can notice
that FLAST is more conservative in classifying a test as �aky. An
improved precision comes at the cost of missing many more �aky
tests (reduced recall); such missed �aky test can still be detected
using a traditional rerunning strategy.

5.2 [RQ2] How does FLAST e�ectiveness vary
with the size of the train sample?

Figure 4 shows the precision and recall values achieved by FLAST
for di�erent training sample sizes. The x-axis displays the propor-
tion of samples used for training, while the y-axis reports the score
achieved by each metric. The lines for the threshold σ = 0.5 are in
blue and those for the threshold σ = 0.95 are in orange. Precision
is represented by the solid lines, while recall is illustrated by the
dashed lines.

One common trend observed for both thresholds is that precision
seems to be almost stable across the di�erent training sample sizes,
while recall tends to improve as we increase the amount of samples
used for training. FLAST with σ = 0.95 is more precise than its less
conservative version for all the sizes of training sample considered.
On the other hand, its recall is much lower than that of FLAST
with σ = 0.5. That is an expected behavior due to the unavoidable
9It may be worth noticing that this percentage is calculated by cumulating TPs and
FPs across all projects and would correspond to a “cumulative” Precision value, which
di�ers from the Precision values of Table 2, obtained as the Mean and Median of
Precision values of the projects.

Know Your Neighbor: Fast Static Prediction of Test Flakiness

Table 2: Experimental measurements of FLAST e�ectiveness and e�ciency

Dataset [Source] #Flaky Methods #Total Methods Precision Recall AFC Precision Recall AFC Train Time Predict Time Storage
Threshold σ = 0.5 Threshold σ = 0.95 (s) (ms) (KB)

activiti [22] 20 53 0.88 0.95 0.92 1.00 0.80 1.00 0.06 1.55 181.58
ant-ivy [34] 764 1,175 0.94 0.93 0.91 0.98 0.69 0.98 0.36 0.46 4,049.44
apache-derby [34] 84 10,144 0.86 0.33 0.71 1.00 0.01 0.67 5.26 1.10 19,717.79
apache-hadoop [22] 68 1,121 0.94 0.52 0.69 1.00 0.17 1.00 0.59 0.72 3,306.22
apache-hbase [34] 277 2,924 0.86 0.61 0.81 0.98 0.28 0.95 1.73 0.87 7,476.37
apache-hibernate-orm [34] 127 3,830 0.86 0.77 0.95 0.98 0.41 1.00 1.41 0.67 5,021.31
apache-hive [34] 106 647 0.88 0.63 0.87 0.95 0.23 0.90 0.39 0.77 2,047.71
apache-incubator-dubbo [22] 21 507 0.57 0.35 0.63 - 0.00 - 0.25 0.66 1,450.07
apache-karaf [34] 120 385 0.87 0.76 0.86 1.00 0.34 1.00 0.22 0.70 1,216.72
apache-nutch [34] 184 257 0.87 0.94 0.74 0.91 0.44 0.92 0.16 0.80 719.26
apache-pig [34] 1,268 4,796 0.88 0.86 0.84 0.97 0.49 0.94 2.32 0.83 14,551.60
apache-qpid [34] 271 2,166 0.84 0.61 0.78 0.99 0.18 0.98 0.92 0.64 7,031.94
apache-wicket [34] 216 2,082 0.89 0.52 0.80 0.83 0.02 0.00 0.86 0.60 3,806.13
elastic-job-lite [22] 10 785 - 0.00 - - 0.00 - 0.33 0.61 2,095.35
handlebars [4] 7 530 1.00 1.00 - - 0.00 - 0.27 0.67 1,405.26
http-request [22] 28 168 1.00 0.87 1.00 1.00 0.73 1.00 0.11 0.84 756.45
java-websocket [22] 52 488 0.81 0.96 0.80 0.98 0.67 1.00 0.23 0.62 1,598.06
logback [4] 11 1,052 0.57 0.90 - 1.00 0.40 - 0.51 0.67 2,298.47
lucene-solr [34] 7 5,334 1.00 0.57 1.00 - 0.00 - 3.04 0.97 10,084.87
okhttp [4] 32 1,231 0.83 0.78 - 0.00 0.00 - 0.67 0.76 3,570.17
retro�t [22] 9 424 0.11 0.11 0.08 - 0.00 - 0.17 0.53 1,875.80
tachyon [4] 7 616 1.00 0.29 - - 0.00 - 0.34 0.71 2,052.89
vertx-rabbitmq-client [22] 7 44 - 0.00 - - 0.00 - 0.06 1.80 145.58
wild�y [22] 43 115 0.83 0.78 0.84 1.00 0.12 1.00 0.08 0.95 409.41

