COMPIVING UPDATES
IN
UCTIVE OBJECT-ORIENYED DATABASES

s —
/ " ,f'/\t_//ﬁ/
/ —
Ay Internal Report C95-49
/ ™
/ L; 21 Dicembre 1995
/ ——
N - C ,
j / ;- A

/ ! T Y
I N
/ / S M. Carboni

;] . V. Foddai

. /—? ‘/\ { . SRR / ' F. Giannotti

Sy \ B S D. Pedreschi
/ fff /)) /

“ /] j L"“ﬁ

A / B —
/ A / .
By B T A 7

—

Compiling Updates in Deductive Object-Oriented Databases
Marifisa Carboui!, Valeria Foddai?, Fosca Giannotti', and Dino Pedreschi?

! ONUCE Iustitute of CNR
Via 5. Maria 36, 56120 Pisa, [taly
e-niitll: F.Giannotti@cnuce.cnr. it

¢ Dipartimento di Informatica, Univ. Pisa
Corso [talia 40, 56125 Pisa, Italy
e-mnail: pedre€di.unipi.it

Abstract

Deductive database languages exhibit au evident dychotomy in the way they support
queries and transactious. Query answering is based ou declarative semantics and fixpoint-
based (bottom-up} evaluation. Trausactions are based on procedural semantics and top-
down evaluation, as for instance in the logic database language LDLC [NT88]. This paper
presents a techuicque to compile updates onto standard logic programs to be evaluated with
the usual bottoni-up evaluation mechanisin. Tlie compilation is based on the concept of XY-
stratification [AQZY3, AOTZ93] which is a syntactic property of non-monotonic recursive
programs. XY-stratified programs use stage arguments to integrate control on state tran-
sition within the deduction process. The proposed compilation is then extended to update
operations on deductive object-oriented databases, by providing natural declarative accounts
of object identifiers, classes, ISA lhierarchies, muitiple inheritance, and dynamic binding.

1 Introduction

Logic database languages use a declarative style to represent both knowledge and operations
on databases. To colierently model the application domain, a deductive database should also
express its dynamically changing aspects. As a watter of fact, updates are a primary concern
of any database language.

On the one hand, deductive databases naturally support powerful and declarative query
languages, and queries can be efficiently executed using a bottom-up, fixpoint-based procedure.
Also, sophisticated optimizations such as magic sets are available to capture the advantages of
top-down execution, when needed. Ou the other hand, deductive databases traditionally suffer
from limitations in describing the dyuamic and transactional aspects of database systems.

Most proposals in tle literature augiment deductive databases with a procedural semantics
to implement the coutrol mechanisms needed to support updates (see [Mon93] as a source of
references.) Often the semantics of this procedural component is accomodated in some logic ca-
pable to deal with dynamic. This is the case of transaction logic [BK93], dynamic logic [MW86]
or some modal logics. For instance, in the logic database language LDL [NT88] transactions
are special rules with updates, which are evaluated top-down and tleir semasntics is given by

*Work partially supported by the EC-US Cooperative Activity Project ECUS-033 - DEus EX MACHINA.

1 INTRODUCTION 3

dynamic logic. This combination of declarative and procedural semantics has as a major disad-
vantage the fact that tlie architecture of the abstract machine supporting deductive databases
is deeply altered. As a consequence, the available optimization techniques are no longer directly
applicable.

We propose, in a more conservative way, to leave the simple declarative framework unaltered.
This is achieved by means of a transformation of updates and transactions into sets of clauses
which

e reflect the intuitive meaning of state chaunges in a declarative way, and

e can bhe efficiently executed using the ordinary bottom-up, fixpoint-based evaluation of
deductive databases.

We first apply this transformation teclinique to a geuneralization of LDL transactions, i.e.,
clauses containing wulate predicates in their body. The subgoal preceding the updates is the
precondition, and the subgoal following the updates is the postcondition of the transaction.
Pre/postconditions are used to preserve database integrity: in particular, the updates are actu-
ally performed only if tlie postcoudition is fulfilled, otherwise the transaction has no effect.

The notion of LDL transaction provides a form of integration of query and updates, in the
sense that a uniform notation is available. However, different evaluation methods are used for
query and transaction clauses. The proposed compilation allows to execute transaction clauses
in a bottom-up way, similarly to queries. The trausformation is based on the notion of XY-
stratification [AQZ93], i.e., a syntactic property of programs which properly extends ordinary
stratification. A remarkable characteristic of X Y-stratified prograis is that they can be executed
by an iterated fixpoint procedure, even if they are recursive, non monotonic programs. XY-
stratification is defined in terms of stage arguments, i.e., predicate arguments which record the
stage of the computation, and allow to control state changes.

The Statelogt™ proposal in [LL93] is directly related to our work: here, a different formaliza-
tion of state change leads to similar results, e.g. the capability of computing the perfect model
of programs with updates. Tle wain differences with our approach are that we do not admit
states as first class values in the language, and that our focus is on compilation of updates aimed
at providing efficient executions.

The compilation technique is then generalized to support the basic mechanisms of a deductive
object-oriented database model, by providing natural declarative accounts of object identifiers,
classes, ISA hierarchies, multipte iulieritance, and dynamic binding. We adopt a modification
of the approach in [Zan89], and use non-determinism to model uniqueness of oid’s. To this
purpose, the choice construct of LDL is used, which was formerly introduced in [KN8&8] and
later refined in [GPSZ91, CGP93] so that it can be used within recursive programs. By means
of the combined used of XY-stratified negation and non-determinism we obtain a natural model
of the update operations which fulfifls the oid-uniqueness and hierarchical constraints.

