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ABSTRACT
Vehicles’ emissions produce a significant share of cities’ air pollution, with a substantial impact on the
environment and human health. Traditional emission estimation methods use remote sensing stations, missing
vehicles’ full driving cycle, or focus on a few vehicles. This study uses GPS traces and a microscopic model to
analyse the emissions of four air pollutants from thousands of vehicles in three European cities. We discover
the existence of gross polluters, vehicles responsible for the greatest quantity of emissions, and grossly polluted
roads, which suffer the greatest amount of emissions. Our simulations show that emissions reduction policies
targeting gross polluters are way more effective than those limiting circulation based on a non-informed choice
of vehicles. Our study applies to any city and may contribute to shaping the discussion on how to measure
emissions with digital data.
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IMPROVING VEHICLES’ EMISSIONS REDUCTION POLICIES BY TARGETING GROSS POLLUTERS

Introduction

The estimation of air pollutants’ distribution over space is a significant challenge that concerns climate change and human health.
In urban environments, air pollution generated from vehicles’ emissions has become more and more evident, to the point that a
temporary interruption of regular traffic flows during the COVID-19’s lockdown immediately resulted in a tremendous increase
in air quality and decrease of CO2 emission [13, 4, 62, 32, 23, 36]. Even if this brief period’s impact on the epochal challenge of
climate change is negligible [16], it helps outline the impact of the emissions related to the transportation sector on our everyday
life. In particular, greenhouse gas (GHG) emissions from this sector have more than doubled since 1970, and about 80% of
this growth has come from road transport [26]. In 2016, the 11.9% of global GHG emissions were from road transport (60% of
which from passenger travel and 40% from road freight) [52]. Moreover, the transport sector emits non-CO2 pollutants such
as nitrogen oxides (NOx), which lead to the formation of ozone and particulate matter (PM), and volatile organic compounds
(VOCs). These pollutants, emitted by internal combustion engines, play a fundamental role in changing climate and are severely
dangerous for human health [26]. Among the Sustainable Development Goals to be reached by 2030 [31, 30, 59], the United
Nations poses an urgent call for action to reduce “the adverse per capita environmental impact of cities, paying special attention
to air quality” [59]. In this regard, understanding how air pollutants emitted by vehicles distribute in a city is fundamental in
designing policies to reduce transportation emissions.

GPS data generated by in-vehicle devices describe human mobility in great detail [44, 46, 18, 19, 37] and offer an unprecedented
tool to implement strategies such as reducing transport activity and congestions [10, 39, 56, 6], improving vehicle efficiency,
encouraging alternative fuels and electrification, and shifting to lower-carbon options [27, 34, 53, 63]. Emissions from vehicles
are traditionally studied with the use of two types of data: (i) measured traffic data, either coming from sensors [11], official
sources [50], or household travel surveys [49]; and (ii) simulated traffic data, such as those generated with driving simulators [69],
or traffic simulation models [2, 54]. Another strand of research concentrates on estimating people’s exposure to air pollution [65],
often integrating them with mobile phone records to reach a dynamic assessment of the exposure [41, 67, 12, 33, 48, 66]. Some
works adopt this approach to estimate vehicles’ emissions. Chong et al.[8] and Luján et al.[38] measure emissions with a Portable
Emissions Measurement System (PEMS) to analyze gaseous emissions of a few vehicles driving in real-world conditions. Nyhan
et al. [42] and Liu et al. [35] estimate vehicles’ emissions with a microscopic emission model using GPS data coming from
taxis in Singapore and Hangzhou, respectively. Chen et al. [7] use GPS trajectories from a navigation app to analyse braking
emissions of particulate matter in Tokyo. Gately et al. [20] use an emission model that includes vehicle speeds, traffic volumes,
fleet information, and weather conditions to assess the effects of traffic congestions on emissions at the road-level, finding critical
hotspots where congestions significantly enhance emissions. Yu et al. [68] use GPS data from smartphones to determine the
position of customized bus stops and estimate the resulting bus lines’ emission reduction potential. Sui et al. [57] find evidence
for understanding the advantage of online ride-hailing against traditional taxis concerning fuel consumption and emissions,
using taxis’ GPS data and a ride-hailing company moving in Chengdu (China). All these works show that data coming from
onboard positioning systems allow capturing real-world driving conditions such as acceleration and speed, which play a crucial
role in achieving accurate emission estimates (especially for NOx [38]). Unfortunately, these experiments rely on a small
sample of vehicles or specific vehicle types (e.g., taxi fleet, high-duty vehicles), and they are carried out mostly for Asian
cities [33, 67, 42, 35, 8, 7, 68, 57]. It is still unclear what statistical patterns characterize the distribution of emissions per vehicle
and road, how the road network structure may influence those patterns, and how we can exploit this information to simulate
emission reduction scenarios.

Our study analyses the estimated emissions of four air pollutants (carbon dioxide, nitrogen oxides, particulate matter, and volatile
organic compounds) from thousands of private vehicles moving in different European cities. We use trajectories generated
by onboard GPS devices, match them to the cities’ road networks, and exploit information about the vehicles’ fuel type to
implement a microscopic model that computes the emissions produced by the vehicles. We then study how the emissions
distribute across vehicles and roads to discover the statistical patterns that characterise emissions and investigate the relationships
between emissions, the vehicles’ mobility, and the road network’s characteristics. Finally, we simulate two emission reduction
scenarios in which a share of vehicles become zero-emissions (as electric or targeted by driving restrictions) or reduce their
recurrent mobility (as the drivers being in remote working or given pandemic-driven non-pharmaceutical interventions). These
simulations allow us to find strategies to drastically reduce emissions over a city while minimising the share of vehicles targeted.

Our framework applies in principle to any city and provides an efficient way to estimate emissions at the road level. It represents
practical support for decision-makers to implement strategies to reduce emissions, improve air quality, citizens’ well-being, and
design smarter and more sustainable cities [3, 28, 63].
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GPS trajectories
vehicles trips points avg sampling rate (std)

London 2,778 244,436 2,415,854 77.4 sec (29.0)
Rome 8,167 161,719 764,082 79.7 sec (21.7)

Florence 3,962 27,117 62,545 74.3 sec (28.5)

Table 1: Summary statistics of the GPS data. The number of vehicles, trips, and points, and their mean sampling rate (and
standard deviation), for Greater London, Rome, and Florence.

road networks
roads crossroads roads density crossroads/km2 avg road length (std)

London 256,391 145,441 12,152 92.5 74.5 m (85.7)
Rome 84,231 49,213 6,664 38.3 101.5 m (155.8)

Florence 12,366 7,357 10,498 71.8 86.9 m (100.4)

Table 2: Summary statistics of the road networks. The number of roads and crossroads, their densities, and the mean road
length (and standard deviation) of the road networks of Greater London, Rome, and Florence. The roads density is the total
length of all the roads divided by the land area of the city. The crossroads density (crossroads/km2) is the number of crossroads
divided by the land area of the city.

Results

Computation of emissions
Our data consist of anonymous GPS trajectories describing 433,272 trips from 14,907 private vehicles moving during January
2017 in Greater London, Rome, and Florence throughout January 2017 (see Table 1). The trajectories are produced by on-board
GPS devices, which automatically turn on when the vehicle starts, transmitting a point every minute to the server via a GPRS
connection [44, 46, 18, 19]. When the vehicle stops, no points are logged nor sent. The GPS traces are collected by a company
that provides a data collection service for insurance companies. The market penetration of this service is variable, but in general
covers at least 2% of the total registered vehicles, and it is representative of the overall amount of vehicles circulating in a
city [44]. Figure 1a shows a sample of trajectories for 20 vehicles in Rome.

