
Comparing Formal Tools for System Design: a Judgment Study
Alessio Ferrari

Franco Mazzanti

Davide Basile

Maurice H. ter Beek

ISTI–CNR

Pisa, Italy

firstname.lastname@isti.cnr.it

Alessandro Fantechi

University of Florence

Florence, Italy

alessandro.fantechi@unifi.it

ABSTRACT
Formal methods and tools have a long history of successful appli-

cations in the design of safety-critical railway products. However,

most of the experiences focused on the application of a single

method at once, and little work has been performed to compare the
applicability of the different available frameworks to the railway

context. As a result, companies willing to introduce formal methods

in their development process have little guidance on the selection

of tools that could fit their needs. To address this goal, this paper

presents a comparison between 9 different formal tools, namely

Atelier B, CADP, FDR4, NuSMV, ProB, Simulink, SPIN, UMC, and

UPPAAL SMC. We performed a judgment study, involving 17 ex-

perts with experience in formal methods applied to railways. In

the study, part of the experts were required to model a railway

signaling problem (a moving-block train distancing system) with

the different tools, and to provide feedback on their experience. The

information produced was then synthesized, and the results were

validated by the remaining experts. Based on the outcome of this

process, we provide a synthesis that describes when to use a certain

tool, and what are the problems that may be faced by modelers. Our

experience shows that the different tools serve different purposes,

and multiple formal methods are required to fully cover the needs

of the railway system design process.

CCS CONCEPTS
•General and reference→ Empirical studies; • Software and
its engineering → Formal methods; System modeling lan-
guages.

KEYWORDS
formal methods, formal tools, empirical software engineering, judg-

ment study, empirical formal methods, railway, moving-block sys-

tem, formal methods diversity, human aspects of formal design

ACM Reference Format:
Alessio Ferrari, Franco Mazzanti, Davide Basile, Maurice H. ter Beek, and A-

lessandro Fantechi. 2020. Comparing Formal Tools for System Design: a

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00

https://doi.org/10.1145/3377811.3380373

Judgment Study . In 42nd International Conference on Software Engineering
(ICSE ’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3377811.3380373

1 INTRODUCTION
During the last decades, formal methods and tools have been widely

applied to the development of railway systems (cf., e.g., [1, 3, 5–7, 9,

11, 12, 16, 19, 23, 28, 29, 37, 40, 42, 43, 45, 49–51, 53, 54, 59, 60, 62]).

Notable examples are the usage of the B method for developing

railway signaling systems in France (e.g., Line 14 of the Paris Métro

and the driverless Paris–Roissy Airport shuttle [1]) and that of

Simulink for formal model-based development and code genera-

tion in the development of the Metrô Rio ATP system [29]. Many

projects were carried out, often in collaboration with national rail-

way companies, for the verification of interlocking systems, which

are wayside platforms controlling signals and switches in a railway

yard [16, 18, 40, 43, 59, 60, 62].

Despite this long tradition, it cannot yet be said that a single

method or tool has emerged as holistic solution for railway devel-

opment. Thus, railway companies willing to adopt formal methods,

which are highly recommended according to the highest safety

integrity levels [25], are offered little to no guidance on the se-

lection of the appropriate tools that best fit their needs. Indeed,

most of the literature on formal methods in railways has focused

on the application of a single formal method, and few researchers

have addressed the problem of comparing multiple ones. Notably,

Mazzanti et al. [52] introduces formal methods diversity, with the

objective of replicating the same design with multiple tools, while

Haxthausen et al. [39] compares two methods for the verification of

a prototypical interlocking system and advocates further research

in comparing formal methods.

The current paper extends the literature by performing a judg-

ment study [57] involving 17 different subjects with experience in

formal methods and railways, and concerning 9 formal tools. The

study consists of two stages: an evaluation phase and an assess-

ment phase. In the evaluation phase, three of the subjects acted as

designers and were involved in an initial tool trial, in which they

were required to model the requirements of a railway problem, viz.,

a moving-block signaling system, and report about lessons learned.

Two subjects acted as analysts, and interpreted the insights pro-

vided by the designers to produce a categorization of the different

tools. In the assessment phase, the categorization was validated by

the remaining 12 subjects, who were required to provide confirma-

tion or rebuttal of the results produced based on their knowledge of

the tools. The final categorization can be used to guide the selection

https://doi.org/10.1145/3377811.3380373
https://doi.org/10.1145/3377811.3380373

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea A. Ferrari et al.

of tools in railways. The results indicate that different tools are

appropriate for different contexts, characterized by the develop-

ment phase (e.g., requirements, design), the type of task to address

(e.g., simulation, modeling, formal verification), the type of system

(e.g., single system or system-of-systems) and the typical user’s

background that facilitates the usage of the tool. Furthermore, we

also show that several issues should be considered when choosing

a certain tool, such as the presence of an intuitive GUI, the support

for concurrent systems, and the possibility to define hierarchical

designs. While a holistic formal methods-based solution for railway

development does not exist, a combination of existing tools may

provide extensive coverage of the design process.

Outline. Sect. 2 presents the background of the study. Sect. 3

presents the study design and Sect. 4 presents the results. Sect. 5

synthezises main observations, and Sect. 6 concludes the paper.

2 BACKGROUND
This section provides a brief background on formal and semi-formal

methods, useful to understand the rest of the paper, and it reports

related work on applications of formal methods to railway problems

and comparison of formal tools. Furthermore, we introduce the

context of the research project in which this work was developed.

2.1 Formal Methods
The term formal methods encompasses a series of mathematics-

based techniques for the specification, analysis and verification

of complex systems [61]. Formal methods are normally supported

by tools, oriented to facilitate the specification of systems, and

to check the correctness of the specification by means of formal

verification. Formal verification is supported by two main families

of techniques: theorem proving [13, 14, 33] and model checking [4,

20, 21]. With theorem proving the formal proof of correctness is

given by demonstrating mathematical theorems about properties

of the specified system. Model checking, on the other hand, enables

the systematic exploration of the state space of the system to verify

that the desired properties hold. Model checking can be explicit

or symbolic, depending on the encoding of the state space. Model

checking can also be probabilistic, when the specification exhibits a

probabilistic behaviour [4]. Recently, also statistical model checking

has been introduced [46], which combines simulation and statistical

methods. Some model-checking tools, e.g., CADP [36], support

also other verification techniques, such as equivalence checking,

which verifies that two specifications’ behaviors are equivalent.

Other tools, such as FDR4 [38] and ProB [48], support refinement

checking, which verifies that a certain specification is consistent

with respect to a more abstract one.

As formal verification is concerned with verifying system prop-

erties, it is useful to distinguish between properties that are mainly

qualitative (e.g., “in case of error, the train shall brake”) and those

that include quantitative aspects (e.g., “in case of error, the train

shall brake within 500 meters”), and therefore require some form

of quantitative analysis.
Semi-formal methods refer to formalisms and languages that

are not considered fully ‘formal’, for which the semantics is not

completely defined. These include the Unified Modeling Language

(UML) [55] and dialects thereof, and Simulink [24]. In the remainder

of the paper, we will use the term formal methods in a rather liberal

way, including also cases of semi-formal ones, and we will specify

that a certain tool or method is semi-formal only when appropriate.

2.2 Related Work
The railway domain is characterized by stringent safety require-

ments and a rigorous development process. The use of formal meth-

ods is highly recommended for platforms of the highest Safety

Integrity Levels (SIL-3/4) by the CENELEC EN 50128 standard for

the development of software for railway control and protection

systems [25]. Indeed, formal methods and tools are widely applied

to the development of railway systems. The extensive survey on

applications of formal methods by Woodcock et al. [63], which
includes a structured questionnaire submitted to the participants

of 56 projects, identified the transport domain, including railways,

as the one in which the largest number of projects that include

applications of formal methods have been performed.

In the past, several authors have reviewed formal modeling and

verification languages and tools commonly used in the railway

domain (cf., e.g., [1, 15, 17, 26, 27, 34]). Bjørner [15] presents a first,

non-systematic survey of formal methods applied to railway soft-

ware, and lists the main reference techniques and tools, including

the B method [2] and SPIN [41], used in about 180 papers. Fan-

techi et al. [26, 27] performs a similar review, updated with new

applications and indicating future challenges related to the increas-

ing complexity of railway systems. With a focus on the B method,

Abrial [1] and the book edited by Boulanger [17] focus on suc-

cessful industrial applications of the method, including railway

experiences at Siemens and other companies. The book edited by

Flammini [34], which covers different aspects of railway system

development, also dedicates two chapters to formal methods ap-

plications. Overall, these contributions demonstrate the interest of

researchers and practitioners in the topic. However, no comparison

between tools is performed in any of the studies. The only contri-

butions that perform some comparison between methods are those

by Mazzanti et al. [52] and Haxthausen et al. [39]. Similar to our

case, the former focuses on the replication of the same design with

different tools, while the latter compares two formal methodologies

for interlocking system development. In both cases, the results are

based on the authors’ experience. Our work makes a step forward,

by performing a judgment study involving 17 experts (5 authors,

12 external) and 9 tools, and paves the basis for further research on

formal methods comparison.

2.3 Context
The work described in this paper is one of the outputs of a larger

endeavour performed in the context of ASTRail
1
(SAtellite-based

Signalling and Automation SysTems on Railways along with Formal

Method and Moving Block Validation), a project funded by EU’s

Shift2Rail initiative
2
. This aims to increase the competitiveness

of the European railway industry, in particular concerning the

transition to the next generation of EU signaling systems, whichwill

include satellite-based train positioning, moving-block distancing,

1
astrail.eu

2
shift2rail.org

astrail.eu
shift2rail.org

Comparing Formal Tools for System Design ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

and automatic driving. Belowwe briefly present the ASTRail project

and the moving-block system that will be considered in our study.

The ASTRail project aims to introduce recent scientific results

and methodologies as well as cutting-edge technologies from other

transport sectors, in particular avionics and automotive, in the

railway sector. The project leverages formal methods and tools for

careful analyses of the resulting novel applications and solutions

in terms of safety and performance. One of ASTRail’s aims is to

define a moving-block signaling system, according to which a safe

zone around the moving train can be computed, thus optimizing

the line’s exploitation. For this solution to work, it requires the

precise absolute location, speed, and direction of each train, to be

determined by a combination of sensors: active and passive markers

along the track, as well as train-borne speedometers.