Mean [34] 311.27 3,067.27 0.89 0.69 0.84 0.96 0.28 0.83 1.51 0.76 6,883.92
Median [34] 184.00 2,166.00 0.87 0.63 0.84 0.98 0.28 0.95 0.92 0.77 5,021.31

Mean [22] 28.67 411.67 0.74 0.50 0.71 1.00 0.28 1.00 0.21 0.92 1,313.17
Median [22] 21.00 424.00 0.83 0.52 0.80 1.00 0.12 1.00 0.17 0.72 1,450.07

Mean [4] 14.25 857.25 0.85 0.74 - 0.50 0.10 - 0.45 0.70 2,331.70
Median [4] 9.00 834.00 0.92 0.84 - 0.50 0.00 - 0.43 0.69 2,175.68

Mean 155.79 1,703.08 0.83 0.63 0.79 0.92 0.25 0.89 0.85 0.81 4,036.19
Median 47.50 716.00 0.87 0.70 0.82 0.98 0.18 0.98 0.35 0.71 2,074.12

The value σ is the threshold used by FLAST (see Algorithm 1, Line 4). The values reported in the table are mean values of the 10-Fold Cross Validation. Precision and AFC values
equal to “-” mean that the metric is unde�ned, e.g., FLAST did not predict any test as �aky or ground truth data for �aky category identi�cation were not available.

tradeo� between precision and recall: improving one metric tends
to be associated with poorer performance of the other [8].

While Figure 4 is important to give us some hints that the preci-
sion of FLAST is not strongly a�ected by training sample size (at
least not as much as recall), to get an intuition about the number of
already-labeled test cases required to make FLAST work with high
precision rates (above 90%), we need to look closely at the data.
We observe that for 5 subjects10 FLAST (σ = 0.5) is able to train
the model with less than 100 test cases (average = 47) and achieves
an average precision of ∼0.98 while predicting the nature of 2,438
tests. Similar results are also observed when adopting σ = 0.95,
but for 6 subjects11 instead of 5. Note that the set of subjects for
which FLAST (σ = 0.95) has high precision is almost a superset
of the other, i.e., if FLAST (σ = 0.5) had high precision on the
subject then FLAST (σ = 0.95) has either high precision or remains
conservative (does not predict any test as �aky). Looking from a
di�erent perspective, for 3 subjects12 FLAST (σ = 0.95) achieved
precision rates above 90% with 10 or less test cases labeled as �aky
in the training set.

10The 5 subjects are: activiti [22], elastic-job-lite [22], http-request [22], logback [4],
and tachyon [4].
11The 6 subjects are: activiti [22], ant-ivy [34], apache-karaf [34], apache-nutch [34],
http-request [22], and wild�y [22].
12The 3 subjects are: activiti [22], http-request [22], and logback [4].

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Training sample size

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on
an

d
R

ec
al

l

(σ = 0.50) Precision

(σ = 0.50) Recall

(σ = 0.95) Precision

(σ = 0.95) Recall

Figure 4: FLAST e�ectiveness for di�erent train set sizes

5.3 [RQ3] How e�ective is FLAST in
identifying a flaky test category?

In Table 2 the results of FLAST relative toAFC are reported. FLAST
(σ = 0.5) achieves Mean and Median AFC values respectively of
0.79 and 0.82, meaning that whenever FLAST classi�ed a test as
�aky it also correctly guessed at least one of its �aky categories
more roughly 80% of the times. Similarly to what happened with
precision values discussed for RQ1, FLAST (σ = 0.95) yields higher

A. Bertolino, E. Cruciani, B. Miranda, and R. Verdecchia

as
yn

c-
w
ai
t

P
al
om

ba
et

al
.

co
nc

ur
re

nc
y

P
al
om

ba
et

al
.

in
pu

t-
ou

tp
ut

P
al
om

ba
et

al
.

ne
tw

or
k

P
al
om

ba
et

al
.

or
de

r-
de

pe
nd

en
cy

P
al
om

ba
et

al
.

no
-o

rd
er

-d
ep

en
de

nc
y

iD
Fl

ak
ie
s

or
de

r-
de

pe
nd

en
cy

iD
Fl

ak
ie
s

P
re

ci
si
on

0.72 0.73 0.75 0.75
0.70

0.40

0.85
0.94

0.86

0.98
0.92 0.89

1.00 1.00

� = 0.5

� = 0.95

Figure 5: FLAST average precision in the identi�cation of
�akiness categories

Mean and Median AFC values, respectively achieving 0.89 and 0.98.
The higher value of AFC is strictly correlated with the more con-
servative behavior obtained setting a higher threshold. Moreover,
this gives insights on the fact that the higher is the similarity of a
test with a �aky one the higher is the probability that at least one
of the �aky categories of the two tests matches.