As a first step, we filter GPS trajectories so that the time between consecutive points is lower than a certain time threshold (see
Methods and Supplementary Information A.1). For each vehicle, we estimate instantaneous speed and acceleration in each point
of its trajectory and filter out points with unrealistic values (see Methods). To match the trajectories to each city’s road, we
download road networks from OpenStreetMap (see Methods).

London has about three times the number of roads than Rome and a smaller average road length (see Table 2). Florence is the
smallest city in terms of land area, the number of roads, and crossroads. However, in terms of the number of crossroads per
km2, Florence (∼ 72) is almost double as Rome (∼ 38) and not too far from London (∼ 92). Also, in terms of road density
(total length of all the roads divided by the land area of the city), Florence (10,498) is 1.6 times denser than Rome (6,664) and
not far from London’s density (12,152). In Rome, 0.4% of roads are motorways (usually long and large roads without traffic
signals), while both in London and Florence represent only 0.02%. In summary, we analyse three cities that are heterogeneous
with respect to their road networks: Rome is huge but with the sparsest network; London is huge but with the densest network;
Florence is small (∼ 1/12 of Rome and ∼ 1/15 of London in terms of land area) but with a dense road network.

We map the points to the city’s road network using a map-matching algorithm (see Methods, Figure 1b). We use a microscopic
emissions model [42] that uses speed, acceleration, and fuel type to estimate the vehicles’ instantaneous emissions of carbon
dioxide (CO2), nitrogen oxides (NOx), particulate matter (PM), and volatile organic compounds (VOC) (see Methods, Figure
1c). Finally, we compute each vehicle’s overall emissions as the sum of all its instantaneous emissions during the study period.
Analogously, we compute the overall amount of air pollutants on each road by summing up all the instantaneous emissions from
any vehicle passing through that road during the same period.

Patterns of emissions
We find that, for all three cities, emissions distribute across vehicles in a heterogeneous way: a few vehicles, that we call gross
polluters [22, 24], are responsible for a tremendous amount of emissions. At the same time, most of them emit significantly less
(Figure 2 and Supplementary Information A.3). For example, the top 10% gross polluters in Florence, Rome, and London are
responsible for 47.5%, 50.5%, and 38.5% of the total CO2 emitted during the month, respectively. We find that the distributions
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Figure 1: Computation of emissions from GPS trajectories. (a) Visualisation of the trajectories of 20 vehicles travelling during
January 2017 in Rome. Each colour indicates a different trajectory. The grey area indicates the territory of the municipality
of Rome. Plot generated with Python library scikit-mobility [45]. (b) Visualisation of the GPS points of three vehicles
passing through a neighbourhood in Rome. Each symbol and colour indicates a different vehicle; for each point we show the
corresponding instantaneous speed and acceleration. The point with zero speed and acceleration is the first point of the trajectory
sample. (c) The instantaneous emissions of CO2 of each GPS point and for each road crossed. The points and the roads are
coloured in a gradient from white (low emission) to red (high emission). The legend shows the overall quantity of emissions of
each vehicle.

of CO2 emissions per vehicle of Rome and Florence are well approximated by a truncated power law p(x) ∝ x−αe−λx, with
α = 1.13, λ = 1.04× 10−3 (Rome, Figure 2e), and α = 2.12, λ = 1.45× 10−3 (Florence, Figure 2h). In contrast, London’s
distribution is well approximated by a stretched exponential p(x) ∝ xβ−1e−λxβ , with parameters λ = 5.7× 10−4 and β = 1.26
(Figure 2b). These results are consistent with those we find for the other three pollutants (NOx, PM, VOC): a truncated power
law well approximates the distribution for Rome and Florence, and a stretched exponential well approximates that for London
(see Supplementary Information A.3). See Supplementary Information A.2 for details on curve fitting.

Regarding the distribution of CO2 emissions per road, we find that it is well approximated by a truncated power law for all three
cities, with exponents α = 1.55 and λ = 1.08 × 10−4 (Rome, Figure 2f), α = 1.52 and λ = 1.30 × 10−4 (Florence, Figure
2i), α = 2.59 and λ = 2.88 × 10−4 (London, Figure 2c). A few grossly polluted roads suffer from a significant quantity of
emissions, while most of them suffer significantly fewer emissions. London has both the exponents α and λ significantly higher
than Rome and Florence, denoting a fairer distribution of the emissions per road (see Figure 8a,c,e,g). Both in Florence and
Rome, the top 10% grossly polluted roads are associated with more than 90% of the CO2 emitted during the period. In London,
this quantity is lower (56.7%) but still above half of the city’s total emissions of CO2. Again, we find similar results for the other
pollutants (see Supplementary Information A.3).
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Figure 2: Distributions of emissions. The amount of CO2 emissions (expressed as grams per meter of road emitted during
January 2017) on road networks of Geater London (a), Rome (d), and Florence (g). Roads are coloured in a gradient from yellow
(low emission) to red (high emission). Panels (b), (e), and (h) show in log-log scale the Complementary Cumulative Distribution
Function (CCDF, black dots) of the CO2 emissions per vehicle, together with the best fit (red curve) in Greater London, Rome,
and Florence, respectively. Panels (c), (f), and (i) show the CCDF (black dots) of the CO2 emissions per road, together with the
best fit (red curve), in Greater London, Rome, and Florence, respectively. 5
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mobility metrics roads’ features
radius entropy max dist. str. line dist. betweenness centrality length

London 0.09 -0.72 0.25 0.95 0.27 0.22
Rome 0.60 -0.51 0.68 0.90 0.30 0.35

Florence 0.32 -0.26 0.48 0.77 0.10 0.25

Table 3: Correlations between vehicles’ emissions, mobility metrics, and road features. Spearman’s correlation coefficients
between (left) CO2 emissions per vehicle and vehicles’ mobility metrics (their radius of gyration, uncorrelated entropy, maximum
distance and distance travelled straight line), and (right) CO2 emissions per road and roads’ features (betweenness centrality and
length).

Relations with mobility and roads’ features
To investigate the relationship between a vehicle’s emissions and its mobility patterns, we compute the Spearman’s correlation
coefficient between the amount of CO2 emissions and four mobility quantities (see Methods): (i) the radius of gyration,
indicating the characteristic distance travelled by an individual [21, 46, 44]; (ii) the mobility entropy [55, 14, 47], characterising
the predictability of their visitation patterns; (iii) the maximum distance travelled during the period of observation; and (iv) the
straight line distance travelled during the same period. Radius of gyration and maximum distance show positive and strong
correlations with CO2 emissions for Rome (radius 0.60, max distance 0.68) and slightly weaker for Florence (radius 0.32, max
distance 0.48), while they are weak for London (radius 0.09, max distance 0.25). Straight line distance also shows a positive
correlation with emissions, and it is strong for all three cities (0.90 for Rome, 0.77 for Florence, 0.95 for London). As one could
expect, the more a vehicle travels, the more emissions it produces.

However, vehicles with more regular and predictable behaviour generate the highest emissions, not those with more erratic
behaviour. Indeed, the mobility entropy correlates negatively with CO2 emissions (see Table 3), for all three cities (-0.72 for
London, -0.51 for Rome, and -0.26 for Florence). Mobility entropy is low when a vehicle performs a high number of recurring
trips, indicating high predictability of its travelling patterns. In contrast, mobility entropy is high when the vehicle performs
trips from various origins and destinations, denoting a less predictable travelling behaviour. The observed negative correlations
suggest that gross polluters tend to be more regular and predictable than low-emitting vehicles.