As part of the ASTRail project, we are currently surveying and

assessing the main formal methods and tools that are being used

today in research projects on railway systems, to identify the ones

that are most mature for application in the railway industry. To

this end, a survey on applications of formal methods in railways

was foreseen in ASTRail, followed by a judgment study in which

the most mature tools, according to the survey, are evaluated by

experts to provide guidance on the most appropriate tools to be

used for railway development. This paper reports the results of

the judgment study, while the results of the survey are reported in

previous work [10, 32].

3 RESEARCH DESIGN
To study the problem of comparing different formal tools, we per-

formed a judgment study [57] composed of two phases: an evalua-
tion phase and an assessment phase (see Fig. 2, discussed in detail

later). In the evaluation phase a group of three experts in formal

methods and railways was required to model a railway system (viz.,

the moving-block system) with different tools, and, for each tool,

provide a qualitative evaluation based on the experience. The data

was analyzed and synthesized by two other experts, who produced

a set of categories to characterize the different tools. The produced

categories were used as input for the assessment phase, in which

experts of each specific tool were required to validate the results.

Although other empirical methodologies exist to systematically

compare different tools (e.g., the DESMET method [44]), we argue

that a design such as the one adopted is more appropriate for an

early research phase on a complex topic as ours. Indeed, the evalu-

ation phase is used to identify themes that typically characterize

different formal tools, while the assessment phase aims to general-

ize the results produced in the contrived context of the evaluation

phase. The presented study is exploratory and interpretative in na-

ture, since it aims to find some first insights on the topic, and it is

based on the participants’ interpretation of their experience.

In the following, we first outline the research questions, then

we describe the case used during the evaluation phase, the tools

considered, the characteristics of the study participants, and the

experimental procedure adopted.

3.1 Research Questions
The research objective of this study is to compare different formal

tools for their applicability in the railway context. To address this

objective, two main research questions (RQ) are defined to drive

the study of each tool:

• RQ1:When is it appropriate to use a certain tool for the design
of railway systems? This question aims to understand for

which purpose the tool is more appropriate and which are

its main strengths.

• RQ2:What issues should be considered when using a certain
tool? By answering this question we want to highlight which

are the situations in which the tool is not appropriate and

what are the potential hurdles that one should consider when

choosing the tool.

By combining the answers to these questions, we aim to provide a

comparative synthesis to have a better understanding of the appli-

cability of the tools to the railway context.

3.2 Case for the Evaluation Phase
The case under study for the evaluation phase consists of a rail-

way system to be designed. The chosen system to be modeled is

the moving-block system. The selection is opportunistic, in that

the study was performed in the context of a project in which

the moving-block system was one of the primary objectives (see

Sect. 2.3). In the context of the project, a high-level UML model of

the moving-block system was produced by the industrial partners.

Based on such a model, a set of textual requirements was defined,

meant to be the primary source of information for the formal model-

ing activity. Here we describe the main principles and components

of the moving-block system. Fig. 1 provides an overview of the

system. There are three components: two on the train, and one

wayside system. The train carries the Location Unit (LU) and the

Onboard Unit (OBU). The wayside system is the Radio Block Centre

(RBC). The location of the train is computed by the LU by means

of sensor fusion algorithms, and sent to the OBU, which, in turn,

sends the location to the RBC. Upon reception of a location from a

train, the RBC sends a Movement Authority (MA) to the OBU. The

MA indicates the space that the train can safely travel, considering

the safety distance with the preceding train. There are also two

temporal constraints that the OBU shall consider: the location must

be updated within 5 seconds maximum; the MA must be updated

within 15 seconds maximum. Whenever one of these constraints is

violated, the OBU shall force the train to brake. The requirements

and developed models are reported in our public repository [30].

3.3 Tools
The tools were selected amongst the top ranked ones in a survey

on the application of formal methods to the railway domain, re-

ported in recent contributions [10, 32]. The survey consisted of a

systematic literature review including 114 papers, complemented

with a project review based on 8 projects and a questionnaire with

44 practitioners. We selected the tools that emerged as most used

in industrial railway cases
3
, plus two additional tools, CADP and

FDR4, chosen as representative tools for process algebras, as these

are explicitly mentioned in the railway norms [25]. Below, we list

the tools together with their version and a brief description.

3
The SCADE framework, ranked among the most mature tools, could not be included

in the study for licensing reasons. However, independent experiences conducted by

the 5th author suggest that SCADE shares with Simulink most of the expressed results.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea A. Ferrari et al.

Figure 1: Overview of the moving-block system

• Simulink (2017b)
4
: Simulink is a commercial model-based

development tool that allows the user to graphically draw

diagrams of the system modeled in the form of input-output

blocks. Blocks can be further refined in the form of hierar-

chical state machines through the Stateflow tool, included in

Simulink. Simulink supports graphical simulation of the dia-

grams, and Simulink Design Verifier, a package included in

Simulink, allows formal verification of properties. Simulink

comes with several other packages, also for code generation.

• UMC (4.8)
5
: UMC is a verification framework for the defi-

nition, exploration, analysis, and model checking of system

designs represented as a set of communicating (UML) state

machines. Its current state is that of an experimental frame-

work mostly used for teaching and research purposes. UMC

is available with a free license, and directly accessible from

an online server.

• UPPAAL SMC (4.1.4)
6
: UPPAAL SMC is a Statistical Model

Checking (SMC) extension for the UPPAAL toolset, a well-

known integrated tool environment for designing and ana-

lyzing real-time systems modeled as networks of (stochastic)

timed automata, extended with data types. It supports the

design of systems that can be modeled as a collection of non-

deterministic or probabilistic processes with finite control

structure and real-valued clocks, communicating through

channels or shared variables. Both academic and commercial

licenses are available.

• Atelier B (4.2.1)
7
: Atelier B is a theorem prover for Event B

that allows the user to specify invariant properties of an

abstract design developed according to the B methodology,

and supports the user in performing the necessary proofs

to ensure that these invariants are successfully preserved

by its successive refinements. The refinements can reach

a level very close to that of an actual executable program,

and the framework itself allows the translation of the final

implementations into C or Ada code. It is available in a free

community edition and in a maintenance edition.

4
https://www.mathworks.com/products/simulink.html

5
http://fmt.isti.cnr.it/umc/V4.8/umc.html

6
http://people.cs.aau.dk/~adavid/smc/

7
https://www.atelierb.eu/en/

• ProB (1.10.2018)
8
: ProB is an animator, constraint solver, and

model checker for the B Method
9
. It allows fully automatic

animation of B specifications, and can be used to check a

specification for a wide range of behavioral or data related er-

rors. ProB is free to use and open source; commercial support

is provided by the spin-off company Formal Mind
10
.

• NuSMV (2.6.0)
11
: NuSMV is a reimplementation and exten-

sion of the SMV symbolic model checker. NuSMV is a tool

distributed with a free open source license. Since version 2, it

combines BDD-based model checking with SAT-based model

checking (see [21] for details of these techniques).

• SPIN (6.4.9)
12
: SPIN (Simple Promela INterpreter) is an ad-

vanced and efficient on-the-fly model checker specifically

targeted for the verification of LTL properties over multi-

threaded software. The tool is actively maintained and avail-

able with a free open source license.

• CADP (2019-a)
13
: CADP (Construction and Analysis of Dis-

tributed Processes) is a verification framework for the defi-

nition and analysis of asynchronous concurrent systems. It

offers interactive simulation of the system, on-the-fly verifi-

cation of branching-time logic formulas, and code generation

for the system components. Its integration with equivalence-

checking tools enables advanced compositional verification.

It also offers quantitative analysis in the form of performance

evaluation [22]. CADP is activelymaintained and usable with

a free academic license or with a commercial license.

• FDR4 (4.2.3)14: FDR4 is a verification framework that allows

the user to verify refinement relations of programs written

in CSPM , a language that combines the operators of Hoare’s

CSP with a functional programming language, or tock CSP

(a timed version). It exploits a compositional parallel refine-

ment checking engine. FDR4 is available with a free academic

and research license or with a commercial license.

3.4 Study Participants
The study participants involved as subjects in the evaluation phase

are the authors of the paper. Altogether, their expertise covers the

areas of formal and semi-formal methods, as well as railway system

development. Five subjects were involved. The first three subjects,

referred in the following as designers, performed the modeling

activity. The other two (analysts) used the information produced to

create a synthesis. The subjects are characterized as follows.

• Semi-formal Railway Designer (1st author): more than

10 years of experience (of which 3 years in industry) with

applying semi-formal methods in railways. He used Simulink

to model the problem.

• Multi-formal Designer (2nd author): over 20 years of ex-
perience with multiple formal methods, with specific focus

8
https://www3.hhu.de/stups/prob

9
http://www.methode-b.com/en/

10
http://formalmind.com

11
http://nusmv.fbk.eu

12
http://spinroot.com/spin/whatispin.html

13
https://cadp.inria.fr

14
https://www.cs.ox.ac.uk/projects/fdr/

https://www.mathworks.com/products/simulink.html
http://fmt.isti.cnr.it/umc/V4.8/umc.html
http://people.cs.aau.dk/~adavid/smc/
 https://www.atelierb.eu/en/
https://www3.hhu.de/stups/prob
http://www.methode-b.com/en/
http://formalmind.com
http://nusmv.fbk.eu
http://spinroot.com/spin/whatispin.html
https://cadp.inria.fr
https://www.cs.ox.ac.uk/projects/fdr/

Comparing Formal Tools for System Design ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Modelling Self-
reflection

Focus
Group

Reports MinutesModels

DATA COLLECTION

Synthesis

Evaluation Table
(Preliminary)

DATA ANALYSIS

Assessment

DATA VALIDATION

Judgment

Consolidation

Evaluation
Table

Evaluation Phase Assessment Phase

Figure 2: Overview of data collection, analysis and validation

on model checking. About 7 years of experience in applica-

tions of formal methods to railway problems. He used ProB,

NuSMV, SPIN, UMC, CADP, and FDR4.

• Probabilistic Designer (3rd author): more than 5 years of

experience with probabilistic and statistical model check-

ing. About 3 years of experience in applications of formal

methods to railway problems. He used UPPAAL SMC and

Atelier B.

• Formal Methods Analyst (4th author): 15 years of experi-

ence with multiple formal methods, with specific focus on

the application of model-checking tools, among which prob-

abilistic and statistical variants, also to railway problems.