The bar plots in Figure 5 display how precise is FLAST in the
identi�cation of the cause of �akiness for an unknown test case
predicted as �aky. We could do this only for the projects in the
Palomba et al. dataset [34] and in iDFlakies dataset [22]. The results
are grouped by evaluated dataset, then by �aky category, and they
represent the average precision obtained across all the projects
available for that group. For each group, the left (blue) bar displays
the results obtained by FLAST when the threshold is set to σ = 0.5,
while the right (orange) bar shows the results with σ = 0.95.

Looking at the leftmost group (Palomba et al. dataset [34]), over-
all FLAST had a good performance regardless of the threshold set:
it was able to correctly predict at least one of the real causes of
�akiness, of an unknown test case, in at least 70% of the time. With
threshold σ = 0.95, the prediction ability of FLAST was improved
for all the categories with an average relative improvement of ∼26%.
More noticeably, the relative performance of FLAST (σ = 0.95) im-
proved by ∼31% for the input-output category.

The di�erence between the two thresholds wasmore pronounced
for the rightmost group (iDFlakies dataset [22]): while FLAST as-
signed the correct �aky cause for all the cases when con�gured
to be more conservative (σ = 0.95), its prediction ability varied
greatly with σ = 0.5.

5.4 [RQ4] How e�cient is FLAST in terms of
training time, prediction time, and storage
overhead?

The experiments were run using a naive brute force algorithm to
�nd the k nearest neighbors. This approach looks for the k nearest
neighbors in a linear fashion and has a cost of O (|T |) (considering
k constant, as in our experiments) to predict the nature of a test
s < T . As can be observed in Table 2, this strategy can be considered
e�cient for the projects considered in the experiments, resulting in
an average train time and prediction time respectively under one

second and one millisecond, and an average storage overhead of
roughly 4 MB (with an average project size of ∼1,700 test methods).

TheNearest Neighbor problem, in general, can be also approached
in other ways, e.g., with the use of space partitioning data structures
such as kd-tree [6] and balltree [32] or in an approximate way
using techniques such as Locality Sensitive Hashing [24], that could
be of interest to further speed up the computation of the nearest
neighbor search. Space-partitioning data structures, though, are
not suitable for e�ciently �nding the nearest neighbors in very
high dimensional spaces, as the one induced by a bag-of-word rep-
resentation of test source code. To use such data structures we
should have the dimensionality d � |T |, which is unlikely also
with test suites consisting of millions of methods unless drastically
reducing the dimensionality of the space at the cost of weakening
the distance approximation guarantees of the JohnsonâĂŞLinden-
strauss Lemma [17]. Approximate nearest neighbor search, instead,
would allow for a sublinear search time, but getting approximate
results which are not ideal in our setting where e�ectiveness is
more important than e�ciency, and e�ciency is not really a issue.

5.5 [RQ5] How does FLAST compare with other
state-of-the-art techniques?

In Table 3 we show our classi�cation of the seven identi�ed com-
peting approaches (listed in 1st column) along the dimensions intro-
duced in Section 4.3; the last row classi�es FLAST. Four approaches
are dynamic and three are static as is ours (2nd column). Only one
approach, viz. DeFlaker, relies on coverage reports (3rd column):
indeed, collecting coverage may be quite costly in CI practice [15]
and because of this DeFlaker itself proposes a lightweight technique.
Two of the approaches, viz. NonDex and Pattern search, can only
detect some speci�c type of �aky tests (4th column), because as
reported in the table notes (d) and (e), they rely on pre-determined
causes of �akiness. Concerning the approach based on learning
Association Rules, this actually targets false test alarms which are
a superset of �akiness. Not all approaches are applied to every test
case, as we do (5th column); Rerun, DeFlaker, iDFlakies, and Asso-
ciation rules analyze test cases based on their outcome, thus they
can lose valuable time before detecting �akiness and also could
possibly miss �aky tests if they do not fail or pass as expected in
the observation window. Almost all approaches, but Rerun and
Association rules, take action in proactive way for detecting �aky
tests (6th column). A critical features is whether an approach is
fully automated, or otherwise it requires manual e�ort for cus-
tomization/preparation. The latter is the case for three approaches,
viz. NonDex, Pattern-search, and Bayesian Network (7th column),
and clearly may heavily a�ect their practical adoption. In con-
trast FLAST, as Rerun, DeFlaker, iDFlakies, and Association Rules,
does not require any human consultancy. More than half of the
approaches requires a training phase, as does FLAST (8th column).