We also investigate the relationship between the amount of CO2 emissions suffered by a road and its network features: (i) the
betweenness centrality of the edge representing each road in the network; and (ii) the road length. The betweenness centrality is
based on the frequency with which a road falls on the shortest paths connecting two crossroads (see Methods). Therefore, a
road with a high centrality is more likely to be crossed. We find a positive correlation between the betweenness centrality and
the amount of emissions in the roads for all the three cities (see Table 3), partially proving that our emissions estimates are
consistent with the roads’ characteristics, as congested roads are more likely to host a greater quantity of emissions. Similarly,
we find a positive correlation with the road length (see Table 3), as longer roads capture more points and, thus, greater quantities
of emissions. Similar results hold for the emissions of the other three pollutants in all the three cities (see Supplementary
Information A.4). The Figures 2a,d,g show the entire road networks of the Greater London, Rome, and Florence, respectively,
with the amount of CO2 emitted on each road, normalised by the length of the road in order to better appreciate the differences
between the roads, and between the cities.

Simulation scenarios
Reducing emissions is a growing concern for cities, and estimating the impact of policies targeting vehicles to reduce their
footprint on the city’s environment is crucial. We investigate the impact of the vehicles’ electrification on the total amount of
emissions and the distribution of emissions across the roads. In particular, we study how much the electrification of a certain
share of vehicles in our sample would change the amount of CO2 emissions on the three cities’ roads.

We find that the electrification of just the top 1% gross polluters would lead to the same reduction of the CO2 emitted overall as
electrifying 10% random vehicles (Figure 3e,f). We take a neighbourhood in Rome as a case study to investigate the impact of
massive electrification on the amount of CO2 emissions. As the share of gross polluters that shift to electric engines grows, the
impact on the roads in reducing emissions becomes more and more evident. In particular, if the top 10% gross polluters shift to
an electric engine, 107 roads have a significant reduction on the grams of CO2 per meter (at least equal to 0.01 g/m), see Table
4 and Figures 3d. In contrast, if 10% of the vehicles that shift to electric engines are chosen at random, only 18 roads have a
significant reduction of emissions (see Figure 3b). These results hold for both single neighbourhoods and the entire city (see
Figure 3e,f for Rome and Supplementary Information A.5 for London and Florence).

The percentage reduction of the overall emissions of CO2 grows almost linearly when the share of electric vehicles is chosen at
random (i.e., an x% of electric vehicles results in reducing emissions of x%). In contrast, a Generalised Logistic Function (also
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CO2 reduction (g/m) 10% random 3% most polluting 10% most polluting
≥ 10−4 232 385 665
≥ 10−3 137 258 469
≥ 10−2 18 53 107
≥ 10−1 0 6 10

Table 4: The roads and their CO2 reduction in three different scenarios. Number of roads that experience certain levels of
CO2 reduction in three different scenarios of vehicles’ electrification: (i) when electrifying 10% random vehicles (left), (ii) when
electrifying the top 3% most polluting ones (center), and (iii) when electrifying the top 10% most polluting ones (right).

known as Richard’s curve [51], [15]) approximates the growth rate when the vehicles to be electrified are chosen starting from the
gross polluters. We use non-linear least squares to fit a Generalised Logistic Function f(x) = α

(1+βe−rx)1/ν
, where α represents

the upper asymptote, β the growth range, r the growth rate, and ν the slope of the curve. The model gives R2 = 0.99 both for
the selected neighbourhood of Rome (Figure 3e) and the whole city (Figure 3f). The estimated growth rates r are 4.84× 10−2

(the neighbourhood) and 3.96× 10−2 (Rome), with similar slopes ν (−1.55 and −1.56, respectively); α and β are ≈ 100 and
−1 for both the neighbourhood and the city. Similar results hold for Florence (Supplementary Figure 17b, Supplementary Table
13). When considering the whole of London (Supplementary Figure 17a), the growth starts slowly (ν = −0.86): there are less
vehicles associated to high levels of emissions, thus electrifying the most polluting vehicles is slightly less effective in reducing
CO2 emissions than in the other two cities (Supplementary Table 13).

Given the increasing importance of remote working, especially during the COVID-19 pandemic [64, 40], we simulate the impact
of a massive shift to remote working on the reduction of vehicles’ emissions. We identify the vehicles’ home and work locations
(see Methods) and study the emissions generated from their commuting patterns. We perform a simulation in which a growing
share of these commuters become home workers, i.e., they do not travel anymore between their home and work locations. Again,
we find that the reduction of CO2 emissions is more effective when the home workers are gross polluters: in this case, the remote
working of the top 1% gross polluters lead to the same reduction reached if they were ∼ 4% random vehicles (see 18).

We fit a Generalised Logistic Function to the reduction of CO2 emissions when the gross polluters become home workers,
finding that it well describes its growth, and obtaining estimates for ν (the slope of the curve) that are similar for Rome and
Florence (−1.30 and −1.35, respectively), and lower for London (−0.72); see Supplementary Information A.5 and Figure 18.

Overall, the results of both experiments demonstrate that targeting specific profiles of vehicles has the potential to improve
significantly emission reduction policies.

Discussion
In this paper, we show the existence of gross polluters, vehicles that are responsible for the greatest quantity of emissions, and
grossly polluted roads, which suffer the greatest amount of emissions. In particular, gross polluters are the vehicles that travel
the most and, at the same time, whose trajectories are the most predictable. Although some works stated that vehicles have
heterogeneous emissions [22, 24], their methodology has been questioned [25] because they use remote sensing measurement
sites, which cannot fully represent a vehicle’s overall emission level. In contrast, the use of GPS traces, which describes a
vehicle’s full driving cycle, allows us to estimate the vehicle’s instantaneous emissions, and not only emissions at one single
point.

Our findings hold for all the considered pollutants (CO2, NOx, PM, VOC) and mirror heterogeneous patterns in the distribution of
emissions across vehicles and roads, which are well approximated by heavy-tailed distributions with exponents that vary with the
city. These peculiar exponents may depend on the characteristics of the city’s road network and people’s commuting behaviour.
For example, in Greater London, which has a huge and dense road network, people use private vehicles less intensively [58] than
in Rome and Florence. Londoners’ mobility behaviour leads to a distribution of emissions per vehicle that is fairer than people’s
behaviour in Rome, which is characterised by a huge and sparse road network and an intensive use of private vehicles [17].

Our study can be applied in principle to any city, provided the availability of vehicles’ GPS trajectories and road networks data,
and may help in finding more effective strategies to reduce emissions. For example, our study clearly demonstrates that blocking
the circulation based on a non-informed choice of the vehicles’ (e.g., blocking vehicles with odd or even number plates) has less
impact on reducing emissions than identifying and targeting a small share of gross polluters. Moreover, we provide a precise
model to estimate the overall reduction of CO2 emissions generated by the electrification of a certain share of vehicles or by a
reduction in the number of commuting patterns travelled by the vehicles (caused for example by a transition to remote working
of their drivers).
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(a)

10% random

(b)

(c) (d)

Municipio Roma II

10% most polluting3% most polluting

(e) (f)

Figure 3: Simulation of electrification. Analysis of the impact on CO2 emissions of the electrification of a sample of vehicles
moving within a neighbourhood (the Second Municipality of Rome) during January 2017. (a) Distribution of emissions of CO2

across the roads. (b) Reduction of emissions if a random 10% of the vehicles shift to electric engines. (c) Reduction of emissions
if top 3% of gross polluters shift to electric engines. (d) Reduction of emissions if top 10% gross polluters shift to electric
engines. (e) Percentage reduction of CO2 emissions corresponding to a certain share (0-100%) of electric vehicles for the Second
Municipality of Rome. The inset plots zoom on the first tenth share of electric vehicles. The blue solid line is when the vehicles
to be electrified are chosen from the most polluting to the least polluting. The black dashed line indicates the emission reduction
when the vehicles to be electrified are chosen at random. The dotted red line is the Generalised Logistic Function (Richard’s
curve) fit: f(x) = α

(1+βe−rx)1/ν
, where α represents the upper asymptote, β the growth range, r the growth rate, and ν the slope

of the curve. (f) Same plot for the whole city of Rome.
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The framework proposed in this paper can be improved by including in the emissions model more information about the vehicles,
such as emission category (e.g., Euro 2, Euro 3) and weight type (e.g., light-duty, heavy-duty). Moreover, our analysis can be
deepened by investigating how the estimation of emissions changes in time: how does the amount of emissions change between
weekdays and weekend days? And how does it changes with the season or the weather?