• Railway and (Semi-)formal Methods Analyst (5th au-

thor): more than 30 years of experience in formal methods

and railways, with a focus on model checking.

Tools were associated to designers based on the background

of the subjects, and their previous familiarity with the tool and

underlying formal theory.We did not want the designers to dedicate

effort to learning the theoretical foundations of the tools, but to

reflect on their specific features based on the hand-on experience.

The usage of the same problem to model (i.e., the case presented

in Sect. 3.2) can be regarded as a trigger to reflect on the tools’

capabilities in the specific railway context.

In the assessment phase, one or more external experts, referred

to as assessors, were selected for each of the tools considered. The

assessors were selected among the authors of papers on the applica-

tion of a specific tool to a railway problem, based on the results of

survey [32]. Table 1 summarizes each assessor’s expertise concern-

ing a specific tool. Two assessors were involved for a tool when

designers admitted to have less confidence on their evaluation.

3.5 Data Collection, Analysis and Validation
The different steps of the study are depicted in Fig. 2. Data collec-

tion and analysis correspond to the evaluation phase, while data

validation corresponds to the assessment phase. We now describe

the activities performed in each phase.

• Modeling: Each designer started with the same material

and independently developed the models for a subset of the

tools. Specifically, the designers were required to interpret

the graphical UMLmodel and the requirements (see Sect. 2.3),

and provide their interpretation using the languages of the

tools. Furthermore, they were required to explore the capa-

bilities offered by each tool such as, e.g., to verify certain

properties, or to observe the graphical simulation capabili-

ties of the tool. As the focus was on formal design and not

Table 1: Experience of the assessors with the tools

Tool
Assessor
ID

Years of
Experience

Industrial
Projects

Railway
Projects

Simulink 1 3 to 10 1 to 3 1 to 3

UMC 2 <1 1 to 3 1 to 3

UPPAAL SMC 3 3 to 10 3 to 10 1 to 3

NuSMV

4 3 to 10 1 to 3 1 to 3

5 3 to 10 1 to 3 1 to 3

SPIN 6 >10 1 to 3 1 to 3

Atelier B

7 >10 3 to 10 3 to 10

8 1 to 3 3 to 10 1 to 3

ProB

9 1 to 3 1 to 3 1 to 3

10 3 to 10 1 to 3 1 to 3

CADP 11 >10 3 to 10 0

FDR4 12 >10 1 to 3 1 to 3

on verification, full proof of requirements satisfaction was

not required. We asked to test the verification capabilities of

the tools by selecting some properties that the designers con-

sidered relevant. The designers did not communicate during

the development, and had about ten days to develop each

model. No incentive was given to the designers, as they were

all involved in the ASTRail EU project, and it was part of

the project’s plan to model the same problem with different

tools. The result of this activity is a set of models of the

moving-block system [30], with some variants of the models

developed when the designer considered it appropriate to

experiment with multiple designs.

• Self-reflection: Each designer was required to reflect au-

tonomously on their experience in using the assigned tool

and to produce a written report (1–2 pages) with a moti-

vated answer to the RQs for each considered tool, and with

excerpts of the models when considered appropriate.

• FocusGroup:While the previous phases did not involve any

interaction, in this phase the three designers met for a two-

stage focus group. In the first stage, the designers showcased

the tools with the support of the developed models, and

15 minutes were allowed for each tool’s presentation. In the

second stage, which lasted about three hours, each person

using a certain tool was required to think aloud by answering

the RQs. The other designers challenged the speaker in case

of disagreement or in case more clarification was considered

to be appropriate. Extensive notes were taken during the

focus group and the complete results were documented in

the minutes of the meeting. Furthermore, the designers were

required to update their reports based on the minutes.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea A. Ferrari et al.

• Synthesis: Reports and models were used as input by the

analysts to perform a qualitative analysis. Specifically, the

subjects worked in pairs and performed a thematic analy-

sis [58] of updated reports, to identify recurrent themes and

provide a table to compare the tools. Whenever some infor-

mation was considered unclear or somewhat in contrast with

their knowledge, they inspected the models or consulted the

designers for further clarification. The result of this activity

was a preliminary evaluation table, including categories of

evaluation (e.g., purpose for using the tool), and associated

values (e.g., simulation, formal verification) for each tool.

• Assessment: The evaluation table produced in the previ-

ous phase was used as input to ask each expert of a certain

tool (assessor) whether they agreed with the result produced

about the tool. Each assessor was independently contacted

via email. For each category and value specified in the table

for the tool, we asked the assessors to indicate their agree-

ment. Furthermore, we asked them to openly discuss issues

that a user should consider when deciding to use the tool

for system design in an industrial context.

• Consolidation:Whenever the assessors disagreed, we asked

them to clarify the motivation of their opinion. If the clar-

ification led to a consensus, or new themes emerged, the

categorization was consolidated in a final evaluation table.

If a consensus could not be reached, we kept all presented

opinions in the categorization, specifying those for which

the viewpoints of experts resulted different.

3.6 Threats to Validity
Threats to validity are discussed according to the categories of

validity, reliability, and generalization outlined by Leung [47].

Validity. One of the main requirements for judgment studies is

the degree of experience of the subjects involved [57]. The expertise

of the designers spans through the areas of formal methods and

railway system development. Therefore, their opinion on the study

topic is informed, and the focus group organized helped to ensure

alignment. The expertise of the designers is also fully covered by

the analysts, thus ensuring the presence of a counterpart to possi-

bly challenge the opinions produced by the designers. Finally, the

assessment phase involved subjects with strong expertise in each

tool, and this further strengthens the validity of the final results.

Threats of descriptive validity are also limited as (1) the authors of

the paper are also the experts involved in the evaluation phase, so

missing information would be identified; (2) all interactions with

assessors were performed in written form. The main residual threat

is associated to researcher bias. Although this cannot be ruled out,

we argue that the involvement of the assessors mitigates this bias.

We also could not avoid that the same designer used similar so-

lutions when using different tools, for example to avoid certain

design pitfalls after facing them with a certain tool. However, as the

focus of the study is on the tools’ features and not on the specific

problem, this aspect should have limited impact on validity. Pitfalls

associated to the design and occurring with a certain tool may not

occur with a different one using another language.

Reliability. Four main triangulation strategies aimed to ensure

the reliability of data and results: (1) the focus group allowed the

participants to discuss and update the information produced in

the reports, thus limiting potential tunnel vision of the designers;

(2) the analysis phase was performed by two analysts, to limit po-

tential subjectivity in the interpretation of the data; (3) the analysis

phase involved interaction with the designers, to ensure correct in-

terpretation and completeness of the information; (4) the validation

phase included an iteration in which the judgment provided could

be complemented with further clarifications. Besides the descrip-

tion of the study design and participants reported in the previous

sections, we also share the initial requirements, and the produced

models, to support replication [30].

Generalization. The results of the evaluation phase can be con-

sidered applicable for railway problems that are similar to the one

considered, involving onboard and wayside systems, as well as tem-

poral constraints. However, the results were consolidated based on

the opinion of experts, which were unaware of the specific context

that produced them. Therefore, we argue that the results can be

considered sufficiently general for the railway domain, notwith-

standing the inherent limitations of judgment studies due to the

absence of representative sampling [57]. The results may be ap-

plicable to other domains with comparable systems’ architectures,

and similar safety-critical constraints (e.g., automotive, aerospace).

4 RESULTS
Table 2 reports the evaluation table resulting from the assessment

phase. The first four columns are related to RQ1, while the last

column addresses RQ2. Controversial aspects for which a consensus

was not reached are indicated in italic. In relation to RQ1, four

main recurrent themes were identified, which are considered as

evaluation categories: development phase, purpose, railway system
type and facilitating user skills. For these themes, values are specified

for each tool, according to the following definitions.

• Phase:We distinguish four phases, namely requirements (R),
when the tool is considered appropriate for early prototyping

towards the definition of requirements; high-level design (H),

when the tool provides proper support for high-level system

design; detailed design (D), when the tool and its language

are considered sufficiently expressive to be applied for de-

tailed design; implementation (I), when the tool supports

code generation.

• Purpose: We distinguish the following purposes: system
modeling (SM), simulation (SIM), quantitative analysis (Q),
and formal verification (FV) bymeans ofmodel checking (MC),

equivalence checking (EC), theorem proving (TP), or refine-
ment checking (RC).

• System:We distinguish three system types: single system (S),

such as a single RBC, OBU, or LU (see Sect. 2.3); composite
system (C), such as the composition of unique instances of

single systems; system-of-systems (SoS), such as the compo-

sition of multiple instances of single systems (e.g., multiple

RBC controlling multiple trains and associated OBUs).

• Facilitating User Skills: These indicate the user’s back-

ground that can facilitate the usage of a certain tool. Mathe-

matical logic is assumed as required background for all the

Comparing Formal Tools for System Design ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 2: Evaluation table comparing the different tools

Tool Phase Purpose Syst. FacilitatingUser Skills Issues
Simulink R/D/I SM/SIM S Computer engineering commercial (T), partial parallelism (L), no architecture (L), semi-formal (L), closed format (L)

UMC R/D SM/FV-MC C UML,OOprogramming prototypical (T), closed systems (L), limited size (V), limited documentation (T), limited hierarchy (L)

UPPAAL SMC R/H SM/SIM/Q C Quantitative analysis statistical background (U), no nested temporal properties (V), maturity of theory (T), no hierarchy (L)

NuSMV H FV-MC S Symbolicmodel checking

specification language difficult tomaster (L), noGUI T), confidencewith framework (U), no parallelism (L),

limited hierarchy (L)

SPIN H/D FV-MC C Cprogramming closed systems (L), no hierarchy (L), confidence with framework (U), limited GUI (T)
Atelier B H/D/I FV-TP-RC S Proof theory not fully automatic (V), theorem-proving background (U), no temporal properties (V), limited parallelism (L)

ProB R/H FV-MC-RC S Multiple FM limited parallelism (L), not design-oriented (T)

CADP R/H/D/I SM/FV-MC-EC/Q SoS Concurrency theory limited GUI (T), toolbox (T)

FDR4 R/H SM/FV-RC SoS Process algebra no temporal properties (V)

tools considered, except Simulink, which does not strictly

require this type of competence.

It is worth mentioning that in Table 2 we report the phase, purpose,

or system for which the tool has been considered more appropriate,

which by no means implies that a tool is useless in other contexts.