The plan of the paper follows. Section 2 gives a forinal account of XY-stratification. Sec-
tion 3 introduces compilation of updates onto XY-stratified programs in four stages: simple
updates, composition of updates, simple and nested transactions. Two different semantics for
composition of updates are explored: parallel and sequential evaluation. Section 4 presents the
extension of the compilation technique to object-oriented databases. The proposed compila-
tions are illustrated by means of simple examples. Finally, Section 6 contains a few concluding
remarks.

2 XY-STRATIFIED PROGRAMS 4

2 XY.stratified programs

The basic concept of our approacl is the notion of XY-stratification, i.e. a syntactic property of
non-monotonic recursive Datalogy, programs . The class of programs identified by such prop-
erty, named XY-prograins, captures the expressive power of the inflationary fixpeoint semantics.

The basic idea is that recursive predicates have a special argument named stage which is
an integer. There are two different ways to use the stage: in rules which do not increment the
stage (X-rules}, and rules that increment the stage by one {Y-rules). An XY-stratified program
allows recursion only when there is an increment of the stage. If there exists a reordering of the
rules of the predicates which induces a XY-stratification, then it is possible to apply an iterated
fixpoint procedure which distinguishies the application of X-rules by the application of Y-rules.
Such procedure couiputes the perfect model associated to the set of recursive predicates.

The next subsections introduce syntax and semantics of XY-stratified programs following
the presentation of [AQZ93].

Syntax
Definition 2.1 Given a program P, a set of rules of P defining a maximal set of mutually

recursive predicates will be cailed a recursive clique of P. a

Definition 2.2 Given a recursive clique Q, the first arguments of the recursive predicates of a
rule r in Q will be called the stage argument of 1. 0

The usage of stage arguments is for counting as ity the recursive definition of integers: nil stands
for zero and s{7) stands for I+/{.

Definition 2.3 Let () be a recursive clique and r be a recursive rule of Q. Then r is called an

o X-rule if all the stage argument of r are equal to a simple variable, say J, which does not
appear anywhere else in r;

o Y-rule if (i) some positive goal of r has stage argument a simple variable J, {ii} the head
of r has stage argument s(1), (iii) all the remaining stage arguiients are either J or s(J)
and (iv) J does not appear anywhere else i1 r. O

Definition 2.4 A recursive clique Q will be said to be an XY-cligue when all its recursive rules
are either X-rules or Y-rules. [

Priming: an atow /(t) is called the primed version of an atom p{t).
Given an XY-clique Q, its version primed is constructed by priming certain occurrences of
recursive predicates in recursive rules as follow:

o X-rules: all occurrences of recursive predicates are primed;

e Y-rules: the liead predicate is primmed, and so is every goal with stage argument equal to
that of the head.

Definition 2.5 An XY-clique Q will be said to be XY-stratified when

! Datalogy, is a simple extension of Datalog which adwits a single unary function symbol s(.). This language
has been used for temporal reasoning in [CHO93.

2 XY-STRATIFIED PROGRARMS 5

e the priined version of Q is non recursive

o all exit rules have as stage arguinent the saine constant. g

where a rule is an exit-rule if all predicates in its body are not defined in the clique.

Definition 2.6 A program is XY-stratified if every recursive rule that contain a negated recur-
sive goal in its body belong to an XY-stratified cliue. O

The dependence graph for a primed clique provides a very simple syntactic test to check whether
a program is XY-stratified: it contains no cycles, thus there exists a topological sorting of the
nodes of Q' which obeys stratification, and such that the unprimed predicate names precede the
primed ones.

Semantics

We can partition the atoms iu the Herbrand Base Bg of the original program Q into classes
according to their predicate name and their stage arguments as follow:

o there is a distinct class, say oy, containing all instances of non recursive predicates in Q,
without a stage argiiuent;

e all atoms with the same recursive predicate name and the same number of function symbols
s in the stage argmment belong to the same equivalence class o, ,, with n denoting the
number of s fuuction symnbols in the stage arguiment of p.

The partition ¥ of Bg constructed in this way can be totally ordered, by letting oo be the
bottom stratum in £, and then letting o, , < a,,, if

e n < m,or
o if n = but p precedes ¢ in the primed sorting of the clique.
The totaily ordered ¥ so constructed will be called stuge layering of Bg.

Theorem 2.1 Each XY-stratificd elique @ can be locally stratified according to a stage layering
of Bg. Then for cvcry instunce v of cach rule in @, the head of r belongs to « layer strictly
higher than the layers for the gouls inr (strict stratification).

Since the stratification is strict, in computing the iterated fixpoint, the saturation for each
stratum is reached in one step. Therelore, the compiler can reorder the rules according to the
primed sorting of their head names; then having derived all atoms with stage value J a single
pass through the rules of Q ordered according to the primed sorting computes all the atoms
with stage value s(.J). To formalize the iterated fixpoint procedure for XY-stratified programs,
we introduce the following notions.

e Let 3/ the k-th predicate nawme in the primed sorting,
e Let T} the iinmediate consequence operator for the recursive rules in @ defining p.
e The composite cousequence operatar g will be defined as follows:

Po(l) = Tu(Tuer .. (Ta(D)) .)

where [is an interpretation over Q's Herbrand Base Bg, and n > 1.