In the meanwhile, our study may contribute to shape the discussion on how to measure emissions with digital data that are
massively available everywhere on earth, such as GPS traces, and how to use such measurements to simulate emission reduction
scenarios. If we learn how to use such a resource, we have the potential of monitoring in real-time the level of emission in our
urban environments and to take immediate and informed actions when they overcome a certain tolerance threshold. This is
crucial because the decisions of policy makers depend on what we measure, how good our measurements are, and how promptly
we react to these measurements.

Methods
Filtering, speed and acceleration. Each trajectory point is associated with a vehicle identifier, a trajectory identifier, a
timestamp, and a latitude/longitude pair. The sampling rate of the trajectory points may affect the estimate of instantaneous
speed and acceleration. Since the mean time interval between trajectory points varies with the city (it is around one minute for
London and around four minutes for Rome and Florence), we retain only the sub-trajectories composed by consecutive points in
an interval of 120 seconds, ending up with a mean time interval between the points that is around one minute for all the cities.
We then compute, for each vehicle, the speed and acceleration in each point, and retain only points whose speed is lower than
300 km/h and whose acceleration is in the range [−10,+10] m/s2 (as suggested by Nyhan et al.[42]). Different works use
different values for these filtering parameters (e.g., the time interval between the points is set to 5 seconds in Nyhan et al.[42], 5
to 50 seconds in Liu et al.[35], 1 second in Chen et al.[7], 3 seconds in Sui et al.[57]). Our choice for the parameters derives
from the sampling rate of our data and are a trade-off between the reliability of the results and the data coverage.

Map-matching. The road network of each city is extracted from OpenStreetMap (OSM), a collaborative project to create a
free editable map of the world and provide the geodata underlying the map. In particular, the road network is as a multigraph in
which edges represent public roads accessible to vehicles (including service roads). Each edge e is a couple of two identifiers,
indicating the starting and ending OSM nodes. To download, compute statistics, and visualise the road networks we use the
Python library OSMnx [5]. Our map-matching step consists in a ball tree nearest-neighbour algorithm that maps each point of a
GPS trajectory to its nearest edge in the OSM network.

Computing emissions. We implement a microscopic emissions model [42] to compute the instantaneous emissions associated
to each trajectory point p. We denote the quantity of pollutant j ∈ {CO2,NOx,PM,VOC} emitted at point p as Epj and the
instantaneous speed and acceleration of the vehicle in p as vp and ap, respectively. For each vehicle, information about its engine
type (whether it is a petrol, diesel, or LPG vehicle) is available. This information determines, together with the type of pollutant,
the emission factors f . We use the following equation to compute the instantaneous emissions Epj of pollutant j from vehicle u
in point p:

Ep,j = f j,u1 + f j,u2 vp + f j,u3 v2p + f j,u4 ap + f j,u5 a2p + f j,u6 vpap (1)
where for NOx and VOC emissions the factors f1, ..., f6 change with acceleration (based on whether ap ≥ −0.5 m/s2

or ap < −0.5 m/s2). In Supplementary Table 15 we show the value of factors f1, . . . , f6 varying the vehicle’s type and
acceleration.

Mobility measures and roads’ centrality. We use four quantities to describe the mobility of a vehicle u: (i) the radius of

gyration [21, 46, 44] rg(u) =
√

1
n

∑
i∈P dist(ri(u)− rcm(u))2, where P is the set of n points recorded for u, ri(u) indicates

the coordinates of trajectory point i ∈ P , and rcm(u) is the centre of mass of u; (ii) the temporal-uncorrelated entropy [55, 14, 47]
S(u) = −

∑Nu
i=1 pu(i) log2 pu(i), where Nu is the number of distinct locations visited by u, and pu(i) is the probability that u

visits location i; (iii) the maximum distance travelled by u, defined as dmax(u) = max
1≤i<j≤n

dist(ri(u), rj(u)), with ri(u), rj(u)

are the coordinates of two locations i and j visited by u; (iv) the straight line distance travelled by u, computed as the sum of all
the distances travelled by u. We measure the centrality of a road in a road network, a proxy of its traffic volume in the city, as
its betweenness centrality. In network science, the betweenness centrality of an edge e (i.e., a road in our case) is defined as
Cb(e) =

∑
s,t∈V

σ(s,t|e)
σ(s,t) , where V is the set of nodes in the network, σ(s, t) is the number of shortest paths between s and t,

and σ(s, t|e) is the number of those shortest paths passing through edge e.

Home and work locations. We identify a vehicle’s home and work locations selecting the starting and ending points of its
trajectories. We then spatially cluster the points within a radius of 250 meters and take the centroid of each cluster as the vehicle’s
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stop locations. We perform the clustering because the position of the starting (or ending) points of trajectories that start from (or
end to) the same semantic location may not exactly coincide because: (a) a driver can park the vehicle within a certain radius
from the location; (b) the first point sent by the onboard GPS device often lacks of precision and it is thus discarded, tacking
as starting point of the trajectory the second point sent. To identify a vehicle’s home and work locations, we use a principle
commonly used in the literature [61, 60, 43]: the home location is the stop location corresponding to the most frequent cluster;
the work location is the stop location corresponding to the second most frequent cluster. We discard the vehicles for which it
is not possible to identify the most frequent stop location(s) (as for example the vehicle visited each location only once). We
successfully identify both the home and work locations for 55%, 31%, and 16% of the vehicles moving in London, Rome, and
Florence, respectively.
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Appendices

A Supplementary Information

A.1 Trajectory sampling
The sampling rate of the trajectory points (i.e., the mean time interval between consecutive points forming a trajectory) in our
data is smaller for London (around one point every minute on average) than for Rome and Florence (around one point every 4
minutes on average), we retain only the sub-trajectories composed by consecutive points in an interval of 120 seconds before
computing speed and acceleration. Thus, after this preprocessing step, London’s sampling rate results higher than the one of the
other two cities. Thus, after the estimation of the emissions, we perform a sub-sampling of London’s data, filtering out points
so that the final mean sampling rate per trajectory is similar to that of Rome and Florence (Table 1). However, one can argue
that, still, both London’s number of trips per vehicle and number of points per trajectory (∼ 88 and ∼ 9.9, respectively) are
considerably bigger than the Roman (∼ 20 and ∼ 4.7, respectively) and Florentine (∼ 7 and ∼ 2.3, respectively) ones. As the
empirical Complementary Cumulative Distribution Functions of the data show (Figures 4 and 5), this fact does not influence the
shape of the distributions, that is reasonably similar across the three cities.