Regarding RQ2, a set of unique themes, common to only a subset

of the tools, emerged from the different data sources; they are

listed as Issues in Table 2. These are partitioned into (L) language-,
(U) user-, (T) tool-, and (V) verification-related issues.

In the following, we provide a justification for the themes that

are the most characteristic of each tool
15
. To this end, we include

relevant parts of the text of the updated reports, and we highlight in

bold the theme acronym or name when the reported text justifies a

certain theme. When relevant, we report observations of assessors.

The goal is twofold: provide a short guided tour of each tool, and

at the same time provide evidence of the identified themes. Part

of the tools share some fundamental characteristics, and therefore

we discuss them in groups. Specifically, we consider five main

groups, namely tools oriented to simulation (Simulink), to UML

verification (UMC), to real-time and probabilistic aspects (UPPAAL

SMC), to refinement (Atelier B, ProB), to verification of temporal

logic properties of large single or composite systems (NuSMV, SPIN),

and to large-scale analysis of systems-of-systems (CADP, FDR4).

4.1 Modeling for Simulation
Simulink is a model-based development tool that offers graphical

modeling and provides powerful simulation capabilities as well as

code generation.

RQ1: When to use tools such as Simulink? Simulink is mostly appro-

priate in two, rather different phases of the development, namely:

(1) requirements phase (R), in which system prototypes are de-

veloped to support the definition of the requirements; (2) detailed

design phase (D), in which the system model shall be close to the

final implementation. Indeed, the tool supports simulation (SIM)

in the form of animation of graphical models, which can be useful

in the initial phases of the development process, to provide first

experiments, increase the confidence on the initial design, facilitate

interaction with the customer, and establish the initial requirements.

The simulation feature is also useful in the detailed design phase, in

that it enables debugging capabilities. Furthermore, for the detailed

design phase, the tool offers the code generation feature (I).

15
Themes that are less characteristic for a certain tool are still reported in the table.

Given its expressive and graphical language and its focus on

the implementation, Simulink is appropriate for modeling (SM) the

internal behavior of single railway components (S), when these can

be represented as state machines, as in the case of OBU, RBC, and

LU. The statecharts notation used by Simulink—and in particular

by Stateflow, the Simulink package for state machine diagrams—

is generally oriented towards users with a Computer Engineer-
ing background. Finally, the tool is appropriate when a company

wishes to have a holistic platform, covering different phases of the

development—from prototyping to code to testing—, and having

different packages for multiple purposes like, e.g., report generation,

model-based testing.

RQ2: What issues should be considered when using Simulink? Simu-

link is a commercial tool with a licensing cost varying with the

number of packages that one wishes to purchase. Therefore, the

models developed can be normally read and executed solely by

the tool—some porting capabilities are available, but the format

is not open (closed format). Hence, if a company invests in this

tool, and develops artifacts with it, it creates a dependable business

relationship with the tool vendor. Simulink supports the modeling

of different systems interacting with each other, as in the case of

the moving-block system, and can support concurrent execution

(i.e., parallelism) at the level of Simulink blocks. However, Stateflow

state machines (see Sect. 3.3) do not support parallelism: each ma-

chine executes after the preceding one, where default precedence

follows the western reading direction—left to right, top to bottom

(partial parallelism). It should be noticed that, in Simulink there

is no package for high-level architecture design (no architecture).
This problem can be addressed by creating different architectural hi-

erarchies with the Simulink subsystems, i.e., blocks that can contain

other blocks.

4.2 UML Verification
Despite of its ambiguities and lack of rigor, UML behavioral models

can be useful to communicate design skeletons in a graphical way.

Even if model-based design frameworks exist that allow evolving

these models into actual code (e.g., IBM Rational Software Archi-

tect
16
), UMC is one of the few tools that allow reasoning on these

behavioral models in terms of temporal properties.

RQ1: When to use tools such as UMC? UMC is mostly appropriate

in the requirement phase (R) of software development, when the

stakeholders are interested in improving the confidence that the

16
cf. https://ibm.co/2HrMT9L

https://ibm.co/2HrMT9L

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea A. Ferrari et al.

graphical behavioral models on which they are working actually

meet their expectations. UMC allows flexible system modeling (SM)

in textual form, and supports step-by-step simulation of the possi-

ble system evolution, to draw an abstract graph of such possible

evolution, to specify and verify branching-time temporal proper-

ties over the system behavior (FM-MC), and to observe detailed

explanations when verification fails. Thanks to its flexible set of

data structures and operations, UMC can also be used to refine a

very abstract design skeleton into a prototype relatively near to a

possible real implementation of the system (D). In UMC, a system

design is seen as a closed system constituted by a flat (limited
hierarchy) set of communicating UML state machines (i.e., the

environment should be included as part of the design). Therefore,

UMC fits well the need of verifying the behavior of interacting

asynchronous systems (C). The use of UMC does not require a high

degree of competence in formal methods, since the behavior of the

model and the properties to be verified can both be specified in an

easily accessible way. However, the object-oriented (OO) syntax of

its input language may feel familiar to someone with experience in

OO programming or UML design.

RQ2: What issues should be considered when using UMC? UMC is

developed and maintained in the context of an academic project

and mostly used for teaching and research purposes. UMC does

not have the maturity of a commercial tool, nor any significant

history of use in industrial settings (prototypical), and has limited
documentation. Another aspect to be taken into consideration is

that the OMG UML specification [55] is intended to cover only the

description of a generic state machine: the overall behavior of a

system composed by multiple machines and many aspects of the

machines themselves (e.g., the precise behavior of the event queues)

are left intentionally not completely specified in the specification.

Therefore, UMC relies on a set of design aspects that might differ

from those of other UML-based environments. Moreover, we have

seen that UMC is oriented to the description of closed systems
and it is thus not the best choice when a fragment of a system (e.g.,

a single component) has to be verified in isolation, in an out-of-

the-loop way. UMC is an on-the-fly explicit model checker that fits

very well the goal of debugging—likely wrong—system designs, but

that might cause difficulties when used for validating particularly

large—likely correct—system designs (limited size).

4.3 Modeling Real-Time and Probability
UPPAAL SMC is the only tool among the ones considered that

mainly focuses on analysis of real-time and probabilistic aspects.

RQ1: When to use tools such as UPPAAL SMC? A tool oriented to

timed/probabilistic aspects is useful when these quantitative as-

pects play an important role in the definition of the expected system

properties (Q). It is also reasonable to imagine that, given a design

specified in a functional way with other approaches, fragments of

it are modeled with tools like UPPAAL SMC for a more specific

time-oriented verification. In our specific case of the moving-block

application, several requirements are expressed under the form

of time assumptions (e.g., “OBU cycle shall be 500ms”, “the train

must stop if no MA is received for 15 s”). However, these assump-

tions are very simple and can easily be approximated without a

rigorous modeling of the flow of time (e.g., “the train must stop

if no MA is received for 20 consecutive OBU cycles”). Tools like

UPPAAL SMC would allow better understanding of the underlying

timed/probabilistic aspects, allowing the verification of properties

(when all relevant numerical values are provided) such as: “What

is the probability for the train to enter in the braking state within

10 s?”; or “If the OBU-LU communications delays are in the range

10–100ms, then what is a reasonable requirement for the response

time of LU to guarantee that the OBU cycle of 500ms is never

preempted?”

RQ2: What issues should be considered when using UPPAAL SMC?
While standard functional analysis methods are studied for decades

and for which several industry-mature tools (like model checkers)

exist, tools oriented to Statistical Model Checking (SMC) are very

recent (maturity of theory). For example, the first version of UPP-

AAL SMC was released in 2014. As for classical model checkers, cer-

tification of UPPAAL SMC for the development of critical software

is not available. Several problems, known to be decidable in discrete

systems, cease to be so in a real-time probabilistic setting. Hence,

the set of properties on which quantitative analysis can be carried

out is more limited, and in particular nesting of temporal operators

is not allowed (no nested temporal properties). Moreover, even

though the formalism is closer to state machines, a good knowledge

of the underlying mathematical formalisms used to specify both

the model and the properties, as well as to analyze the obtained

results is definitely required. Therefore, a certain specialization

of developers, engineers, and other users in real-time stochastic

model-based analysis is needed (statistical background).

4.4 Modeling for Top-Down Development
ProB and Atelier B are examples of coordinated verification en-

vironments that support the formal analysis and development of

Event B specifications. An Event B specification consists essentially

of the definition of a single state machine whose evolutions are

triggered by external signals. The focus of the methodology is to

validate the correctness of the state machine either by proving that

it is a correct refinement of another more abstract state machine as

in Atelier B, or by model checking its dynamic behavior as in ProB.

RQ1: When to use tools such as Atelier B? Atelier B is an interac-

tive theorem prover for assessing the preservation of structural

properties (in the form of invariants) on the status of an Event B

model (FV-TP). This approach is particularly useful when a sin-

gle state machine (S) has a complex internal status, of which the

possibility to guarantee the preservation of consistency is of pri-

mary importance. The language of Atelier B uses mathematical

objects (e.g., sets, existential or universal quantifiers, data types,

relations, functions). This aspect has great advantages when the

system to be modeled and verified can be naturally rendered as

a set of logical connectives. In our case, the moving-block design

under examination does not have these characteristics, since the

local machine status is essentially constituted by a ‘counter’ vari-

able (the maximum number of cycles that can be executed before

stopping the train in absence of a MA, see Sect. 2.3) whose value

should invariantly remain in the range 0 . . . 15. Nevertheless, in

the railway context, several examples can be found for which this

Comparing Formal Tools for System Design ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

approach might be useful (e.g., interlocking systems [62]). Given

that it belongs to the B method suites, Atelier B can be applied in

most of the software life-cycle (H/D/I).
The strongest point of using a theorem prover is the possibility of

verifying properties for systems with a potentially infinite number

of states. On the other side, proving a theorem is not a completely

automatic procedure and it requires several interactions with the

user, who is in charge of selecting the specific strategy to prove a

certain result. Nevertheless, Atelier B is equipped with a feature for

trying to automatically prove certain simple properties, which does

not always succeed but can often be helpful.When an Event Bmodel

is refined, Atelier B automatically generates proof obligations to be

discharged by proving them. Such proof obligations mainly consist

of proofs of preservation of invariants by refinement, and of the

correct refinement of pre- and postconditions of events (FV-RC).
Of course, another strong point of Atelier B is the integration in

the whole B method and its previous notorious applications in the

railway domain [45], with a supporting community and a company

(ClearSy
17
) that offers support to developers at various levels.