Based on the above classi�cation, the approach most similar
to FLAST is the one leveraging Bayesian networks, which shares
with ours six features (static, no coverage, generic, whole scope,
proactive, and training set), but it di�ers for an important aspect
that is expert knowledge (needed to build the Bayesian network).

Concerning precision and overhead (9th and 10th columns), we
recall that in Table 3 we report the results obtained by the authors

Know Your Neighbor: Fast Static Prediction of Test Flakiness

Table 3: Qualitative comparison among existing �akiness detection techniques

Approach Analysis type SUT coverage Flakiness type Scope Action type Expert knowledge Train set Precision Overhead (time)

Rerun [29] Dynamic No Generic Subset Reactive No No n.a. 600+% [3]
DeFlaker [4] Dynamic Yes(a) Generic Subset Proactive No No 0.94(b) 4.6%
NonDex [39] Dynamic No Speci�c(c) All Proactive Yes Yes n.a. n.a.
iDFlakies [22] Dynamic No Generic Subset Proactive No No n.a. Pre-set
Pattern search [43] Static No Speci�c(d) All Proactive Yes Yes 1(e) ∼90 sec
Association Rules [16] Static No Generic(f) Subset Reactive No Yes 0.85÷0.90 n.a.
Bayesian Network [18] Static No Generic All Proactive Yes Yes n.a. n.a.

FLAST Static No Generic All Proactive No Yes 0.83÷0.92(g) < 1 sec(h)

Notes: (a) di�erential coverage; (b) precision computed over new failures; (c) �akiness due to ADINS (Assumes a Deterministic Implementation of a Non-deterministic Speci�cation)
code; (d) timing dependency (one among several test code faults targeted); (e) precision over a random sample manually analyzed; (f) look for false test alarms, which are a superset
of �aky tests; (g) Mean values with σ = 0.5 and σ = 0.95; (h) time for training over a set of ∼1,700 tests.

in their experiments, which could not be comparable one with
another. Actually, several of the referred studies did not provide
values of precision or overhead (the corresponding cells are labeled
as n.a.). In some works varying precision values are observed and
we report their range as min÷max. Concerning overhead time,
please note that the column shows di�erent units (% of test suite
execution time vs seconds) across rows: this re�ects faithfully the
results reported by authors of referred works. Going in detail, Rerun
is not actually a strategy, as various rerunning con�gurations could
be adopted. According to studies in [3, 4], this basic approach is
very costly and predicts varying numbers of �aky tests, depending
on the conditions under which a test is rerun. For DeFlaker, the
authors do not give precision but report TPs and FPs from which
we computed an average precision of 0.94 (note that their study
covered new failures); they report a time overhead of 4.6% (consid-
ering the coverage computation). For NonDex and iDFlakies the
authors conducted extensive studies, but using subjects for which
ground truth of �aky tests was not available, so precision cannot
be computed. In iDFlakies the time overhead can be �xed a pri-
ori by the user. The approach leveraging Pattern search makes an
evaluation study by randomly sampling tests classi�ed as �aky and
ascertaining that they are all correctly classi�ed (which is why we
reported precision 1). Finally the Association Rules approach claims
a precision of 0.85 and 0.90 over two di�erent projects.

5.6 Threats to validity
Despite our best e�orts, our results might still be mined by threats
to validity. We consider four types of threats [44].