A.2 Fitting of distributions
We fit the distributions of emissions of the four pollutants (CO2, NOx, PM, VOC) across vehicles and roads for the three
cities (Florence, Rome, Greater London) using the statistical methods developed in Clauset et al. [9] and Klaus et al. [29] and
implemented by Alstott et al. 2014 [1]. These methods use a maximum-likelihood fitting and evaluate the goodness-of-fit using
the Kolmogorov-Smirnov distance, comparing different models with a log-likelihood ratio test. This fitting procedure is used on
4x2x3=24 distributions in total.

We fit five models – power law, truncated power law, log-normal, exponential, and stretched exponential – to the data and
compare pairwise their goodness-of-fit with a log-likelihood ratio test. We give particular attention to the comparison with the
exponential model, as it is generally considered the minimum alternative candidate for evaluating the heavy-tailedness of a
distribution. Indeed, if the exponential is the best fit, one should reconsider the hypothesis of heavy-tail distribution for the data.
For each model, we use log-likelihood ratio tests for comparing its goodness-of-fit to the data with all the others’, and we choose
the best fitting model as the one (if any) that wins the higher number of comparisons.

As the power law behaviour of all our distributions starts from a certain value xmin (as it happens for the majority of the
phenomena that obey power laws), we estimate xmin as follows. We compute the power law fit for each possible value of
xmin in the range of the data, and evaluate the goodness of fit with the Kolmogorov-Smirnov statistic (D), that is the maximum
distance between the empirical Cumulative Distribution Function (CDF) and that of the fitted model (the lower D, the better the
fit). We choose the xmin corresponding to the global minimum of D. However, the choice of xmin influences the precision of
the estimator we use. Indeed, the Maximum Likelihood Estimator α̂ of the exponent of the power law is asymptotically Gaussian
with variance σ = (α−1)

n (see Proposition B.4 in Clauset et al. [9]), where n is the number of data points xi ≥ xmin. As σ grows
with xmin (as n decreases), the trade-off is given by the choice of the best power law fit (i.e., the xmin with minimum D) with
a low variability for α̂. As Figures 6 and 7 show for Rome and Florence, the global minimum of D also correspond to very
low σ, with the only exception of the distributions of CO2 and VOC emissions per vehicle in Rome 1. This is not the case for
London, for which the global minima for D are reached at high values of xmin, which correspond to σ higher than 0.4. At the
same time, pretending a lower σ would lead to a solution with high values of D (around 1.5). We conclude that a power law fit is
not reasonable for London. Instead, the distributions for London are better approximated by a stretched exponential.

A.3 Distribution of emissions
Emissions distribute across both vehicles and roads in a heterogeneous way. In Figure 8 we show the Lorenz curves representing
the distributions of the four pollutants per vehicle (Figures 8b,d,f,h) and road (Figures 8a,c,e,g). These curves, together with
the associated Gini coefficients, highlight the inequality of our distributions. The Gini coefficient varies between 0 and 1, with
high values corresponding to unequal distributions. We obtained, for all the cities and distributions, a Gini coefficient that is
always above 0.55. The most unequal distributions are those across the roads of Rome and Florence (Figures 8a,c,e,g), whose
Gini coefficient is nearly always above 0.8, while for London these distributions are less unequal (Gini coefficient around 0.65).

1Nevertheless, the local minimum of D found when σ < 0.05 are not far from the global minimum (there is a difference of ∼ 0.02), so we
can choose those xmin with a reasonable loss in terms of goodness of fit.
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Instead, the emissions of CO2 (Figure 8a) and VOC (Figure 8h) per vehicle are distributed in a similar way across the cities (with
a maximum difference between the Gini coefficients equal to 0.08). This is not the case for the emissions of NOx (Figure 8d)
and PM (Figure 8f), whose inequality in their distributions across the vehicles change with the city, being those in London more
equal (Gini coefficient around 0.62) and those in Rome (in the case of NOx) or Florence (in the case of PM) more unequal.

Regarding the results of fitting the distributions, all of them are well approximated by at least one of the models we take into
consideration (namely, power law, truncated power law, log-normal, stretched exponential), and at least one of these models is
always a better fit than the exponential one. Considering the distributions of emissions across vehicles (Figure 9) and London as
a first case, they are always well approximated by a stretched exponential model, with λ varying with the pollutant, and β in the
interval [1.22, 1.30] for all the four pollutants (Figure 9a,d,g,j). Moreover, in the case of NOx and VOC, also the log-normal
model is a good fit for the distribution of their emissions across London’s vehicles, with parameters respectively (µ = 0.31,
σ = 0.53) for NOx emissions and (µ = 2.02, σ = 0.52) for VOC emissions (Figure 9d,j). Then, considering the case of Rome,
the distributions of emissions of both CO2 and VOC are well approximated by a truncated power law, with similar exponents α
but different λ, as they are respectively (α = 1.13, λ = 1.04× 10−3) for CO2 emissions and (α = 1.21, λ = 0.51) for VOC
emissions (Figure 9b,k). For the distributions of NOx and PM emissions the log-likelihood ratio tests give no overall best fitting
model (Figure 9e,h). Indeed, in the case of NOx emissions, the power law, the truncated-power law and the log-normal all are
better fits than the exponential and stretched exponential models (Table 5), but the tests give no evidence for concluding that
one of the three has a better fit than the others. For the PM emissions, all the four heavy-tailed models have better fits than the
exponential one, but none of them is better then the others in terms of goodness of fit (Table 6). Finally, the distributions of
CO2, NOx, PM, VOC emissions per vehicle in the city of Florence are all well approximated by a truncated power law (Figure
9c,f,i,l), with estimated parameters respectively: (α = 2.12, λ = 1.45× 10−3), (α = 1.97, λ = 0.90), (α = 1.76, λ = 25.20),
(α = 1.73, λ = 1.39).

The distributions of emissions across the roads of the three cities are more homogeneous than those across the vehicles w.r.t.
their best fitting model (Figure 10). Indeed, for both Rome and Florence these distributions are all well approximated by a
truncated power law with parameters α, λ that are similar for each pollutant (Figure 10b,c,e,f,h,i,k,l): for the emissions of CO2

per road they are respectively (α = 1.55, λ = 1.08 × 10−4) in Rome and (α = 1.52, λ = 1.30 × 10−4) in Florence; for the
NOx, (α = 1.65, λ = 0.27) in Rome and (α = 1.56, λ = 0.29) in Florence; for the PM, (α = 1.61, λ = 42.25) in Rome
and (α = 1.52, λ = 35.24) in Florence; for the VOC, (α = 1.66, λ = 0.06) in Rome and (α = 1.57, λ = 0.10) in Florence.
These results reflect the similarity of these distributions in Rome and Florence that we observed in their Lorenz curves (Figures
8a,c,e,g). In the case of London’s distributions of emissions per road, for the CO2 the best fit is again represented by the truncated
power law (Figure 10a), with exponents α = 2.59 and λ = 2.88× 10−4, while for the other three pollutants the comparisons
give no overall best-fitting model. Indeed, regarding NOx, PM and VOC emissions across London’s roads (Figure 10d,g,j), all
the four heavy-tailed models have better fits than the exponential one, and at the same time the log-normal, the truncated power
law and the stretched exponential models all have better fits than the simple power law, with no overall winning model between
the three (Tables 7, 8 and 9).