RQ2: What issues should be considered when using Atelier B? When

planning to integrate Atelier B in the development process, a first

issue to consider is its strong mathematical foundation in theorem-

proving techniques (theorem-proving background). Hence, the
cost of training developers not familiar with such techniques is

non-negligible and must be taken into account. One of the two

assessors disagrees on this point: “Usage of (interactive proof) in

Atelier B only requires very basic knowledge on what is a proof

and how to conduct a correct proof. Any hard scientist or engi-

neer should be able to use the interactive prover to discharge most

proof obligations with little training (one or two days)”. Contrary

to the case of model checking, it is not a fully automatic ver-

ification technique; it requires more human effort and expertise.

Moreover, Atelier B is not well suited when properties related to

the temporal evolution of a system are to be analyzed, e.g., through

temporal logic (no temporal properties). Indeed, in this case a

model checker like ProB may be preferable. Finally, Atelier B inher-

its from Event B some difficulties in modeling concurrent systems

and interacting components (limited parallelism). However, one

assessor mentions it is possible to overcome this problem: “The tool

provides support for [. . .] a variant of Event B with a more versatile

input language. We have conducted formal analysis of distributed

(railways) systems with this language using Atelier B”.

RQ1: When to use tools such as ProB? The main characteristic of

ProB is that it allows the user to observe, simulate, and model check

the dynamic behavior of an Event B state machine. It might fit

well the initial needs of observing the behavior of a prototypical

design (R), as well as the need of proving dynamic properties of the

possible evolutions of a more established but high-level design (H).

The strong points of ProB are its capability of verifying properties

expressed both as linear- or branching-time formulas, the possibility

to reason on both state and event properties, the availability of

multiple model-checking strategies (FV-MC), and the possibility

of verifying the consistency of an implementation with respect

to its abstract specification in terms of trace refinement (FV-RC).

17
https://www.clearsy.com

ProB is in general a very flexible tool, which allows exporting the

developed design to other tools of the Event B ecosystem, like

Atelier B. Moreover, ProB allows model checking specifications

imported by other frameworks such as SPIN or FDR4, providing

additional verification capabilities with respect to those provided

by the respective tools. This feature, together with the multiple

verification techniques supported, makes the tool suitable for users

who are skilled in multiple formal methods (Multiple FM), but

also for novices who wish to explore different techniques.

RQ2: What issues should be considered when using ProB? As for

Atelier B, an issue to consider is the limited parallelism (limited
parallelism), although the assessors disagree with this point. Fur-

thermore, one of them also observed: “ProB is a verification tool

(similar to SPIN) and not a modeling tool (like Atelier B); it needs to

work with a complementary modeling tool (like Atelier B or Rodin)”

(not design oriented).

4.5 Verification-Focused Engines
SPIN and NuSMV are two verification frameworks that have a long

history of use
18
. Their main common characteristic is their ori-

entation towards large-scale verification through model checking,

and the availability of multiple options to tackle the state-space

explosion problem [56].

RQ1: When to use tools such as NuSMV or SPIN? These frameworks

are not directly inspired by a specific abstract design methodology,

but rather focus on the efficient model checking of models encoded

in their own specific modeling language. To contrast the problem

of state-space explosion, SPIN relies on an on-the fly (distributed)

model-checking approach, while NuSMV (and its latest evolution

nuXmv) efficiently exploits symbolic (BDD-based) and SMT-based

model-checking approaches (FV-MC).
A SPIN or NuSMV specification can hardly be seen as a friendly

notation for the unambiguous sharing of a design among different

stakeholders in the requirements phase. Nevertheless, sometimes

a translation of a system design into Promela (the specification

language of SPIN) or NuSMV can be an effective way to verify

properties of the initial high-level design (H). The main difference

between the languages of SPIN and NuSMV is that the first one is

oriented towards the design of architectures based on concurrent

asynchronous processes communicating through message passing,

while the second one is more oriented towards data flow synchro-

nous architectures. Writing in Promela is close toCprogramming,
which makes SPIN suitable for detailed designs (D). According to
one of the experts, users of NuSMV benefit from knowing “the

theory of symbolic model checking, e.g., to understand how the

variable ordering effects efficiency”. Finally, while SPIN is limited to

the verification of linear-time properties (LTL), NuSMV allows the

verification of both linear- and branching-time properties (CTL).

RQ2: What issues should be considered when using NuSMV or SPIN?
When the system under investigation becomes rather complex, the

effective use of the tools requires a deep experienced knowledge of

the verification framework (confidence with framework). The
choice of the appropriate execution options may become essential

18
cf. https://bit.ly/2Wj7ocg and https://bit.ly/2BdYlAz

https://www.clearsy.com
https://bit.ly/2Wj7ocg
https://bit.ly/2BdYlAz

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea A. Ferrari et al.

for the success of the verification task. Moreover, even if the under-

lying techniques on which the tools are based are able to reduce the

impact of the state-space explosion problems, surely they cannot

be considered a silver bullet to solve them. Theorem proving or

compositional verification are alternative techniques that might

produce better results when SPIN or NuSMV fail their verification.

Finally, the fact that NuSMV takes only infinite paths into consider-

ation during verification—all finite paths are simply ignored—might

create difficulties in correctly encoding and verifying software de-

signs (specification language difficult to master). It is true that
one can add self-loops to final states and solve the problem in many

cases. However, it is not easy to add a self-loop to final states if you

do not statically know which states are final, e.g., because of the

possible presence of some unknown, complex to generate, dead-

locks. Given the focus on verification, to the quality of the user

interface is taken in minor consideration in SPIN (limited GUI),
and not considered at all by NuSMV (no GUI). However, the SPIN
assessor says: “there is a quite simple GUI, but the set of command

line switches is large, so I consider the UI really not minimal”.

4.6 Tools for Compositional Analysis
Process algebras [35] are formally defined approaches for modeling

concurrent systems, and are equipped with rigorous theories of

equivalence of behaviors that can be applied to support composi-

tional analysis. Relevant examples of process algebras are LOTOS,

at the root of the CADP framework, and CSPM , at the root of FDR4.

RQ1: When to use tools such as CADP or FDR4? These tools rely on

a specification language with a formally defined (tool-independent)

semantics. This allows the definition of specifications that can be

shared among the various stakeholders, being certain of their un-

ambiguous meaning. Hence, the software development phases in

which these tools can be applied at best are those at the early stages

of the life cycle, like formalization and verification of requirements

or high-level system design (R/H). In the case of CADP, the frame-

work provides some support also for testing and for the detailed

design and actual program code generation (D/I). CADP is also

equipped with facilities for abstracting, minimizing, and proving

equivalence of behaviors (FV-EC). While CADP allows the specifi-

cation of properties using the µ-calculus (a powerful temporal logic

subsuming both LTL and CTL), FDR4 adopts several refinement

relations for ensuring the correctness of a model with respect to

a higher level abstract specification. As observed by the assessor:

“CADP provides tools for Interactive Markov Chains, Discrete- and

Continuous-Time Markov Chains”, making it suitable for quantita-

tive analysis (Q). The assessor also pointed to the recent addition

of a probabilistic model checker to the CADP toolbox.

In our specific case, the reference model is composed of just three

components. However, one might be interested in checking the be-

havior of richer systems (e.g., with more OBUs and more interacting

RBCs). In this case, a compositional approach that allows the verifi-

cation of an asynchronous large-scale system-of-systems (SoS) by
composing it in parallel with a (minimized) abstraction of all the

other components would be very useful to avoid the problems of

state-space explosion usually arising when one has a system with

many concurrent objects under scrutiny.

RQ2: What issues should be considered when using CADP or FDR4?
System specifications need to be provided in textual format for these

tools, which may appear less intuitive or user friendly than a draw-

ing, especially when the tool has a quite minimal user interface as in

case of CADP (limited GUI). Initially the assessor disagreed with

this observation, but after some interaction he said: “few graphical

tools [exist] (simulators, Eucalyptus) which are functional but a

bit old-fashioned in their look-and-feel”. Concerning issues with

CADP the assessor also observed: “CADP is a toolbox, which can be

used for many different purposes. As a counterpart of this richness

and flexibility, beginners are disoriented, because they do not know

where to start and which tools to select” (toolbox). Finally, FDR4 is
not well suited when properties related to the temporal evolution

of a system have to be analyzed (no temporal properties).

5 DISCUSSION
From the judgment study, we can summarize the following main

take-away messages about the different tools:

• Simulink is appropriate for both early prototyping and de-

tailed design towards code generation;

• UMC is appropriate for initial prototyping, when one wants

to adopt a design based on UML state machines to facilitate

communication with different stakeholders, but also wants

formal verification capabilities;

• UPPAAL SMC is appropriate when one needs to focus on the

verification of quantitative properties involving probabilistic

and real-time aspects;

• NuSMV and SPIN are appropriate when the system, or com-

position of systems, has a rather large state space and one

wants to verify temporal logic properties;

• Atelier B and ProB are the right choice for top-down devel-

opment of mainly monolithic systems, with complementary

verification capabilities: Atelier B supports theorem proving

of invariants, while ProB supports model checking;

• CADP and FDR4 are appropriate when a clear algebraic spec-

ification is desired, and when the system under design has

the structure of a concurrent set of asynchronous communi-

cating entities (systems-of-systems).

Below, we discuss the implications of this study distinguishing

the viewpoints of practitioners and researchers.

5.1 Implications for Practice
Formal methods diversity. Based on the observation on the pri-

mary strengths of each tool, we argue that, to address all the design-

related needs of the railway process (e.g., qualitative and quantita-

tive verification, simulation, low-/high-level design), a combination

of methods and tools would be required. Guided by the outcomes of

the current research, and sill within ASTRail, the authors combined

Simulink for prototyping, UPPAAL for verification of quantitative

properties and ProB for model checking qualitative ones [9, 31].

One of the main issues encountered was the absence of interop-
erability of the tools, which led to the need to manually translate

the initial models, with the obvious issues of consistency. In prac-

tice, a company may not want to rely on multiple tools that, al-

though somewhat complementary, are not integrated within the

Comparing Formal Tools for System Design ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

same framework. In this case, it is advisable to identify which as-

pects of the development are more relevant (e.g., early prototyping

of a system-of-systems vs. detailed design of a single system), and

select the most appropriate tool to address them.