3 COMPILING UPDATES IN DEDUCTIVE DATABASES 6

o Let T, the immediate consequence operator for the exit-rules. By the second condition of
XY-stratification, all atoms in Ty(@) share the saine stage argument. However, additional
atoms with the saime stage value might be obtained by firing the X-rules. Therefore, if p is
the k-th predicate name in the primed sorting, we define TE‘ the immediate consequence
operator for the X-rules with head nawe pyg, if any such rules exists, and the identity
transformation otherwise., We can define the composite consequence operator for the X-
rules, Fé as follow: Fg =TX(TX, ... (TX(I)}...) Thus, the ground atoms with the same

stage argument as the cwit-rules are Fé(TU(EDB))

Theorem 2.2 Let) be « XY-stratificd clique, with composite consequence operator g and
composite consequence opcrator for the Xerules Fé,thrn

o Qs locally stratified,

o the perfect model of Q@ is Mg = U (M), where My = Fé{(TU(Q))) e Ty is the immediate
conscquence operator for the caoit-rules of Q.

Thus the perfect model of an XY-stratified clique can be constructed as in the case of positive
programs. Cowputation of XY-stratified programs proceeds similarly to that of stratified pro-
grams: all the non recursive predicates in the recursive XY-clique must be saturated before the
recursive rules in the clique are computed.

3 Compiling Updates in Deductive Databases

3.1 Simple updates

Updates are often classified according to two different semantics: weak updates and strong
updates. Strong updates are those whicl allow to delete atoms only if they are in the current
database state and allow to insert atoms only if they are not. In the case of weak updates no
precondition is checked. Consider, for examnple, the database instance { p(a), p(b), ¢(a) }. Under
the weak semantics the insertion of p{b) or the deletion of ¢{b) does not change the database,
although they are allowed. Under the strong semantics a failure is reached.

We consider here simple updates of the form +p(a), —p(a), corresponding respectively to
insertion and deletion of an EDB predicate. As a consequence, view updates are not considered
in this paper. Also, we refer lere to the weak semantics, although we briefly sketch later how
strong setmantics might be dealt with.

The idea is to associate with every n-ary EDB predicate p two new (n + 1)-ary predicate
symbols: pytage and pyq where the extra arguinent is the the stage aryument in the first position.
The stage argument in pyage witl mmodel the various state transitions of the EDB predicate p
performed by the updates. py will play the role of a delete list, keeping tracks of the tuples to
be removed from p.

An update predicate £p{a) is then compiled into an XY-stratified program which defines the
predicates pyigge atid pyer. The following definition shows the code which updates are compiled
to. For generality of exposition, we deal here with updates £p(a)} where the tuple a may
contain variables. Tle compilation is therefore parametric with respect to a query @ such that
vars(e) C vars{Q), which provides the actual tuples to be inserted in or removed from p.

Definition 3.1 Let p be an EDB predicate, a a tuple and Q a query such that vars(a) C
vars(Q). The code realizing the deletion —p(a) with respect to the query Q, denoted T[Q](-p(a)}},
is the following:

3 COMPILING UPDATES IN DEDUCTIVE DATABASES 7

Tyl Pstage(nil, z) & p(z). {exit-rule}
rat Pde(s(nil), a) « Q, pstagelnil,). {deletion-rule}
731 Patage(5(nil), 2) & Patage(ntl, 2}, opger(s(nil), z). {copy-rule}

]

Definition 3.2 Let p be an EDB predicate, ¢ a tuple and @ a query such that vers(a) C
vars(Q)}. The code realizing the insertion +p(a) with respect to the query @, denoted 7{Q](+p(a)),
is the following:

P11 Pstage(nil,x) — p(x). {ezit-rule}
21 Pstage(S(n1l), @) — Q, Pstage{nil,). {insertion-rule}
13t Patage{S(1il),) & Dyrage(nil,), mpye(s(nil),). {copy-rule}

]

In both definitions, ry is an exit rule which initializes pyqge. r2 s a Y-rule. In case of deletion
2 records in pggthat tuple a has to be deleted; in case of insertion r; adds to py,g. the new
tuple a in the next stage. Finally, in both definitions, the Y-rule r3 is the copy-rule, which allows
to copy to the next stage of predicate pyuge all tuples which have not been canceled. Notice
that, r3 acts as the frame wriom which states: whenever something is true in some stage and
it is not explicitly deleted, then it will also be true in the next stage. In the insert and delete
rules, the query @ plays the role of providing the actual tuples to inserted /removed. If a is a
tuple of constants, then @ is not needed.

[t is simple to show that programs T[Q](£p(e))} are XY-stratified. It is therefore meaningful
to consider their perfect model computed with the iterated fixpoint procedure.

Notice that the new extension of p after the update, denoted by p', is given by the set of
tuples with the maximum stage computed by the the corresponding fragment (insert or delete)

Of pxiage:
ro ! P (X) & Porage(s(nl), z}.

In fact, in the case of single updates, the maximum stage is siinply s(nil}, as the fixpoint is
reached after two iterations. A more complex situation will arise when considering composition
of updates.

Consider now the perfect model M of the program formed by rule ry and 7[Q](£p(a)). By
our construction the extension of ¢ in M represents the effect of the update on the extension of
p. In this sense, the above siinple translation of updates into rules is a dectarative reconstruction
of an operational semantics based on state transition.

It is worth noting that the fragments in definitions 3.2 and 3.1 realize weak updates. The
code for strong updates differs only for the insert and delete rules, which have to check for
absence (resp., presence) of the tuple to be inserted {resp., removed).

Pdei(S(nl), @) — Q, parage(nil, a). {deletion-rule}
Dstage (s(nil), a) — Q, —pypage(nil, u). {insertion-rule}
3.2 Composition of updates

In this section, we consider compositions of updates denoted by %y, . . ., tn, (n > 1) with reference
to two different semantics: parallel and sequential evaluation of updates. According to the

3 COMPILING UPDATES IN DEDUCTIVE DATABASES 8

parallel semantics, also referred to as non-immediate semantics, updates are computed in two
phases. During the first phases updates are collected and, in the second, they are executed all
together without affecting each other.