A.4 Relations with vehicles’ mobility and roads’ features
The relationship between the emissions of the four pollutants and, from one side, the vehicles’ mobility behaviour and, from the
other, the roads’ characteristics, is often non-linear (Figures 11-16). Thus, we used the Spearman’s correlation coefficient to
investigate these relationships. Considering the relation between the quantities of air pollutants emitted per vehicle and four
quantities describing its mobility (the radius of gyration, temporal-uncorrelated entropy, maximum distance and straight line
distance), the strongest (and almost linear) correlation is that with the distance travelled straight line by the vehicles (above 0.77,
with the exception of PM emissions in Florence), for the emissions of all the air pollutants and in all the three cities (Figures 11,
13, 15, and Tables 10, 11, 12): the more a vehicle travels, the more emissions it produces. Similarly, we find positive correlations
with the maximum distance travelled by a vehicle; in London, these coefficients are in the range [0.18, 0.25] for the four air
pollutants, while in Rome the coefficients are always above 0.45, and in Florence they are positive but slightly weaker (0.48
for the CO2, 0.34 for the NOx, 0.33 for the VOC) with the only exception of the PM emissions (see Table 11), that exhibit a
negative correlation (−0.27). This Florentine PM exception (see Table 11) is also confirmed by a weaker correlation – compared
to the other two cities – with the straight line distance (0.53), and a negative correlation with the radius of gyration (−0.45). The
correlations with the vehicles’ mobility entropy are strong and negative for all air pollutants and in all cities, with the highest
coefficients found in London (−0.72 for CO2 and PM, −0.75 for NOx and VOC), and the lower in Florence (−0.26 for CO2,
−0.39 for NOx, −0.60 for PM, −0.45 for VOC). As a low mobility entropy indicates that a vehicle performs a high number of
recurring trips, these negative correlations suggest that gross polluters tend to be more regular and predictable than low-emitting
vehicles. Finally, the correlations with the radius of gyration are almost null in London, while they are positive and strong for
Rome (CO2 0.60, NOx 0.39, PM 0.32, VOC 0.53), and weaker for Florence (CO2 0.32, NOx 0.17, PM −0.45, VOC 0.13). In
conclusion, as a general rule, even if with a few exceptions, the gross polluters are those vehicles that travel the most, and whose
travelling behaviour is more predictable (e.g. the commuters).
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Concerning the relation between the quantities of air pollutants emitted on the roads and (i) their (betweenness) centrality w.r.t.
the entire network and (ii) their length, we find positive correlation coefficients for all air pollutants and cities (Figures 12, 14, 16,
and Tables 10, 11, 12). As the betweenness centrality of a road is based on the frequency with which it falls on the shortest paths
connecting two crossroads in the network, and, thus, it can be considered as a proxy of the traffic volume it hosts, these results
suggest that the grossly polluted roads are more likely to be the longer and more congested ones in the road network.

A.5 Emissions reduction simulations
The Figure 17 shows the reduction of the CO2 emitted overall by the vehicles in London and Florence when a certain share
of them are zero-emitting vehicles (e.g. electric vehicles). We compute this reduction in two cases: when the vehicles to be
electrified are chosen starting from the most polluting ones (and proceeding in decreasing order), and when they are chosen at
random. In London, the reduction of CO2 emissions in the first case is ∼ 6 times more effective than with the random choice
(Figure 17a); this means that electrifying the top 1% most polluting vehicles leads to a ∼ 6% reduction of the overall emissions
of CO2, while a random 1% electric vehicles leads to a reduction of ∼ 1% in the CO2 emissions. In Florence, this difference is
even bigger, with the electrification of the top 1% most polluting vehicles being ∼ 10 times more effective than the electrification
of 1% vehicles chosen at random (Figure 17b). We find that the growth of this reduction is well described by a Generalised
Logistic Function (GLM, or Richard’s curve). Indeed, we use non-linear least squares to fit a GLM f(x) = α

(1+βe−rx)1/ν
to

the reduction of the overall emissions of CO2 when the electrified vehicles are chosen in decreasing order starting from the
most polluting ones. We set the starting values for the parameters following Fekedulegn et al. [15]. The parameters of the curve
change with the city (Table 13); in particular, its slope is −0.86 for London and −1.91 in Florence, as this latter experiences a
faster growth in the reduction of overall CO2 emissions obtained by electrifying the most polluting vehicles.

We also simulate the impact of a massive shift to remote working on the reduction of vehicles’ CO2 emissions in the three cities
(Figure 18), again finding that the reduction of the emissions is more effective when the home workers are gross polluters: in this
case, the remote working of the top 1% gross polluters lead to the same reduction reached if they were ∼ 4% random vehicles.
Again, the growth of this reduction is well described by a Generalised Logistic Function, whose parameters slightly change with
the city and are shown in Table 14.
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B Supplementary Figures
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London Rome Florence

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4: Empirical Complementary Cumulative Distribution Function (CCDF) of the emissions per vehicle. For each
pollutant and city, we show the empirical CCDF of the data. For each quantity x emitted by a vehicle, the CCDF is the probability
of getting a vehicle that emitted more than x. The scale is logarithmic in the y axis and linear in the x axis. The shape of the
distribution is similar across the cities and air pollutants.
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London Rome Florence

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5: Empirical Complementary Cumulative Distribution Function (CCDF) of the emissions per road. For each
pollutant and city, we show the empirical CCDF of the data. For each quantity x emitted on a road, the CCDF is the probability
of getting a road that has more emissions than x. The scale is logarithmic in the y axis and linear in the x axis. The shape of the
distribution is similar across the cities and air pollutants.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

London Rome Florence

Figure 6: Choice of xmin when fitting the distributions of emissions per vehicle. For each pollutant and city, we show the
values of the Kolmogorov-Smirnov distance D between the data and the power law fit (blue solid line) and the standard error σ
of the power law exponent (black dashed line) for each possible choice of xmin. The value of xmin that minimises D under the
constraint σ < 0.05 is indicated by the red dashed vertical line.
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London Rome Florence