Expert diversity. To fully tackle the formal development of rail-

way systems, not only a combination of tools is required but also

the involvement of different experts—in the domain, in the design,

and in multiple types of formal verification techniques (see the

diversity of facilitating user skills and background issues in Table 2).

These aspects should be taken into account by companies willing

to introduce formal methods in their process. In practice, it may

be hard for a company to have different tool experts at hand. The

effort needed to train engineers in formal methods is not negligi-

ble as the subject is undeniably hard, and high expertise with a

tool is required to handle industrial problems. Therefore, a feasible

approach today for railway companies is to rely on external consul-

tants with an academic background on formal methods, and invest

in communication between railway experts and formal method

experts, possibly allowing them to share the same work space.

Relevance for the railway industry. The conclusion of this re-

search could appear straightforward to formal methods academics.

However, it should be noticed that this systematic study on for-

mal tools was required by the EU railway industry itself, as the

Shift2Rail initiative funding the ASTRail project involves the main

stakeholders in this domain. Although formal methods are highly

recommended by the CENELEC norms for the development of high-

integrity railway systems [25], the knowledge of formal methods,

especially at management level, is limited, and it is thus necessary

to make explicit for this specific public what existing technologies

can and cannot do for them. We argue that this study is a step for-

ward in this direction. Further steps, currently undertaken by the

authors within the 4SECURail project
19
, concern the cost-benefit

analysis of introducing formal methods in railway companies.

5.2 Implications for Research
Tool improvements: usability, learnability, maturity. While several

formal tools are available to be used for railway development, some

issues emerge when considering their real-world application, such

as the absence of constructs to model parallelism, limitations in

terms of hierarchical modeling, etc. Researchers working on specific

tools are called to refer to Table 2 and address the issues raised

in future releases of the tools. Many common issues are related

to usability, learnability and maturity aspects (e.g., limited GUI,

specific technical background, maturity of the theory, prototypical

tool). Interestingly, these are also considered among the primary

needs by railway stakeholders, according to a recent survey [8].

As most of the tools originate from academic contexts, they are

often used as testbed to demonstrate novel techniques. However,

the more a technique is advanced, the more its implementation is

prototypical, and industry-relevant aspects tend to be neglected.

A development model for tool providers could be to maintain two

versions of their tool: a research-oriented one, implementing the

recent techniques, and a practice-oriented one, with a focus on

usability, learnability, and maturity.

19
www.4securail.eu

Relevance of the research method and human aspects of formal
design. This paper presents the first design of a rigorous judgment

study in formal methods. We believe that the systematic approach

followed can be considered by other researchers dealing with simi-

lar contexts, in which a comparison between tools or methods is

required, but other research methods (e.g., controlled experiments,

surveys) are not applicable. This can happen if (1) the topic is com-

plex and only experts can participate as human subjects of the study;

(2) a hands-on experience is needed to trigger experts’ reflections;

(3) a limited number of experts is available for each method or tool;

and (4) the nature of the inquiry is exploratory, with a broad scope.

In principle, the tools’ documentation could have been used by

the designers to elicit most of the information presented. How-

ever, without a hands-on experience like the one introduced in our

method, the risk is to ignore which are the most relevant aspects
for the railway context. The adopted empirical approach enabled

the designers to reflect on those aspects (concerning phase, type of

system, etc.) that are most characteristic with respect to the other

tools. This provides a grounded and focused synthesis that could

hardly be achieved by looking solely at the documentation. Further-

more, thanks to the adopted research design, and in particular the

introduction of assessors, we also noticed that some tools’ aspects

that may be seen as objective (e.g., limited parallelism, Sect. 4.4, see

issues in italic in Table 2) appeared debatable, and different experts

gave different viewpoints. This suggests that the subjectivity of the

user plays a crucial role also in formal methods, and calls for more

empirical studies focused on human aspects of formal design.

6 CONCLUSION
This paper presents a qualitative evaluation of 9 formal tools in

the context of railway systems design by means of a judgment

study. The study involved 17 experts in formal methods applied to

railways, and produced an evaluation and comparison table (see

Table 2), in which the tools are characterized by their suitability

for a certain development context, and by the issues that users

should consider when adopting a formal tool. The paper makes an

effort to provide indications to companies interested in adopting

formal methods, and to make the information from formal methods

experts accessible also to a broader software engineering audience.

The produced categorization can also be used as a framework for

comparing other formal tools, and offers a baseline for further, more

fine-grained analysis of the characteristics of the tools. As future

work, we will complement the current analysis with a systematic

DESMET [44] evaluation over technical features, and a usability

study. This will produce a comprehensive view of the tools’ charac-

teristics, which can be referred also by tools’ developers, and can

be updated as new features or knowledge become available.

ACKNOWLEDGMENTS
This work has been partially funded by the ASTRail and 4SECURail

projects. These projects received funding from the Shift2Rail Joint

Undertaking under the European Union’s Horizon 2020 research

and innovation programme under grant agreements 777561 and

881775. The content of this paper reflects only the authors’ view

and the Shift2Rail Joint Undertaking is not responsible for any use

that may be made of the included information.

www.4securail.eu

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea A. Ferrari et al.

REFERENCES
[1] Jean-Raymond Abrial. 2007. Formal Methods: Theory Becoming Practice. Journal

of Universal Computer Science 13, 5 (2007), 619–628. https://doi.org/10.3217/jucs-

013-05-0619

[2] Jean-Raymond Abrial and Jean-Raymond Abrial. 2005. The B-book: assigning
programs to meanings. Cambridge University Press.

[3] Paolo Arcaini, Pavel Ježek, and Jan Kofroň. 2018. Modelling the Hybrid

ERTMS/ETCS Level 3 Case Study in Spin. In Proceedings of the 6th Interna-
tional Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z (ABZ
2018) (Lecture Notes in Computer Science), Michael Butler, Alexander Raschke,

Thai Son Hoang, and Klaus Reichl (Eds.), Vol. 10817. Springer, Germany, 277–291.

https://doi.org/10.1007/978-3-319-91271-4_19

[4] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking. MIT

Press.

[5] Maarten Bartholomeus, Bas Luttik, and Tim Willemse. 2018. Modeling and

Analysing ERTMS Hybrid Level 3 with the mCRL2 Toolset. In Proceedings of the
23rd International Conference on Formal Methods for Industrial Critical Systems
(FMICS 2018) (Lecture Notes in Computer Science), Falk Howar and Jir̂í Barnat

(Eds.), Vol. 11119. Springer, Germany, 98–114. https://doi.org/10.1007/978-3-030-

00244-2_7

[6] Davide Basile, Felicita Di Giandomenico, and Stefania Gnesi. 2017. Statistical

Model Checking of an Energy-Saving Cyber-Physical System in the Railway

Domain. In Proceedings of the 32nd Symposium on Applied Computing (SAC 2017).
ACM, USA, 1356–1363. https://doi.org/10.1145/3019612.3019824

[7] Davide Basile, Maurice H. ter Beek, and Vincenzo Ciancia. 2018. Statistical Model

Checking of a Moving Block Railway Signalling Scenario with Uppaal SMC. In

Proceedings of the 8th International Symposium on Leveraging Applications of For-
mal Methods, Verification and Validation — Verification (ISoLA 2018) (Lecture Notes
in Computer Science), Tiziana Margaria and Bernhard Steffen (Eds.), Vol. 11245.

Springer, Germany, 372–391. https://doi.org/10.1007/978-3-030-03421-4_24

[8] Davide Basile, Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi, Franco

Mazzanti, Andrea Piattino, Daniele Trentini, and Alessio Ferrari. 2018. On the

Industrial Uptake of Formal Methods in the Railway Domain – A Survey with

Stakeholders. In Proceedings of the 14th International Conference on Integrated
Formal Methods (iFM 2018) (Lecture Notes in Computer Science), Carlo A. Furia

and Kirsten Winter (Eds.), Vol. 11023. Springer, Germany, 20–29. https://doi.org/

10.1007/978-3-319-98938-9_2

[9] Davide Basile, Maurice H. ter Beek, Alessio Ferrari, and Axel Legay. 2019. Mod-

elling and Analysing ERTMS L3 Moving Block Railway Signalling with Simulink

and UPPAAL SMC. In Proceedings of the 24th International Conference on Formal
Methods for Industrial Critical Systems (FMICS 2019) (Lecture Notes in Computer
Science), Kim G. Larsen and Tim Willemse (Eds.), Vol. 11687. Springer, Germany.

https://doi.org/10.1007/978-3-030-27008-7_1

[10] Maurice H. ter Beek, Arne Borälv, Alessandro Fantechi, Alessio Ferrari, Stefania

Gnesi, Christer Löfving, and Franco Mazzanti. 2019. Adopting Formal Methods in

an Industrial Setting: The Railways Case. In Formal Methods – The Next 30 Years —
Proceedings of the 3rd World Congress on Formal Methods (FM’19) (Lecture Notes in
Computer Science), Maurice H. ter Beek, Annabelle McIver, and José N. Oliveira

(Eds.), Vol. 11800. Springer, Germany, 762–772. https://doi.org/10.1007/978-3-

030-30942-8_46

[11] Maurice H. ter Beek, Stefania Gnesi, and Alexander Knapp. 2018. Formal methods

for transport systems. International Journal on Software Tools for Technology
Transfer 20, 3 (2018), 237–241. https://doi.org/10.1007/s10009-018-0487-4

[12] Ulrich Berger, Phillip James, Andrew Lawrence, Markus Roggenbach, andMonika

Seisenberger. 2018. Verification of the European Rail Traffic Management System

in Real-Time Maude. Science of Computer Programming 154 (2018), 61–88. https:

//doi.org/10.1016/j.scico.2017.10.011

[13] Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program
Development - Coq’Art: The Calculus of Inductive Constructions. Springer. https:

//doi.org/10.1007/978-3-662-07964-5

[14] Wolfgang Bibel. 2013. Automated theorem proving. Springer Science & Business

Media.

[15] Dines Bjørner. 2003. New Results and Trends in Formal Techniques and Tools for

the Development of Software for Transportation Systems — A Review. In Proceed-
ings of the 4th Symposium on Formal Methods for Railway Operation and Control
Systems (FORMS 2003), Géza Tarnai and Eckehard Schnieder (Eds.). L’Harmattan,

Hungary.