According to the sequential semantics, also referred to as immediate semantics, updates are
executed as soon as they are encountered. The presence of updates in a rule with immediate
semantics leads to evaluate a query in a sequence of database states. Insertions and removals
are immediately triggered when a body rule is satisfied, thus a single query can be evaluated on
different states.

Parallel Semantics

According to this semantics, the updates uy, ..., u, are evaluated concurrently without affecting
each other. Therefore the code realizing parallel composition is obtained by the simple union of
the programs of the single updates.

Definition 3.3 Let uq,...,u, be a composition of updates, and € a query such that
vars(uy, ..., uy) C vars(Q). Then the code realizing the parallel semantics of the composition
is the following:

Toar[Q](u1, - ooy eg) = T[Q](uy) U U TQ] (10}
a

Observe that as a consequeuce of the union operator, the exit rules and the copy rules in the
programs of the single updates occur ouly once in the final program.

As an example, let us consider the update of an attribute of a tuple; it can be modeled with
the parallel composition of the deletion of the old tuple and the insertion of the modified tuple
Let p be an EDB predicate and « and & tuples. The code realizing the update of tuple a into
tuple b is the following:

Ty Dstagelnil,x) & p(r). {ezit-rule}
ro 1 Pstagels(nil}, b) & Q. patnge(nl,). {insertion-rule}
r3: paei(s(nil), a) & Q, pstage(nil,). {deletion-rule}
Ta 1 Patage(s(nil), &) & pouge(nil, a), ~paa{s(nil), x). {copy-rule}

Observe that the parallel composition of cotupletnentary updates +p(a), —p(a), according the
specified semantics, results in performing the insertion +p(a).

Sequential Semantics

According to this semantics, the updates uy,..., u, are evaluated sequentially so that the up-
dates on the same predicate affect each other. Therefore, the code realizing the single update in
the sequential composition is now dependent on the set of updates on the same predicate which
have already been performed.

Observe that the sequential composition differs from the parallel one only for updates of the
same predicate. Given a cowposition of updates wuy,...,u,, we can rearrange it as a parallel
composition of sequential composition of updates on the same predicate, without affecting the
effect of the overall composition. As a consequence, it suffices to restrict ourselves to consider
only sequences of updates on the same predicate.

Definition 3.4 Let p be an EDB predicate, ¢ a tuple and @ a query such that vars{e) C
vars{@). Let ug, ..., u, be a composition of updates over the same EDB predicate p.

3 COMPILING UPDATES IN DEDUCTIVE DATABASES 9

o Tle code realizing the insertion u; = +pla) (i € [0,n]) with respect to the query Q,
denoted T;[Q](+p(a)) is the following:

ry: psmge(szf(uil) L) & Potage (s 1(nil) x). {exit-rule}
r2t Petage($9THnil), a) « Q, [nge(Hnil),.). {insert-rule}
31 Dstage(STTHRL), 2) & Dotage (5% (nil), 2), ~paa(s¥ 1 (nil), x). {copy-rule}

o The code realizing the deletion u; = —p{«) (¢ € [0, n}) with respect to the query @, denoted
TiQ)(—p(a)), differs only for rule ry:

rot paelsftHnil), u) « Q,;)s,,;yF(b-Zi(r:.il), - {delete-rule}

Notice that, for ¢ = 0, the clause 7 is

pmw,,(su(uil), &) — psmge(s'l (nil}, x).

We stipulate that pyage(s™! (nil), &) stands for p(«). Since s%(nil) = nil, the clause r; becomes
the ordinary exit-rule of definition 3.2 and 3.1:

hau‘u.gf-(lﬁt.l, .I?) — [J(;IT) .
o

Notice that there are two differences with the sliuple updates of definitions 3.1 and 3.2: a
different exit rule r; has been added; aud the code is parametric with respect to the number of
occurrences of updates on the same predicate. Rule rp records the result of the last update on
the same predicate. After i updates on predicate p, % (nil) is the maximum stage argument of
Pstage-

The composition of updates according to the sequential semantics is given by the following
definition.

Definition 3.5 Let uy,...,u, be a composition of updates over the same EDB predicate p, and
Q a query such that vars{uy, ..., n,) G vars{Q}. Then the code realizing the parallel semantics
of the composition is the following:

sm;[Q] ULy ty) —TI[Q]('”'I)U"‘Uﬁl[Q]("n)-
O

As an example, let us consider again the update of an attribute of a tuple; it can be modeled
with the deletion of the old tuple and the insertion of the new tuple.

Let p be an EDB predicate and « and b tuples. The code realizing the update of tuple e into
tuple b according to sequential semantics is the following:

TL: Pstage(nil,) & p(e).. {exit-rule}
ry 1 paer(s{nil), @) & Q, pataye(nil,). {deletion-rule}
T30 Patage(S(ntl), 2} = pyuge(nil, &), —paei(s(nel), x). {copy-rule}
rq i Pstage(S(s(nil)), 2} & porage(s(nil}, x). {exit-rule}
Ts© Dstage(S(s(nil)), b} & Q, porage(s{nil),). {insertion-rule}
61 Pstage(S(8(nil}), &) & Papage(s(nil},), mpae(s(s(nil)}, r). {copy-rule}

3 COMPILING UPDATES IN DEDUCTIVE DATABASES 10

3.3 Simple Transactions

In this section we tackle the problemn of integrating updates and queries. We propose how to

integrate the two modaiities of interacting with the deductive database in a unique framework

which can be executed by a fixpoiut evaluation. Such framework defines the concept of a

transaction, which will be introduced gradually: simple transactions and nested transactions.
A simple transaction is a single rule of the form:

I & pre,uy, ..., Uy, post.

where uy,..., 4, i a composition of updates, pre and post are queries, and the predicate
symbol in the head /i, called a transaction predicate, is a fresh predicate symbol, which does
not occur anywhere else in the prograni. pre is calied the precondition of the transaction, and
post the postcondition. It is worth noting that preconditions and postconditions play the role
of integrity constraints, and the interesting case is when the same predicate is involved both in

pre/postconditions and in updates.
As in the case of multiple updates, the parallel and sequential semantics of transactions

behave differently, aud tlerefore they are cousidered separately.