Construct validity. If our empirical experimentation is appro-
priate to answer the RQs. From di�erent perspectives, RQ1, RQ2
and RQ3 all aim at evaluating FLAST e�ectiveness in predicting
�akiness. In doing this, a potential threat could be choosing wrong
metrics that do not properly represent FLAST prediction capabil-
ity; for example classi�ers are typically evaluated by Accuracy, i.e.,
the ratio between the number of correct predictions and the to-
tal number of predictions. In our case though this measure would
be misleading, as due to the high proportion of non-�aky tests, it
would always provide values close to 1. To prevent this threat, we
selected the metrics to use after carefully considering the scope of
FLAST, and for the same reason we make available the confusion
matrices that provide the full view of prediction results. Another po-
tential threat would be to adopt a misleading validation procedure:
to prevent this risk we applied well-known rigorous validations

strategies (such as Strati�ed 10-Fold Cross Validation, and Strati�ed
Shu�e Split with 10 splits). In RQ4 we aim at evaluating FLAST
cost: such a study may su�er from many threats, in particular the
use of FLAST could be subject to many costs that are hidden or
di�cult to assess, so that any attempt to evaluate such costs in a
laboratory study could be unrealistic. A proper assessment can only
be done by putting FLAST in actual production. In this paper we
could not deal with this threat, and rather opted to limit the evalua-
tion to directly measurable overheads metrics in terms of execution
time and storage requirements. In RQ5, we aim at comparing the
performance of FLAST against that of competing approaches. How-
ever, the risk of setting an experiment to compare approaches that
are actually not comparable against each other is high because, as
we explained in Section 4.2, the other existing approaches assume
di�erent input information and use di�erent resources. To prevent
this threat, we only performed a qualitative comparison over a set
of more prominent aspects of the di�erent techniques.

Internal validity. If the observed results are a�ected by factors
di�erent from the treatments. A common internal validity threat
lays in the selection of experimental subjects, which we mitigate
by adopting data triangulation, executed by gathering data from
three distinct datasets available in the literature [4, 22, 34]. Another
potential threat descends from trusting such datasets and using
them as the ground truth for evaluating FLAST e�ectiveness. Indeed,
if the labeling as �aky or not-�aky were wrong, we might over-
estimate or under-estimate FLAST e�ectiveness. If such a threat
occurs, we consider that it is most likely that our results might be
biased against FLAST, in that as the approaches used in [4, 22, 34]
are dynamic, it is more likely that a �aky test is not recognized
as such (because by rerunning a test it continues to fail) rather
than the vice versa. Other threats may be relative to the parameters
set in the application of used algorithms and the accuracy of the
measurements themselves: this is mitigated by the application of
rigorous ad-hoc validation strategies best suited to answer our
research questions.

External validity. If, and to what extent, the observed results
can be generalized. Our experiments are in line with similar ones
present in literature. Additionally, we use for experimentation
projects belonging to all three datasets which, to the best of our
knowledge, are currently available. As FLAST does not leverage
programming language semantics, we do not expect results to dras-
tically vary by considering non-Java subjects. Notwithstanding,

A. Bertolino, E. Cruciani, B. Miranda, and R. Verdecchia

from current observations we cannot draw general conclusions,
and more experimentation is needed.

Reliability. If, and towhat extent, observations can be reproduced
by other researchers. To ensure reproducibility, as said we make
available all data and settings related information.

6 USING FLAST IN A CONTINUOUS
INTEGRATION ENVIRONMENT

Our results show that FLAST is a simple yet powerful approach for
�akiness prediction. Thanks to the simplicity and high-level of ab-
straction that characterize FLAST functioning, it can be easily and
seamlessly adopted in a wide range of industrial and research con-
texts. Nevertheless, due to its fast and static nature, FLAST results
to be exceptionally well suited to be integrated in CI, and in the
reminder of this section, we discuss some prominent implications.

Application scenarios. As detailed in Section 3, FLAST can be
customized by setting an ad-hoc threshold. This threshold embodies
the tradeo� between precision and recall of our approach, and can
be set to best �t the context in which FLAST is applied. Among
others, two main application scenarios can be envisioned. The �rst
application scenario envisages FLAST feedback to be sent back to
the test creator, or anyhow to developers, to be directly acted upon
via their manual intervention. In this case, it is crucial to ensure
the high precision of the approach, as the manual inspection of
the output is a costly process and, ultimately, it is also important
to ensure the trust of developers in the results of the approach.
Under these circumstances, a more conservative threshold (e.g.,
σ = 0.95) can be utilized, sacri�cing recall for the sake of a higher
precision of the test �akiness prediction. In a second application
scenario, the output of FLAST is processed automatically, e.g., to
re�ne test case prioritization processes or to determine on an ad-hoc
basis the number of reruns required to verify if the �aky prediction
is true. Given the lower cost of processing false positives under
these circumstances, a more encompassing threshold (e.g., σ = 0.5)
can be adopted, so that more �aky tests can be early detected. In
addition to these two main application scenarios, FLAST can also
be applied in an adaptive way, i.e., with the ability to automatically
adjust the threshold based on its past precision. For example, it can
start with a more conservative threshold when it is �rst deployed
in the environment, and then, if the precision rates are above some
user-de�ned target, it can relax the threshold a bit in the attempt of
reducing the number of false negatives. From time to time FLAST
can reevaluate the need to adjust the threshold to maintain its
performance within the accepted precision level.