[16] Mark Bosschaart, Egidio Quaglietta, Bob Janssen, and RobM. P. Goverde. 2015. Ef-

ficient formalization of railway interlocking data in RailML. Information Systems
49 (2015), 126–141. https://doi.org/10.1016/j.is.2014.11.007

[17] Jean-Louis Boulanger (Ed.). 2014. Formal Methods Applied to Industrial Complex
Systems — Implementation of the B Method. John Wiley & Sons, USA. https:

//doi.org/10.1002/9781119002727

[18] Quentin Cappart, Christophe Limbrée, Pierre Schaus, Jean Quilbeuf, Louis-Marie

Traonouez, and Axel Legay. 2017. Verification of Interlocking Systems Using

Statistical Model Checking. In Proceedings of the 18th International Symposium
on High Assurance Systems Engineering (HASE 2017). IEEE, 61–68. https://doi.

org/10.1109/HASE.2017.10

[19] Angelo Chiappini, Alessandro Cimatti, LucaMacchi, Oscar Rebollo, Marco Roveri,

Angelo Susi, Stefano Tonetta, and Berardino Vittorini. 2010. Formalization and

Validation of a subset of the European Train Control System. In Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering (ICSE 2010),
Vol. 2. ACM, USA, 109–118. https://doi.org/10.1145/1810295.1810312

[20] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. 1999. Model Checking.
MIT Press.

[21] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem

(Eds.). 2018. Handbook of Model Checking. Springer. https://doi.org/10.1007/978-

3-319-10575-8

[22] Nicolas Coste, Hubert Garavel, Holger Hermanns, Frédéric Lang, Radu Mateescu,

and Wendelin Serwe. 2010. Ten Years of Performance Evaluation for Concurrent

Systems Using CADP. In Proceedings of the 4th International Symposium on
Leveraging Applications of Formal Methods, Verification, and Validation (ISoLA
2010) (Lecture Notes in Computer Science), Tiziana Margaria and Bernhard Steffen

(Eds.), Vol. 6416. Springer, 128–142. https://doi.org/10.1007/978-3-642-16561-

0_18

[23] Alcino Cunha and Nuno Macedo. 2018. Validating the Hybrid ERTMS/ETCS

Level 3 Concept with Electrum. In Proceedings of the 6th International Conference
on Abstract State Machines, Alloy, B, TLA, VDM, and Z (ABZ 2018) (Lecture Notes in
Computer Science), Michael Butler, Alexander Raschke, Thai SonHoang, and Klaus

Reichl (Eds.), Vol. 10817. Springer, Germany, 307–321. https://doi.org/10.1007/978-

3-319-91271-4_21

[24] James B Dabney and Thomas L Harman. 2004. Mastering simulink. Pearson.
[25] European Committee for Electrotechnical Standardization. 2011. CENELEC

EN 50128 — Railway applications – Communication, signalling and processing

systems – Software for railway control and protection systems. https://standards.

globalspec.com/std/1678027/cenelec-en-50128.

[26] Alessandro Fantechi. 2013. Twenty-Five Years of Formal Methods and Railways:

What Next?. In Software Engineering and Formal Methods — Revised Selected
Papers of the SEFM 2013 Collocated Workshops: BEAT2, WS-FMDS, FM-RAIL-Bok,
MoKMaSD, and OpenCert (Lecture Notes in Computer Science), Steve Counsell and
Manuel Núñez (Eds.), Vol. 8368. Springer, Germany, 167–183. https://doi.org/10.

1007/978-3-319-05032-4_13

[27] Alessandro Fantechi, Wan Fokkink, and Angelo Morzenti. 2013. Some Trends

in Formal Methods Applications to Railway Signaling. In Formal Methods for
Industrial Critical Systems: A Survey of Applications, Stefania Gnesi and Tiziana

Margaria (Eds.). John Wiley & Sons, USA, Chapter 4, 61–84. https://doi.org/10.

1002/9781118459898.ch4

[28] Alessio Ferrari, Alessandro Fantechi, Stefania Gnesi, and Gianluca Magnani. 2013.

Model-based development and formal methods in the railway industry. IEEE
software 30, 3 (2013), 28–34. https://doi.org/10.1109/MS.2013.44

[29] Alessio Ferrari, Daniele Grasso, Gianluca Magnani, Alessandro Fantechi, and Mat-

teo Tempestini. 2013. TheMetrô Rio case study. Science of Computer Programming
78, 7 (2013), 828–842. https://doi.org/10.1016/j.scico.2012.04.003

[30] Alessio Ferrari, Franco Mazzanti, and Davide Basile. 2019. Moving-block System:
Requirements and Formal Models. https://doi.org/10.5281/zenodo.3375494

[31] Alessio Ferrari, Franco Mazzanti, and Andrea Piattino. 2019. ASTRail Deliverable
4.3, Task 4.4 - Supplementary Material. https://doi.org/10.5281/zenodo.3377823

[32] Alessio Ferrari, Maurice H. ter Beek, Franco Mazzanti, Davide Basile, Alessan-

dro Fantechi, Stefania Gnesi, Andrea Piattino, and Daniele Trentini. 2019. Sur-

vey on Formal Methods and Tools in Railways: The ASTRail Approach. In Pro-
ceedings of the 3rd International Conference on Reliability, Safety, and Security
of Railway Systems — Modelling, Analysis, Verification, and Certification (RSS-
Rail’19) (Lecture Notes in Computer Science), Simon Collart-Dutilleul, Thierry

Lecomte, and Alexander Romanovsky (Eds.), Vol. 11495. Springer, Germany,

226–241. https://doi.org/10.1007/978-3-030-18744-6_15

[33] Melvin Fitting. 2012. First-order logic and automated theorem proving. Springer
Science & Business Media.

[34] Francesco Flammini (Ed.). 2012. Railway Safety, Reliability, and Security: Tech-
nologies and Systems Engineering. IGI Global, USA. https://doi.org/10.4018/978-

1-4666-1643-1

[35] Wan Fokkink. 2000. Introduction to Process Algebra. Springer. https://doi.org/10.

1007/978-3-662-04293-9

[36] Hubert Garavel, Frédéric Lang, RaduMateescu, andWendelin Serwe. 2013. CADP

2011: a toolbox for the construction and analysis of distributed processes. Inter-
national Journal on Software Tools for Technology Transfer 15, 2 (2013), 89–107.
https://doi.org/10.1007/s10009-012-0244-z

[37] Mohamed Ghazel. 2014. Formalizing a subset of ERTMS/ETCS specifications for

verification purposes. Transportation Research Part C: Emerging Technologies 42
(2014), 60–75. https://doi.org/10.1016/j.trc.2014.02.002

[38] Thomas Gibson-Robinson, Philip J. Armstrong, Alexandre Boulgakov, and

A. William Roscoe. 2016. FDR3: a parallel refinement checker for CSP. In-
ternational Journal on Software Tools for Technology Transfer 18, 2, 149–167.

https://doi.org/10.1007/s10009-015-0377-y

[39] Anne E. Haxthausen, Hoang Nga Nguyen, and Markus Roggenbach. 2016. Com-

paring Formal Verification Approaches of Interlocking Systems. In Proceedings
of the 1st International Conference on Reliability, Safety, and Security of Railway

https://doi.org/10.3217/jucs-013-05-0619
https://doi.org/10.3217/jucs-013-05-0619
https://doi.org/10.1007/978-3-319-91271-4_19
https://doi.org/10.1007/978-3-030-00244-2_7
https://doi.org/10.1007/978-3-030-00244-2_7
https://doi.org/10.1145/3019612.3019824
https://doi.org/10.1007/978-3-030-03421-4_24
https://doi.org/10.1007/978-3-319-98938-9_2
https://doi.org/10.1007/978-3-319-98938-9_2
https://doi.org/10.1007/978-3-030-27008-7_1
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1007/s10009-018-0487-4
https://doi.org/10.1016/j.scico.2017.10.011
https://doi.org/10.1016/j.scico.2017.10.011
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1016/j.is.2014.11.007
https://doi.org/10.1002/9781119002727
https://doi.org/10.1002/9781119002727
https://doi.org/10.1109/HASE.2017.10
https://doi.org/10.1109/HASE.2017.10
https://doi.org/10.1145/1810295.1810312
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-642-16561-0_18
https://doi.org/10.1007/978-3-642-16561-0_18
https://doi.org/10.1007/978-3-319-91271-4_21
https://doi.org/10.1007/978-3-319-91271-4_21
https://standards.globalspec.com/std/1678027/cenelec-en-50128
https://standards.globalspec.com/std/1678027/cenelec-en-50128
https://doi.org/10.1007/978-3-319-05032-4_13
https://doi.org/10.1007/978-3-319-05032-4_13
https://doi.org/10.1002/9781118459898.ch4
https://doi.org/10.1002/9781118459898.ch4
https://doi.org/10.1109/MS.2013.44
https://doi.org/10.1016/j.scico.2012.04.003
https://doi.org/10.5281/zenodo.3375494
https://doi.org/10.5281/zenodo.3377823
https://doi.org/10.1007/978-3-030-18744-6_15
https://doi.org/10.4018/978-1-4666-1643-1
https://doi.org/10.4018/978-1-4666-1643-1
https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1016/j.trc.2014.02.002
https://doi.org/10.1007/s10009-015-0377-y

Comparing Formal Tools for System Design ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Systems: Modelling, Analysis, Verification, and Certification (Lecture Notes in Com-
puter Science), Thierry Lecomte, Ralf Pinger, and Alexander B. Romanovsky (Eds.),

Vol. 9707. Springer, Germany, 160–177. https://doi.org/10.1007/978-3-319-33951-

1_12

[40] Anne E. Haxthausen, Jan Peleska, and Sebastian Kinder. 2011. A formal approach

for the construction and verification of railway control systems. Formal Aspects
of Computing 23, 2 (2011), 191–219. https://doi.org/10.1007/s00165-009-0143-6

[41] Gerard J Holzmann. 2004. The SPIN model checker: Primer and reference manual.
Vol. 1003. Addison-Wesley Reading.

[42] Alexei Iliasov, Dominic Taylor, Linas Laibinis, and Alexander B. Romanovsky.