Figure 7: Choice of xmin when fitting the distributions of emissions per road. For each pollutant and city, we show the
values of the Kolmogorov-Smirnov distance D between the data and the power law fit (blue solid line) and the standard error σ
of the power law exponent (black dashed line) for each possible choice of xmin. The value of xmin that minimises D under the
constraint σ < 0.05 is indicated by the red dashed vertical line.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: Distributions of emissions across vehicles and roads. Lorenz curves showing the share of overall emissions
associated respectively to the bottom x% of the roads (left) and to the bottom x% of the vehicles (right), for Greater London
(violet curve), Rome (orange curve), and Florence (red curve), and for CO2 (a, b), NOx (c, d), PM (e, f), and VOC (g, h). The
green dashed curve indicates a uniform distribution. We show in the legend the Gini coefficient for each curve.
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Figure 9: Fitting of the distributions of emissions per vehicle. For each pollutant and city, we show the Complementary
Cumulative Distribution Function (CCDF) of the emissions per vehicle (black dots), together with the fitted distributions: power
law (dashed orange curve), log-normal (dashed blue curve), truncated power law (solid red curve), stretched exponential (dotted
purple curve). In the legend, we highlight the best fit(s), if any, in bold. We use a maximum-likelihood fitting method and
evaluate the goodness-of-fit using the Kolmogorov-Smirnov distance, comparing different models with a log-likelihood ratio test.
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Figure 10: Fitting of the distributions of emissions per road. For each pollutant and city, we show the Complementary
Cumulative Distribution Function (CCDF) of the emissions per road (black dots), together with the fitted distributions: power
law (dashed orange curve), log-normal (dashed blue curve), truncated power law (solid red curve), stretched exponential (dotted
purple curve). In the legend, we highlight the best fit(s), if any, in bold. We use a maximum-likelihood fitting method and
evaluate the goodness-of-fit using the Kolmogorov-Smirnov distance, comparing different models with a log-likelihood ratio test.
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Figure 11: Correlations between emissions and mobility metrics for London. The scatter plots show the relationship between
the emissions of the four pollutants (rows) and four mobility metrics of the vehicles: the radius of gyration, temporal-uncorrelated
entropy, maximum distance and straight line distance. On the upper right corner of each figure we show the Spearman’s
correlation coefficient, and the corresponding p-value.
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Figure 12: Correlations between emissions and roads features for London. The scatter plots show the relation between the
emissions of the four pollutants (rows) and two roads’ features: the betweenness centrality and length. On the upper right corner
of each figure we show the Spearman’s correlation coefficient, and the corresponding p-value.
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Figure 13: Correlations between emissions and mobility metrics for Rome. The scatter plots show the relation between the
emissions of the four pollutants (rows) and four mobility metrics of the vehicles: the radius of gyration, temporal-uncorrelated
entropy, maximum distance and straight line distance. On the upper right corner of each figure we show the Spearman’s
correlation coefficient, and the corresponding p-value.
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Figure 14: Correlations between emissions and roads features for Rome. The scatter plots show the relation between the
emissions of the four pollutants (rows) and two roads’ features: the betweenness centrality and length. On the upper right corner
of each figure we show the Spearman’s correlation coefficient, and the corresponding p-value.
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Figure 15: Correlations between emissions and mobility metrics for Florence. The scatter plots show the relation between
the emissions of the four pollutants (rows) and four mobility metrics of the vehicles: the radius of gyration, temporal-uncorrelated
entropy, maximum distance and straight line distance. On the upper right corner of each figure we show the Spearman’s
correlation coefficient, and the corresponding p-value.
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Figure 16: Correlations between emissions and roads features for Florence. The scatter plots show the relation between the
emissions of the four pollutants (rows) and two roads’ features: the betweenness centrality and length. On the upper right corner
of each figure we show the Spearman’s correlation coefficient, and the corresponding p-value.
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(a) (b)

Figure 17: CO2 emissions reduction from vehicles electrification in Greater London and Florence. Percentage reduction
of CO2 emissions corresponding to a certain share (0-100%) of electric vehicles in (a) Greater London and (b) Florence. The
inset plots zoom on the first tenth share of electric vehicles. The blue solid line is when the vehicles to be electrified are chosen
from the most polluting to the least polluting. The black dashed line is when the vehicles to be electrified are chosen at random.
The dotted red line is the Generalised Logistic Function (Richard’s curve) fit: f(x) = α

(1+βe−rx)1/ν
, where α represents the

upper asymptote, β the growth range, r the growth rate, and ν the slope of the curve.
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(a) (b)

(c)

Figure 18: CO2 emissions reduction from remote working in Rome, Florence and Greater London. Percentage reduction
of CO2 emissions corresponding to a certain share of vehicles that stop commuting in (a) Rome, (b) Florence, and (c) Greater
London. The maximum share of vehicles that stop commuting in our simulation changes with the city: it is 31% for Rome, 16%
for Florence, and 55% for London, as these are the percentages of vehicles for which we can identify both the home and work
locations and, thus, the commuting trajectories. The blue solid line is when the vehicles that stop commuting are chosen from the
most polluting to the least polluting. The black dashed line is when the vehicles that stop commuting are chosen at random. The
dotted red line is the Generalised Logistic Function (Richard’s curve) fit: f(x) = α

(1+βe−rx)1/ν
, where α represents the upper

asymptote, β the growth range, r the growth rate, and ν the slope of the curve. We show the estimated parameters in the legend.
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C Supplementary Tables

power law log-normal truncated
power law

stretched
exponential exponential

power law - None None power law
(R=2.59, p=0.01)

power law
(R=5.28, p=0.00)

log-normal - - None log-normal
(R=2.56, p=0.01)

log-normal
(R=5.27, p=0.00)

truncated
power law - - - tr. power law

(R=2.59, p=0.01)
tr. power law

(R=5.28, p=0.00)

stretched
exponential - - - - str. exponential

(R=5.34, p=0.00)

Table 5: Results of log-likelihood ratio tests for comparing different models fitting the distribution of NOx emissions per
vehicle in Rome. Each (i, j) cell of the table shows the result of a log-likelihood ratio test used for comparing the goodness-of-fit
of the model in row i and the one in column j. If the test gives result in favour of a model, its name is shown together with the
statistic R, that is negative if the result is in favour of the first model (the one on the row) or positive if in favour of the second
(the one on the column), and the corresponding p-value. If the test gives no evidence in favour of one of the two models, the
result is signed as None. In this case, there is no model that wins more comparisons than the others.

power law log-normal truncated
power law

stretched
exponential exponential

power law - None None None power law
(R=3.21, p=0.00)

log-normal - - None None log-normal
(R=3.32, p=0.00)

truncated
power law - - - None tr. power law

(R=3.27, p=0.00)

stretched
exponential - - - - str. exponential

(R=3.34, p=0.00)

Table 6: Results of log-likelihood ratio tests for comparing different models fitting the distribution of PM emissions per
vehicle in Rome. Each (i, j) cell of the table shows the result of a log-likelihood ratio test used for comparing the goodness-of-fit
of the model in row i and the one in column j. If the test gives result in favour of a model, its name is shown together with the
statistic R, that is negative if the result is in favour of the first model (the one on the row) or positive if in favour of the second
(the one on the column), and the corresponding p-value. If the test gives no evidence in favour of one of the two models, the
result is signed as None. In this case, there is no model that wins more comparisons than the others.
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power law log-normal truncated
power law

stretched
exponential exponential

power law - log-normal
(R=-4.32, p=0.00)

tr. power law
(R=-4.40, p=0.00)

str. exponential
(R=-4.27, p=0.00)

power law
(R=7.99, p=0.00)

log-normal - - None None log-normal
(R=9.48, p=0.00)

truncated
power law - - - None tr. power law

(R=9.54, p=0.00)

stretched
exponential - - - - str. exponential

(R=9.56, p=0.00)

Table 7: Results of log-likelihood ratio tests for comparing different models fitting the distribution of NOx emissions per
road in London. Each (i, j) cell of the table shows the result of a log-likelihood ratio test used for comparing the goodness-of-fit
of the model in row i and the one in column j. If the test gives result in favour of a model, its name is shown together with the
statistic R, that is negative if the result is in favour of the first model (the one on the row) or positive if in favour of the second
(the one on the column), and the corresponding p-value. If the test gives no evidence in favour of one of the two models, the
result is signed as None. In this case, none of the log-normal, truncated power law and stretched exponential models wins more
comparisons than the other two.

power law log-normal truncated
power law

stretched
exponential exponential

power law - log-normal
(R=-2.87, p=0.00)

tr. power law
(R=-2.87, p=0.00)

str. exponential
(R=-2.89, p=0.00)

power law
(R=3.70, p=0.00)

log-normal - - None None log-normal
(R=5.06, p=0.00)

truncated
power law - - - None tr. power law

(R=5.10, p=0.00)

stretched
exponential - - - - str. exponential

(R=5.09, p=0.00)

Table 8: Results of log-likelihood ratio tests for comparing different models fitting the distribution of PM emissions per
road in London. Each (i, j) cell of the table shows the result of a log-likelihood ratio test used for comparing the goodness-of-fit
of the model in row i and the one in column j. If the test gives result in favour of a model, its name is shown together with the
statistic R, that is negative if the result is in favour of the first model (the one on the row) or positive if in favour of the second
(the one on the column), and the corresponding p-value. If the test gives no evidence in favour of one of the two models, the
result is signed as None. In this case, none of the log-normal, truncated power law and stretched exponential models wins more
comparisons than the other two.