Parallel Semantics

In this case, each single update is constrained by the success of the precondition, so that they
have to be evaluated hefore the execution of every update. Moreover, pre is needed to provide
the actual tuples to be inserted/removed. Therelore, we use the code Tp,-[pre](u) of definition
3.3 instantiated on the precondition pre of the transaction.

Next, we have to take into cousideration the postcondition. In fact, the success of the
transaction, as well as the possibility of inferring facts of the transaction predicate h, is subject
to the satisfaction of the query post. However, the evaluation of post must take into account
the effect of the updates on the extensional predicates. To this purpose, we use the following
derivation-rule ry for h:

ra: h e pre, post’. {derivation-rule}

where post’ denotes the query post evaluated with respect to the program modified by replacing
every occurrence of an extensional predicate p in a rule with the predicate p’, denoting the final
extension of p after the updates. {n the case of parallel semantics, p’ can be simply defined as
follows:

P (T) ¢ Patage(s(nil), z).
Finally, the code for a transaction h « pre,uy, ..., un, post under a parallel semantics is ob-

tained as follows, by cumulating the compilation of the parallel composition of updates with the
derivation-rule ry:

Toarlle &= pre,ug, oo g, post.) = Toaefpre]{u, .o) U {ra}
As a simnple example, consider the following £DL transaction on an EDB relation
crip(name, dept)
which transfers all employees of the toy departiment to the shoe department:
tr: transf(e) « emp(a, toy), —emp(x, toy), +emp(x, shoe).

According to the proposed compilation scheme, we obtain the following code for Tper(tr):

3 COMPILING UPDATES IN DEDUCTIVE DATABASES 11

riiemppage(nil, r, d) & emp(e, d).

ro empye(s(ni), x toJ) — emp{r, toy), empggge(ntl, .,).

r3 i eMpgageds{nil), x, d) & empygge(nil, v, d), —empge(s{nil), z, d).
rel eMpspage(sinil), x, shoe) « emp(x, toy), empygge(nil, _,).

rs 1 transf(e) & emp(e, toy).

Observe that, in absence of postconditions (which is precisely the case in £DL), there is no
need to exploit the updated EBD predicates to compute the derivation rule r5. We next add a
postcondition to the transaction, by requiring that no more than 20 employees can he associated
with the shae departuient:

tr' s transf{a) e cmple, toy), —emp(e, tog), Femple, shoe), count(emp{_, shoe)) < 20.

According to the proposed compilation sclieme, we obtain for 7pe-(t7') the same code as above,
except from the derivation rule r5, which now becomnes:

rs o transf(a) & emp(e, toy), count(emp'(_, shoe)) < 20.
where emyp’ is the updated version of ey, namely:

ey (&, d) — empgage(s(nil), z, d).

Sequential Semantics

[n this case, the precoudition wmust he re-evaluated before each update in the transactions, in
order to take into cousideration the effect of the preceding updates. To this end, we adapt the
compilation of transactions with parallel updates by simply modifying how preconditions are
compiled, in a way similar to postconditions in the parallel semantics. Generalizing a notion
introduced earlier, given a precondition pre {or, analogously, a postcondition post), we denote by
pre’ the query pre evaluated with respect to the program modified by replacing every occurrence
of an extensional predicate p in a rule with the predicate p’, denoting the current extension of
p- In the case of sequential semantics, the current stage of a relation after ¢ updates can be
retrieved using s%(nil} as a stage arguinent, However, we can avoid counting how many times
a relation p has been updated by defining p' as follows:

P’(R‘-) — pstuge(fa ;1:}! —'patuye('-“'([)\ J")-

which precisely identifies the current waximum stage [for pyage. We can now consider the
instantiation T, [pre’] of the compilation of definition 3.5, thus obtaining that the insert and
delete rules are instantiated with pre/, as required.

Under the above definition of the updated predicates p’, the same derivation-rule ry for h
adopted in the case of parallel semantics can be used:

ra: h e pre, post’. {derivation-rule}

Finally, the code for a transaction h « pre, wy, ..., tm, post under a sequential semantics is
obtained as follows, by cumulating the transiation of the sequential composition of updates with
the derivation-rule ry:

Taeq (= preuy, ..oty post.) = Toe[pre’l(uy, .. ., 1wm) U {rq}-

4 COMPILING UPDATES IN DEDUCTIVE OBJECT-ORIENTED DATABASES 12

3.4 Nested transactions

[n general, transactions are nested in the sense that transaction predicates may occur in the
pre- or postconditions, although recursive calls to transaction predicates are not aliowed. This
is the case in £LDL, where moreover postconditions are not allowed. We do not explain here
in detail how nested transaction are compiled for limitation of space. However, the idea of
the compilation is the following. A set of nested, non recursive transaction predicates can be
repeatedly unfolded, until a single rule is obtained. A this stage, a transformation scheme which
closely follows that for sequential composition can be directly applied.

4 Compiling Updates in Deductive Object-Oriented Databases

In this section, we extend the proposed compilation of updates to support some basic mechanisms
of object-oriented database models (see e.g. [AHVOS]), including:

e objects and object identifiers;

e classes;

e [SA hierarchies and multiple inheritance;
e dynamic binding.