Approaches combination. Even though we showed that its preci-
sion is high, FLAST is not intended as an alternative to dynamic
approaches (e.g., [4, 22]). FLAST predicts if a test is �aky, based
on a preexisting ground truth on �aky tests. Dynamic approaches
are instead able to detect test �akiness by concretely rerunning
failing test cases. Our vision is that FLAST provides a remarkably
fast, low-cost, and reliable approach to be used in combination with
dynamic approaches to alleviate the cost of the latter. By predicting
with negligible overhead and already at commit time, if a new test is
prone to be �aky, FLAST can drastically decrease the percentage of

�aky tests that go to the testing stages and hence reduce the many
negative impacts of this problem on the development process.

Feedback to developers. The underlying hypothesis on which
FLAST is based, i.e. that �aky tests present similar traits, allows
the straightforward conversion of data generated by the approach
into feedback for developers. In fact, in addition to the precision
with which a test is predicted as �aky, it is also possible to provide
developers with useful information to support them in �xing �aky
tests. From the results of RQ3 we observe that, if information on
the nature of �aky tests is available for a project (e.g., by leveraging
information stored in issue trackers), FLAST can predict with high
precision the �akiness category of a new test case. Additionally, if
a test is predicted as �aky, it is possible to instantaneously retrieve
examples of similar tests �agged as �aky in the past and, if histori-
cal commit data is available, this information can be leveraged to
suggest �xes based on how those similar �aky tests were �xed. In
the above perspective, we speculate that in the long term using an
approach like FLAST can act as a learning-in-the-�eld tool and will
progressively educate developers to recognize typical code patterns
and errors that cause �akiness and hence to write more stable tests.

7 CONCLUSIONS
Following the motto know your neighbor we proposed a novel
approach to predict �aky tests by leveraging test code similarity:
test methods whose code is neighbor to that of known �aky tests
will also very likely expose �akiness. FLAST has shown to be an
e�ective predictor and to impose very low –actually negligible–
time and storage overhead. More importantly, �aky tests can be
detected in fully automated way even before they are executed: they
can be taken care of before being committed into the test repository,
avoiding that testing e�ort is wasted in rerunning failing tests and
code velocity is slowed down waiting for �aky test resolution.

Researchers attention on test �akiness is recent. After a qualita-
tive comparison of existing approaches, we can con�dently say that
FLAST opens a novel interesting avenue for solving this challenge.
Other researchers could propose even better algorithms exploiting
test code similarity to prevent a high percentage of �aky tests.

FLAST could be embedded within the adopted IDE or the CI
platform, to automatically warn developers against the risk that a
new test case or test method might be �aky. While in this paper
we have developed and evaluated FLAST, we leave it as a future
work direction to develop an integrated environment where it is
embedded and evaluated.

Although our study showed that the approach can already be
used on small train sizes, another challenge we leave for future work
is to devise variants of FLAST acting as more generic predictors that
could be used across projects when a train set is not yet available.

As a �nal remark, FLAST is not to be seen as an alternative to ex-
isting dynamic solutions. Rather, we foresee the greatest advantage
in using static and dynamic solutions in mutual synergy: FLAST
would �rst prevent many �aky tests by recognizing potentially �aky
test code traits. For �aky tests that pass FLAST �ltering, these can
be detected by dynamic approaches like DeFlaker or even Rerun,
but with much less resources. Also this combination of FLAST with
dynamic approaches is an important objective for future work.

Know Your Neighbor: Fast Static Prediction of Test Flakiness

ACKNOWLEDGMENTS
This research has been motivated and partly supported by a Face-
book Research 2019 TAV (Testing and Veri�cation) award.

REFERENCES
[1] Dimitris Achlioptas. 2003. Database-friendly random projections: Johnson-

Lindenstrauss with binary coins. Journal of computer and System Sciences 66, 4
(2003), 671–687.