power law log-normal truncated
power law

stretched
exponential exponential

power law - log-normal
(R=-4.10, p=0.00)

tr. power law
(R=-4.56, p=0.00)

str. exponential
(R=-3.69, p=0.00)

power law
(R=10.11, p=0.00)

log-normal - - None None log-normal
(R=11.29, p=0.00)

truncated
power law - - - None tr. power law

(R=11.47, p=0.00)

stretched
exponential - - - - str. exponential

(R=11.46, p=0.00)

Table 9: Results of log-likelihood ratio tests for comparing different models fitting the distribution of VOC emissions per
road in London. Each (i, j) cell of the table shows the result of a log-likelihood ratio test used for comparing the goodness-of-fit
of the model in row i and the one in column j. If the test gives result in favour of a model, its name is shown together with the
statistic R, that is negative if the result is in favour of the first model (the one on the row) or positive if in favour of the second
(the one on the column), and the corresponding p-value. If the test gives no evidence in favour of one of the two models, the
result is signed as None. In this case, none of the log-normal, truncated power law and stretched exponential models wins more
comparisons than the other two.
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mobility metrics roads’ features
radius entropy max dist. str. line dist. betweenness centrality length

London 0.02* -0.75 0.18 0.92 0.23 0.23
Rome 0.39 -0.63 0.51 0.92 0.26 0.37

Florence 0.17 -0.39 0.34 0.82 0.11 0.26

Table 10: Correlations between vehicles’ emissions of NOx, mobility metrics, and road features. Spearman’s correlation
coefficients between (left) NOx emissions per vehicle and vehicles’ mobility metrics (their radius of gyration, uncorrelated
entropy, maximum distance and distance travelled straight line), and (right) NOx emissions per road and roads’ features
(betweenness centrality and length). *p-value > 0.05.

mobility metrics roads’ features
radius entropy max dist. str. line dist. betweenness centrality length

London 0.03* -0.72 0.19 0.92 0.35 0.19
Rome 0.32 -0.65 0.45 0.87 0.24 0.28

Florence -0.45 -0.60 -0.27 0.53 0.03 0.15

Table 11: Correlations between vehicles’ emissions of PM, mobility metrics, and road features. Spearman’s correlation
coefficients between (left) PM emissions per vehicle and vehicles’ mobility metrics (their radius of gyration, uncorrelated entropy,
maximum distance and distance travelled straight line), and (right) PM emissions per road and roads’ features (betweenness
centrality and length). *p-value > 0.05.

mobility metrics roads’ features
radius entropy max dist. str. line dist. betweenness centrality length

London 0.03* -0.75 0.20 0.93 0.21 0.23
Rome 0.53 -0.59 0.62 0.93 0.27 0.38

Florence 0.13 -0.45 0.33 0.86 0.10 0.27

Table 12: Correlations between vehicles’ emissions of VOC, mobility metrics, and road features. Spearman’s correlation
coefficients between (left) VOC emissions per vehicle and vehicles’ mobility metrics (their radius of gyration, uncorrelated
entropy, maximum distance and distance travelled straight line), and (right) VOC emissions per road and roads’ features
(betweenness centrality and length). *p-value > 0.05.

α β r ν R2

London 101.66 −0.95 5.05× 10−2 −0.86 0.99
Rome 101.24 −0.99 3.96× 10−2 −1.56 0.99

Florence 106.57 −0.99 2.20× 10−2 −1.91 0.99
2nd Municipality (Rome) 99.8 −0.99 4.84× 10−2 −1.55 0.99

Table 13: Estimated parameters of a Generalised Logistic Function fitted to the reduction of the overall CO2 emissions
resulting from the electrification of the vehicles starting from the most polluting ones. The estimated parameters α (the
upper asymptote), β (the growth range), r (the growth rate), and ν (the slope) obtained with non-linear least squares fitting of a
Generalised Logistic Function to the data are shown for London, Rome, Florence and a neighbourhood of Rome (the Second
Municipality). We also show the R2 for each model as a measure of its goodness of fit to the data.

α β r ν R2

London 22.49 −0.92 0.05 −0.72 0.99
Rome 17.12 −1.00 0.12 −1.30 0.99

Florence 14.39 −1.00 0.21 −1.35 0.99

Table 14: Estimated parameters of a Generalised Logistic Function fitted to the reduction of the overall CO2 emissions
resulting from the shift to remote working of the drivers of the vehicles starting from the most polluting ones. The
estimated parameters α (the upper asymptote), β (the growth range), r (the growth rate), and ν (the slope) obtained with
non-linear least squares fitting of a Generalised Logistic Function to the data are shown for London, Rome, and Florence. We
also show the R2 for each model as a measure of its goodness of fit to the data.
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fuel type acceleration f1 f2 f3 f4 f5 f6
CO2 petrol all 5.53× 10−1 1.61× 10−1 −2.89× 10−3 2.66× 10−1 5.11× 10−1 1.83× 10−1

diesel all 3.24× 10−1 8.59× 10−2 4.96× 10−3 −5.86× 10−2 4.48× 10−1 2.30× 10−1

LPG all 6.00× 10−1 2.19× 10−1 −7.74× 10−3 3.57× 10−1 5.14× 10−1 1.70× 10−1

NOx petrol ≥ −0.5m/s2 6.19× 10−4 8.00× 10−5 −4.03× 10−6 −4.13× 10−4 3.80× 10−4 1.77× 10−4

petrol < −0.05m/s2 2.17× 10−4 0 0 0 0 0

diesel ≥ −0.5m/s2 2.41× 10−3 −4.11× 10−4 6.73× 10−5 −3.07× 10−3 2.14× 10−3 1.50× 10−3

diesel < −0.05m/s2 1.68× 10−3 −6.62× 10−5 9.00× 10−6 2.50× 10−4 2.91× 10−4 1.20× 10−4

LPG ≥ −0.5m/s2 8.92× 10−4 1.61× 10−5 −8.06× 10−7 −8.23× 10−5 7.60× 10−5 3.54× 10−5

LPG < −0.05m/s2 3.43× 10−4 0 0 0 0 0

PM petrol all 0 1.57× 10−5 −9.21× 10−7 0 3.75× 10−5 1.89× 10−5

diesel all 0 3.13× 10−4 −1.84× 10−5 0 7.50× 10−4 3.78× 10−4

LPG all 0 1.57× 10−5 −9.21× 10−7 0 3.75× 10−5 1.89× 10−5

VOC petrol ≥ −0.5m/s2 4.47× 10−3 7.32× 10−7 −2.87× 10−8 −3.41× 10−5 4.94× 10−6 1.66× 10−6

petrol < −0.05m/s2 2.63× 10−3 0 0 0 0 0

diesel ≥ −0.5m/s2 9.22× 10−5 9.09× 10−6 −2.29× 10−7 −2.20× 10−5 1.69× 10−5 3.75× 10−6

diesel < −0.05m/s2 5.25× 10−5 7.22× 10−6 −1.87× 10−7 0 −1.02× 10−5 −4.22× 10−6

LPG ≥ −0.5m/s2 1.44× 10−2 1.74× 10−7 −6.82× 10−9 −8.11× 10−7 1.18× 10−6 3.96× 10−7

LPG < −0.05m/s2 8.42× 10−3 0 0 0 0 0

Table 15: Emission functions. The emission functions for each pollutant, fuel type, and acceleration profile.
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