[n a way similar to [Zan39], we use non determinism and negation to support object iden-
tifiers. The combination of XY-stratified negation and the non-deterministic choice construct
allows us to model uniqieness of oid’s. In our approach, both the notions of object sameness
(identical oid’s) and object equality (identical tuples) are supported, differently from the original
proposal in [Zan89], where only equality is supported.

Informailly, classes are represented by predicates which correspond to EDB relation aug-
mented with two extra arguments denoting the stage and the oid. Therefore, we associate with
every n-ary EDB predicate p a new (n + 2)-ary predicate perass (J, 0id, p(z}) where j is a stage
and oid is the object identifier of the tuple r from relation p.

We admit 7.5 A hierarchies with multiple inheritance. An IS A relation between two classes,
say p IS4 q, is modeled by the following clause:

Gelass(Jy 00, ql&)) & Petuss (J, 00el, plr,) {18 A-rule}

which naturally states that eacl abject of the subclass is also an object of the superclass. Observe
that y denotes the set of extra attributes of the subclass, and that the oid is the same in both
classes. The following simple hierarchy of classes is used as a running example throughout this
section. Consider the following four relations:

pers(Name), stud(Name, Muajor), emp(Name, Salary), stud_work(Name, Major, Salary)

where pers, stud, emp, stud.work abbreviate respectively person, student, employee and student
worker. The hieratrchy is arranged as follows:

student ISA person
employee ISA person
student-worker ISA student, cmployee.

Pictorially:

4 COMPILING UPDATES IN DEDUCTIVE OBJECT-ORIENTED DATABASES 13

person

studend employee
student-worker

The clauses which model this simple hierarchy are:

TL PeTSeiass () 0id, pers(n)) & studepess (3, oid, stud(n, m))

Ty PerScuss (J, otd, pers{n}} & enpeiygs (4, vid, stud(n, 8))

ra s Studggss (J, otd, stud(n,) & stud_workqa,s(j, oid, stud_work(n, m, s})
(

Ta i €MPeiasy(d, old, emp(in, 8)) & stud_workq, (7, oid, stud_work{n, m, s))

The basis of our approach is to represent ohjects as instances of the most specialized class they
dynamically belong to. In otlier words each object is comnpletely specified by its most specialized
version (msv in short) which contains all attributes currently (at each stage) available for the
object. To this purpose, we introduce a relation

msv(g, oid, q(e))

which denotes that, at stage 7, the tuple @ in class ¢ is the most specialized version of object oid.
In our approach we require that the msv of each object is unique, albeit possibly different at
different stages. Such property is achieved, in our wodel, by requiring that the ISA hierarchy
is closed under intersection, i.e., for any two classes r and ¢ which are not ISA-related, the
intersection class r M ¢ is present. Cleatly, r Ny is a subclass of both r and ¢, and its attributes
are the union of the attributes of r and ¢. I[n the example, stud_work is the intersection of
classes stud and emp. In a real situation, we envisage that the system automatically completes
the schema with intersection classes whenever these are not explicitly specified. Other possible
forms of specialization, such as partition subclasses, are not considered here but they can be
easily accommodated within our framework.

Finally, the role of msuv is to activate the deduction process which populates the classes in
the whole Lierarchy. For each predicate (., the following clause is defined:

Gelass (Jy 0, q()) & msv(j, oid, q(x)). {MSV-rule}

By the above MSV-rule, the msv of each object is inserted in the appropriate class; then, by the
IS A-rules each object is propagated up in the hierarchy to the superclasses. It is worth noting
how the 7§ A-rules defining the hierarchy from one side provide the declarative specification of
subclasses, and froin the operational point of view they allow to populate the database—a dual
reading which is typical of logic prograis.

In our example the MSV-rules are:

rs: PETSclass{J, 0td, pers(n)) ¢ msv(y, oid, pers(n))

re 1 Stud,y(J, oid, stud(n, m)) « mso(f, oid, stud(n, m})

T eMPelass (J, oid, emp(n, $)) & mso(y, oid, emp(n, s))

re: stud workgyss(§, oid, stud_work(n, s,m)) + msv(j, oid, stud_work{n, s, m})

4 COMPILING UPDATES IN DEDUCTIVE OBJECT-ORIENTED DATABASES 14

We are now ready to define updates within this object-oriented framework. We consider four
operations:

o new(q(a}): creation of a new object in class ¢ with attributes a.
o insert{oid, ¢(a)}: lusertion of an existing object oid in class ¢ with attributes a.
o delete(oid, q{a)): deletion of an existing object oid from class g with attributes a.

e modi fy(oid, q(a), ¢(b)): modification of attributes ¢ of an existing object oid in class ¢
with attributes b,

As for simple updates, oid, « and b mmay contain variables. Therefore, the code that we propose
is parametric with respect to a query @ such that vars(a, b, otd) C vars(Q), which provides the
actual tuples to be inserted iu or removed from class ¢.

As consequence of the assumption that eacli object lias a unique msv, we can model updates
by simply updating the mso relation, as the M SV -rules and the IS A-rules accomplish the task
of reflecting the updates on the whole database. The next four definitions show how the msv
relation is used to the purpose of modeling the above four update operations.