2018. Formal Verification of Signalling Programs with SafeCap. In Proceedings
of the 37th International Conference on Computer Safety, Reliability, and Security
(SAFECOMP 2018) (Lecture Notes in Computer Science), Barbara Gallina, Amund

Skavhaug, and Friedemann Bitsch (Eds.), Vol. 11093. Springer, Germany, 91–106.

https://doi.org/10.1007/978-3-319-99130-6_7

[43] Phillip James, Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve

Schneider, and Helen Treharne. 2014. Techniques for modelling and verifying

railway interlockings. International Journal on Software Tools for Technology
Transfer 16 (2014), 685–711. https://doi.org/10.1007/s10009-014-0304-7

[44] Barbara Kitchenham, Stephen Linkman, and David Law. 1997. DESMET: a

methodology for evaluating software engineering methods and tools. Computing
& Control Engineering Journal 8, 3 (1997), 120–126. https://doi.org/10.1049/cce:

19970304

[45] Thierry Lecomte, David Déharbe, Étienne Prun, and Erwan Mottin. 2017. Apply-

ing a Formal Method in Industry: A 25-Year Trajectory. In Proceedings of the 20th
Brazilian Symposium on Formal Methods: Foundations and Applications (SBMF
2017) (Lecture Notes in Computer Science), Simone Cavalheiro and José Fiadeiro

(Eds.), Vol. 10623. Springer, Germany, 70–87. https://doi.org/10.1007/978-3-319-

70848-5_6

[46] Axel Legay, Benoît Delahaye, and Saddek Bensalem. 2010. Statistical Model

Checking: An overview. In Proceedings of the 1st International Conference on
Runtime Verification (RV 2010) (Lecture Notes in Computer Science), Howard Bar-

ringer, Ylies Falcone, Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon Pace,

Grigore Roşu, Oleg Sokolsky, and Nikolai Tillmann (Eds.), Vol. 6418. Springer,

122–135. https://doi.org/10.1007/978-3-642-16612-9_11

[47] Lawrence Leung. 2015. Validity, reliability, and generalizability in qualitative

research. Journal of family medicine and primary care 4, 3 (2015), 324. https:

//doi.org/10.4103/2249-4863.161306

[48] Michael Leuschel and Michael J. Butler. 2003. ProB: A Model Checker for B.

In Proceedings of the 12th International Symposium on Formal Methods (FME
2003) (Lecture Notes in Computer Science), Keijiro Araki, Stefania Gnesi, and Dino

Mandrioli (Eds.), Vol. 2805. Springer, 855–874. https://doi.org/0.1007/978-3-540-

45236-2_46

[49] Michael Leuschel, Jérôme Falampin, Fabian Fritz, and Daniel Plagge. 2011. Auto-

mated property verification for large scale B models with ProB. Formal Aspects
of Computing 23, 6 (2011), 683–709. https://doi.org/10.1007/s00165-010-0172-1

[50] Amel Mammar, Marc Frappier, Steve J. Tueno Fotso, and Régine Laleau. 2018. An

Event-B Model of the Hybrid ERTMS/ETCS Level 3 Standard. In Proceedings of
the 6th International Conference on Abstract State Machines, Alloy, B, TLA, VDM,
and Z (ABZ 2018) (Lecture Notes in Computer Science), Michael Butler, Alexander

Raschke, Thai Son Hoang, and Klaus Reichl (Eds.), Vol. 10817. Springer, Germany,

353–366. https://doi.org/10.1007/978-3-319-91271-4_24

[51] Franco Mazzanti and Alessio Ferrari. 2018. Ten Diverse Formal Models for a

CBTC Automatic Train Supervision System. In Proceedings of the 3rd Workshop

on Models for Formal Analysis of Real Systems and the 6th International Workshop
on Verification and Program Transformation (MARS/VPT 2018) (Electronic Proceed-
ings in Theoretical Computer Science), John P. Gallagher, Rob van Glabbeek, and

Wendelin Serwe (Eds.), Vol. 268. 104–149. https://doi.org/10.4204/EPTCS.268.4

[52] Franco Mazzanti, Alessio Ferrari, and Giorgio O. Spagnolo. 2018. Towards formal

methods diversity in railways: an experience report with seven frameworks.

International Journal on Software Tools for Technology Transfer 20, 3 (2018), 263–
288. https://doi.org/10.1007/s10009-018-0488-3

[53] Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve Schneider, and

Helen Treharne. 2013. Defining and Model Checking Abstractions of Complex

RailwayModels Using CSP∥B. InHardware and Software: Verification and Testing—
Revised Selected Papers of the 8th International Haifa Verification Conference (HVC
2012) (Lecture Notes in Computer Science), Armin Biere, Amir Nahir, and Tanja

Vos (Eds.), Vol. 7857. Springer, Germany, 193–208. https://doi.org/10.1007/978-3-

642-39611-3_20

[54] Roberto Nardone, Ugo Gentile, Massimo Benerecetti, Adriano Peron, Valeria

Vittorini, StefanoMarrone, and NicolaMazzocca. 2016. Modeling Railway Control

Systems in Promela. In Formal Techniques for Safety-Critical Systems — Revised
Selected Papers of the 4th International Workshop on Formal Techniques for Safety-
Critical Systems (FTSCS 2015) (Communications in Computer and Information
Science), Cyrille Artho and Peter C. Ölveczky (Eds.), Vol. 596. Springer, Germany,

121–136. https://doi.org/10.1007/978-3-319-29510-7_7

[55] Object Management Group (OMG). 2017. Unified Modeling Language, Version

2.5.1. https://www.omg.org/spec/UML/About-UML/.

[56] Radek Pelánek. 2009. Fighting State Space Explosion: Review and Evaluation. In

Proceedings of the 13th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS 2008) (Lecture Notes in Computer Science), Darren Cofer

and Alessandro Fantechi (Eds.), Vol. 5596. Springer, 37–52. https://doi.org/10.

1007/978-3-642-03240-0_7

[57] Klaas-Jan Stol and Brian Fitzgerald. 2018. The ABC of software engineering

research. ACM Transactions on Software Engineering and Methodology 27, 3

(2018), 11. https://doi.org/10.1145/3241743

[58] Mojtaba Vaismoradi, Hannele Turunen, and Terese Bondas. 2013. Content

analysis and thematic analysis: Implications for conducting a qualitative de-

scriptive study. Nursing & health sciences 15, 3 (2013), 398–405. https:

//doi.org/10.1111/nhs.12048

[59] SomsakVanit-Anunchai. 2018. Modelling and simulating a Thai railway signalling

system using Coloured Petri Nets. International Journal on Software Tools for
Technology Transfer 20, 3 (2018), 243–262. https://doi.org/10.1007/s10009-018-

0482-9

[60] Linh Hong Vu, Anne E. Haxthausen, and Jan Peleska. 2017. Formal modelling

and verification of interlocking systems featuring sequential release. Science of
Computer Programming 133 (2017), 91–115. https://doi.org/10.1016/j.scico.2016.

05.010

[61] Jeannette M. Wing. 1990. A specifier’s introduction to formal methods. IEEE
Computer 23, 9 (1990), 8–22. https://doi.org/10.1109/2.58215

[62] KirstenWinter and Neil J. Robinson. 2003. Modelling Large Railway Interlockings

and Model Checking Small Ones. In Proceedings of the 26th Australasian Computer
Science Conference (ACSC 2003) (Conferences in Research and Practice in Infor-
mation Technology), Michael J. Oudshoorn (Ed.), Vol. 16. Australian Computer

Society, Australia, 309–316. http://crpit.com/confpapers/CRPITV16Winter.pdf.

[63] JimWoodcock, Peter G. Larsen, Juan Bicarregui, and John Fitzgerald. 2009. Formal

methods: Practice and experience. Comput. Surveys 41, 4 (2009), 19:1–19:36.

https://doi.org/10.1145/1592434.1592436

https://doi.org/10.1007/978-3-319-33951-1_12
https://doi.org/10.1007/978-3-319-33951-1_12
https://doi.org/10.1007/s00165-009-0143-6
https://doi.org/10.1007/978-3-319-99130-6_7
https://doi.org/10.1007/s10009-014-0304-7
https://doi.org/10.1049/cce:19970304
https://doi.org/10.1049/cce:19970304
https://doi.org/10.1007/978-3-319-70848-5_6
https://doi.org/10.1007/978-3-319-70848-5_6
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.4103/2249-4863.161306
https://doi.org/10.4103/2249-4863.161306
https://doi.org/0.1007/978-3-540-45236-2_46
https://doi.org/0.1007/978-3-540-45236-2_46
https://doi.org/10.1007/s00165-010-0172-1
https://doi.org/10.1007/978-3-319-91271-4_24
https://doi.org/10.4204/EPTCS.268.4
https://doi.org/10.1007/s10009-018-0488-3
https://doi.org/10.1007/978-3-642-39611-3_20
https://doi.org/10.1007/978-3-642-39611-3_20
https://doi.org/10.1007/978-3-319-29510-7_7
https://www.omg.org/spec/UML/About-UML/
https://doi.org/10.1007/978-3-642-03240-0_7
https://doi.org/10.1007/978-3-642-03240-0_7
https://doi.org/10.1145/3241743
https://doi.org/10.1111/nhs.12048
https://doi.org/10.1111/nhs.12048
https://doi.org/10.1007/s10009-018-0482-9
https://doi.org/10.1007/s10009-018-0482-9
https://doi.org/10.1016/j.scico.2016.05.010
https://doi.org/10.1016/j.scico.2016.05.010
https://doi.org/10.1109/2.58215
http://crpit.com/confpapers/CRPITV16Winter.pdf
https://doi.org/10.1145/1592434.1592436

	Abstract
	1 Introduction
	2 Background
	2.1 Formal Methods
	2.2 Related Work
	2.3 Context

	3 Research Design
	3.1 Research Questions
	3.2 Case for the Evaluation Phase
	3.3 Tools
	3.4 Study Participants
	3.5 Data Collection, Analysis and Validation
	3.6 Threats to Validity

	4 Results
	4.1 Modeling for Simulation
	4.2 UML Verification
	4.3 Modeling Real-Time and Probability
	4.4 Modeling for Top-Down Development
	4.5 Verification-Focused Engines
	4.6 Tools for Compositional Analysis

	5 Discussion
	5.1 Implications for Practice
	5.2 Implications for Research

	6 Conclusion
	Acknowledgments
	References