[2] Naomi S. Altman. 1992. An Introduction to Kernel and Nearest-Neighbor Non-
parametric Regression. The American Statistician 46, 3 (1992), 175–185.

[3] Jonathan Bell and Gail Kaiser. 2014. Unit Test Virtualization with VMVM. In
Proceedings of the 36th International Conference on Software Engineering (ICSE
2014). ACM, New York, NY, USA, 550–561. https://doi.org/10.1145/2568225.
2568248

[4] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2018. DeFlaker: automatically detecting �aky tests. In
Proceedings of the 40th International Conference on Software Engineering. ACM,
433–444.

[5] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven
Amann, and Andy Zaidman. 2017. Developer testing in the IDE: Patterns, beliefs,
and behavior. IEEE Transactions on Software Engineering 45, 3 (2017), 261–284.

[6] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative
searching. Commun. ACM 18, 9 (1975), 509–517.

[7] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1999.
When is “nearest neighbor” meaningful?. In International conference on database
theory. Springer, 217–235.

[8] Michael Buckland and Fredric Gey. 1994. The relationship between recall and
precision. Journal of the American society for information science 45, 1 (1994),
12–19.

[9] Emilio Cruciani, BrenoMiranda, Roberto Verdecchia, and Antonia Bertolino. 2019.
Scalable approaches for test suite reduction. In 41st International Conference on
Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. 419–429.

[10] Martin Fowler. 2011. Eradicating non-determinism in tests. https://martinfowler.
com/articles/nonDeterminism.html. Accessed: 2019-08-02.

[11] Alessio Gambi, Jonathan Bell, and Andreas Zeller. 2018. Practical test depen-
dency detection. In 2018 IEEE 11th International Conference on Software Testing,
Veri�cation and Validation (ICST). IEEE, 1–11.

[12] Google Testing Blog. 2008. Testing on the Toilet Avoiding Flaky Tests. https:
//testing.googleblog.com/2008/04/tott-avoiding-�akey-tests.html. Accessed:
2019-08-06.

[13] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable Testing:
Detecting State-polluting Tests to Prevent Test Dependency. In Proceedings of
the 2015 International Symposium on Software Testing and Analysis (ISSTA 2015).
223–233.

[14] Mark Harman and Peter O’Hearn. 2018. From start-ups to scale-ups: Opportuni-
ties and open problems for static and dynamic program analysis. In 2018 IEEE
18th International Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 1–23.

[15] Kim Herzig. 2016. Let’s assume we had to pay for testing. Keynote at AST 2016.
https://www.kim-herzig.de/2016/06/28/keynote-ast-2016/

[16] Kim Herzig and Nachiappan Nagappan. 2015. Empirically Detecting False Test
AlarmsUsingAssociation Rules. In Proceedings of the 37th International Conference
on Software Engineering - Volume 2 (ICSE ’15). 39–48.

[17] William B Johnson and Joram Lindenstrauss. 1984. Extensions of Lipschitz
mappings into a Hilbert space. Contemporary mathematics 26, 189-206 (1984), 1.

[18] Tariq M King, Dionny Santiago, Justin Phillips, and Peter J Clarke. 2018. Towards
a Bayesian Network Model for Predicting Flaky Automated Tests. In 2018 IEEE
International Conference on Software Quality, Reliability and Security Companion
(QRS-C). IEEE, 100–107.

[19] Ron Kohavi. 1995. A Study of Cross-validation and Bootstrap for Accuracy
Estimation and Model Selection. In Proceedings of the 14th International Joint
Conference on Arti�cial Intelligence - Volume 2 (IJCAI’95). 1137–1143.

[20] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. 2017. Measuring
the Cost of Regression Testing in Practice: A Study of Java Projects Using Con-
tinuous Integration. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE 2017). 821–830.

[21] Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thum-
malapenta. 2019. Root Causing Flaky Tests in a Large-scale Industrial Setting.
In Proceedings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2019). 101–111.

[22] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies: A
Framework for Detecting and Partially Classifying Flaky Tests. In 2019 12th IEEE
Conference on Software Testing, Validation and Veri�cation (ICST). IEEE, 312–322.

[23] Claire Leong, Abhayendra Singh, Mike Papadakis, Yves Le Traon, and John
Micco. 2019. Assessing Transition-based Test Selection Algorithms at Google. In
Proceedings of the 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP ’10). 101–110.