Definition 4.1 Let ¢ be an EDB predicate, ¢ a tuple and J a query such that vars(a, oid) C
vars((l). The code realizing the operation new(q(n)) with respect to the query @, denoted
T(Q](new(q(a))), is the following:

msv(s(7), oid, q(a)) Q, ide(oid), mmsov(j, oid,), choice((7), (oid)).{insertion-rule}

msu(s(7), oid, X} & msoly, oid, X), ~msvga(s(F), oid, X). {copy-rule}

a

In the insertion rule, the relation #dc is the domain of object identifiers. According to this rule,
a new oid is chosen wlhich is not already in use at stage j, and associated to tuple a in class
q. The choice operator allows us to non deterministically select, at each stage, exactly one of
the unused identifiers. As usual, the copy rule passes to the next stage all msv’s of objects
which have not been canceled. Observe that the insertion rule is applicable when the database
is empty, i.e., when no fact msv(ni, .,) is present—thus reflecting the fact that the database
can be load by a sequence of new operatious.

In our example the operation new(stud{smith, physics)) generates the following insertion
rule:

msv(s(7), otd, stud(snith, phisics)) « ide(oid), mmso(y, ord,), choice{(j), (0id)).

This rule, together with the MSV-rule 14 has the effect of inserting the new object in class stud.
Finally. the 1.5 A-rule r| inserts the same object in class pers.

Definition 4.2 Let ¢ be an EDB predicate, u a tuple and @ a query such that vars(a) C
vars(@Q). The code realizing the operation insert(oid, ¢(a)) with respect to the query @, denoted
TIQ](insert{vid, ¢(a))), is coruposed by three sets of rules.

1. For each superclass v of ¢ the following rules are defined:

mse(s(7), otd, qla}} « Q, mso(F, oid, r(b)). {insertion-rule}
msvget (s(4), oid, v (b)) « Q. msv(F, oid, r(b)). {deletion-rule}

4 COMPILING UPDATES IN DEDUCTIVE OBJECT-ORIENTED DATABASES 15

2. For each class r not /S5 A-related with class ¢, the following rules are defined:

msv(s(j), oid, gNr(a, b)) & Q, msv(j, oid, r(b}). {insertion-rule}
msvge(3(7), oid, r{b}) — Q, msv(j, oid, r(b}). {deletion-rule}
3. msv(s(}), otd, X) & msv(j, oid, X}, ~msvge(s(7), 0id, X). {copy-rule}

]

The insertion rule in the first set models the specialization of the object oid from superclass
r to subciass gq. The associated deletion rules delete the previous msuv of the object oid. The
insertion rule in the second set deals with the possibility of inserting the object oid in a class q
while its current msv belongs to class r which is not /S A-related with ¢. In this case the new
msv of the object belongs to the intersection class of ¢ and r.

In our example the operation insert(oid, stud(greene, math)) generates the following inser-
tion and deletion rules:

msv(s(f), oid, stud{grecne, math)) &= mso(f, oid, pers(greene)).

msvaer (5(7}, 0id, pers(greene)) « msv(f, oid, pers(greene)).

msv{s(7), oui,bhul work{greene, math, X)) « mso(y, oid, emp(greene, X)),
msvyer(s5(7), oid, conplyreene, X))« mse(f, oid, emp(greene, X)).

Observe that, by the uniqueness of the msv velation, for each oid we have that at most one
insertion rule is applicable, and analogously for the deletion rules. In fact, if either the student
oid is not present or its current msv belongs to stud or to stud_work, then none of the above
clauses is applicable and therefore the insertion(ovid, stud{greene, math)) is not executed. As
in the case of creation, due to the rules rg and r, the object is inserted in class stud and pers
with the same identifier,

Definition 4.3 Let ¢ he an EDB predicate which is not defined by multiple inheritance, a
a tuple and Q a query such that vars(w,oid} C vars(Q). The code realizing the operation
delete(oid, g{a)) with respect to the query Q, denoted T[Q](delete{wid, q(a)}), is composed by
three sets of rules.

1. for each subclass r of ¢ (possibly r = ¢) the following rule is defined
msvger(s(7), oid, r{a, b)) & Q, msv(j, oid, r{a,b)). {deletion-rule}

2. If ¢ ISA p, i.e. ¢is not the root of the hierarchy, for each subclass r of ¢ which is either a
non-intersection class or the intersection of two subclasses of ¢ the following rule is defined:

msv(s(f), oid, p(c)) « Q, msv{y, oid, r(a,b)}. {insertion-rule}

3. For each subclass r of ¢ (possibly » = ¢) and for each class p not ISA-related with g, the
following rule is defined:

msv(s(5), oid, p(c)) « Q, msv(j, oid, pNr{a, b)), {insertion-rule}

4. msv(s(f), oid, X) « msv(j, oid, X), ~mnsvge(s(3), o1d, X). {copy-rule}

5 FINAL REMARKS 16

The deletion rule in the first set removes the msv of object oid if it belongs to a subclass of
g or to q itself. To generate the new msv of vid three cases are considered. If ¢ is the root class
of the hierarchy, the oid is removed from the database as no insertion rule is defined. If ¢ is the
specialization of a unique class p, then the new msv of oid belongs to p. In any other case, by
the hypothesis of closure under intersection of the hierarchy, the current msv of oid belongs to
the intersection of a subclass of ¢ and some relation p which is not /S A-related with ¢. In this
case the new msv of oid belongs to p.

In our example the operation delete{oid, stud(_)) translates to the following deletion and

insertion rules:

msvge (5(7), oid, stud(n,)} & mse(j, oid, stud(n, m)).

msvge (8(5), oid, stud_work(n, n, s)) « mse(j, oid, stud work(n, m, s)).
msv(s(y), oid, per a(u)) — msu(y, oid, stud(n, m)).

msu(s(f), oid, emp(n, s)) — mso(j, oid, stud_work(n, m, 5)).