[24] Jure Leskovec, Anand Rajaraman, and Je�rey D. Ullman. 2014. Mining of Massive
Datasets. Cambridge University Press, New York, NY, USA.

[25] Ping Li, Trevor J Hastie, and Kenneth W Church. 2006. Very sparse random
projections. In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 287–296.

[26] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2014). 643–
653.

[27] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.
Predictive Test Selection. In Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP ’10). 91–100.

[28] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-
borski, and John Micco. 2017. Taming Google-scale Continuous Testing. In
Proceedings of the 39th International Conference on Software Engineering: Software
Engineering in Practice Track (SEIP’17). 233–242.

[29] JohnMicco. 2016. Flaky tests at Google and howwemitigate them. https://testing.
googleblog.com/2016/05/�aky-tests-at-google-and-how-we.html. Accessed:
2019-07-22.

[30] John Micco. 2017. The State of Continuous Integration Testing @Google. https:
//ai.google/research/pubs/pub45880 Accessed: 2019-07-22.

[31] Breno Miranda, Emilio Cruciani, Roberto Verdecchia, and Antonia Bertolino.
2018. FAST approaches to scalable similarity-based test case prioritization. In
40th International Conference on Software Engineering, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018. 222–232.

[32] Stephen M Omohundro. 1989. Five balltree construction algorithms. International
Computer Science Institute Berkeley.

[33] Fabio Palomba and Andy Zaidman. 2017. Does refactoring of test smells induce
�xing �aky tests?. In 2017 IEEE international conference on software maintenance
and evolution (ICSME). IEEE, 1–12.

[34] Fabio Palomba and Andy Zaidman. 2019. The smell of fear: On the relation
between test smells and �aky tests. Empirical Software Engineering (2019), 1–40.

[35] David Martin Powers. 2011. Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation. (2011).

[36] Kai Presler-Marshall, Eric Horton, Sarah Heckman, and Kathryn T. Stolee. 2019.
Wait Wait. No, Tell Me: Analyzing Selenium Con�guration E�ects on Test Flaki-
ness. In Proceedings of the 14th International Workshop on Automation of Software
Test (AST ’19). 7–13.

[37] Md Tajmilur Rahman and Peter C. Rigby. 2018. The Impact of Failing, Flaky,
and High Failure Tests on the Number of Crash Reports Associated with Firefox
Builds. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2018). 857–862.

[38] August Shi, Jonathan Bell, and Darko Marinov. 2019. Mitigating the E�ects
of Flaky Tests on Mutation Testing. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 2019). 112–122.

[39] August Shi, Alex Gyori, Owolabi Legunsen, and Darko Marinov. 2016. Detecting
assumptions on deterministic implementations of non-deterministic speci�ca-
tions. In 2016 IEEE International Conference on Software Testing, Veri�cation and
Validation (ICST). IEEE, 80–90.

[40] Pavan Sudarshan. 2012. No more �aky tests on the Go team. https://www.
thoughtworks.com/insights/blog/no-more-�aky-tests-go-team. Accessed: 2019-
08-06.

[41] Swapna Thorve, Chandani Sreshtha, and Na Meng. 2018. An Empirical Study of
Flaky Tests in Android Apps. In 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 534–538.

[42] Arash Vahabzadeh, Amin Milani Fard, and Ali Mesbah. 2015. An Empirical Study
of Bugs in Test Code. In Proceedings of the 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME) (ICSME ’15). 101–110.

[43] Matias Waterloo, Suzette Person, and Sebastian Elbaum. 2015. Test Analysis:
Searching for Faults in Tests. In Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE ’15). 149–154.

[44] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjrn Regnell,
and Anders Wessln. 2012. Experimentation in Software Engineering. Springer
Publishing Company, Incorporated.

https://doi.org/10.1145/2568225.2568248
https://doi.org/10.1145/2568225.2568248
https://martinfowler.com/articles/nonDeterminism.html
https://martinfowler.com/articles/nonDeterminism.html
https://testing.googleblog.com/2008/04/tott-avoiding-flakey-tests.html
https://testing.googleblog.com/2008/04/tott-avoiding-flakey-tests.html
https://www.kim-herzig.de/2016/06/28/keynote-ast-2016/
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://ai.google/research/pubs/pub45880
https://ai.google/research/pubs/pub45880
https://www.thoughtworks.com/insights/blog/no-more-flaky-tests-go-team
https://www.thoughtworks.com/insights/blog/no-more-flaky-tests-go-team