Observe that two cases are possible. If the current msv of oid belongs to student, then the
new msuv of oid will end up in pers. Otherwise, if current msv of oid helongs to stud.work, then
the new msv will end up in cmp. It is worth noting that the constraint that deletion cannot be
applied to intersection classes is needed to guarantee the uniqueness of the msv. In the example,
it is not allowed to delete a stud_work directly, but it is needed to delete it both as a stud and

as an emp.

Definition 4.4 Let ¢ be an EDB predicate, « and ¢ tuples and ¢ a query such that
vars(a, ¢, oid) C vars{Q). The code realizing the operation modi fy(oid, q(a}, q(c)) with respect
to the query Q, denoted T[Q](modi fy(oid, y(a),q(c)}), is composed by two sets of rules.

1. For each subclass r of ¢ (possibly » = ¢) the following two rules are defined:

msv{s{j), oid, (¢, 1)) & Q, msv{j, oiud,r(a,b}). {insertion-rule}
msvge{s(j), oid, r{a, b)) « Q, msv(j, vid, r(a, b)). {deletion-rule}
2. msv(s(7), oid, X} & msv(y, oid, X}, ~msvge(s(5), oid, X). {copy-rule}

a

In the case of the modify operation, the clauses from the first set retrieve the current msv of the
object to be modified, from some subclass of ¢, delete the current msv and insert the modified

msv in the same class with the same oid.
As a final remark on the cowmpilation techinique, observe that the compilation of compositions
of updates and that of transactions is analogous to that presented in Section 3, and therefore

omitted.

5 Final Remarks

We proposed in this paper a compilation of updates and transactions based on their declar-
ative reconstruction in terms of XY-stratified programs. Despite its simplicity, the proposed
compilation produces code that can be efficiently executed by a machine supporting bottom-up
execution of XY-stratified prograwms, such as that of LDL++, the successor of LDL [AOTZ93].

In particular:

REFERENCES 17

o the stage arguinents can be actually implemented as a single counting variable, global to
the database, thus avoiding the overhead of the copy rules;

o the compilation technique directly support virtual updates, which can be actually executed
after the transaction conumits.

Various more general foris of transactions and other dynamic aspects of databases can be
supported on the basis of the proposed technique, and are currently under investigation. These
include recursive trausactions and active rules, both in the purely deductive and the object-
oriented case. Preliminary tuvestigations show that the proposed compilation can be adapted
to this extended framework.

References

[AHV95] S. Abitebul, R. Hull, V. Vianu. Foundation of Databases, Addison-Wesley Publishing
Company {1995)

[AOTZ93] N. Arni, K. Ong, S.Tsur, C.Zaniolo. LDL ++: A Second Generation Deductive
Databases Systeny, MCC Techuical Report, Austin, Texas (1993)

[AOZ93]) N. Arni, K. Oung, C. Zaniclo. Negution and Aggregutes in Recursive Rules: the LDL ++
Approuch, In Proceeding of Deductive and Object-Oriented Databases — Third International
Counference, Springer-Verlag, (Ed. S. Ceri, K. Tanaka, Shalom Tsur), LNCS, pagg. 204-221
(1993)

[BK93] A. J. Bonner and M. Kifer. Transaction Logic Programming, Technical Report CRSI-
270, Computer System Research lustitute, University of Toronto.(1993)

[CF94] M. Carboni, V. Foddai Aspetti dinamici delle basi di duti deduttive, Laurea Thesis.
Dipartimento di Informatica, Universita «i Pisa. 1994 (in [talian)

[CHO93] M. Baudinet, J.Chomicki, P. Wolper, Temporal Deductive Databuses, in Temporal
Databuses, eds. Tansel, Clifford, Gadia, Jajodia, Sagev, Snodgrass, Benjamin and Cum-
mings {1993)

[CGP93] L. Corciulo, F. Giannotti and D. Pedreschi. Datalog with Non-deterministic Choice
Computes NDB-PTIME. In: S. Ceri, T. Katsumi, and S. Tsur, eds., Proc. of DOOD’3,
Third Int. Conf. on Deductive and Object-oriented Databuses, Lecture Notes in Computer
Science, Vol. 760 (Springer, Berlin, 1993) 49-65.

[GPSZ91] F. Giannotti, D. Pedreschi, D. Sacca, C. Zaniolo. Non-Determinism in Deductive
Databases, ln Proceeding of Deductive and Object-Oriented Databases Second International
Conference, Springer-Verlag, (Ed. C. Delobel, M. Kifer, Y. Masunga), LNCS, pagg. 129-146
(1991)

[KN88] R. Krishmamurthy, S. Naqvi. Non-Deterministic Choice in Datalog. Proc. 3rd Int. Conf.
on Data and Knowledge Bases, Morgan Kaufinaun Pub., Los Altos (1988). pp. 416-424.

LL93] G. Lausen, B. Ludiischer. Updates by Reasoning about States, Second Compunet Work-
I] Ui
shop on Deductive Databases, Athens (1993)

REFERENCES 18

[Mon93] D. Montesi, 4 Model for Updates and Transactions in Deductive Databases. PhD. the-
sis, Dipartimento di Informatica, Universita di Pisa (1993)

IMWS86] S. Manchanda and D. 8. Warren. A logic-based Language for Database Updates. In:
J. Minker editor, Foundations of Deductive Databases and Logic Programming, (Springer-
verlag, Berlin, 1986) 363-394.

[NT88] S. Naqvi, S. Tsur. A Logic Language for Date and Knoledge Bases, Computer Science
Press, NewYork (1988)

[Zan89] C. Zaniolo. Object-Identity and Inheritunce in Deductive Databases- an evolutionary
approach, In Proceeding of Deductive and Object-Oriented Databases Conference, Kyoto
(1989)

