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Abstract

Consider the homogeneous Boltzmann equation for Maxwellian molecules.

We provide a new representation for its solution in the form of expectation

of a random probability measure M. We also prove that the Fourier trans-

form of M is a conditional characteristic function of a sum of independent

random variables, given a suitable σ-algebra. These facts are then used to

prove a CLT for Maxwellian molecules, that is the statement of a necessary

and sufficient condition for the weak convergence of the solution of the equa-

tion. Such a condition reduces to the finiteness of the second moment of the

initial distribution µ0. As a further application, we give a refinement of some

inequalities, due to Elmroth, concerning the evolution of the moments of the

solution.
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1 Introduction

The homogeneous Boltzmann equation in the kinetic theory of dilute gases

governs the time evolution of a probability density function f(·, t), which
describes, in good approximation, the frequency

∫

D

f(v, t)dv ≈ the number of molecules with velocity in D at time t

the total number of molecules

for every D in B(R3), the Borel class in R3. The present treatment is

concerned with a spatially homogeneous gas composed of a very large number

of like particles, moving according to the laws of classical mechanics and

colliding in pairs. When there is no outside force the equation is

∂

∂t
f(v, t) =

∫

R3

∫

S2

[f(v∗, t)f(w∗, t) − f(v, t)f(w, t)]×

× B

(

|w − v|, w − v

|w − v| · ω
)

uS2(dω)dw (1)

with (v, t) in R3×(0,+∞). In the above formula, uS2 stands for the uniform

probability measure on the unit sphere S2, embedded in R3. Moreover, v∗

and w∗ denote the post-collisional velocities, which must obey the conser-

vation of momentum and kinetic energy, that is

v +w = v∗ +w∗ and |v|2 + |w|2 = |v∗|2 + |w∗|2 .

All such pairs of vectors can be parametrized by unit vectors ω in S2 and

the specific parametrization used throughout this paper – the so-called ω-

representation – is given by

v∗ = v + [(w − v) · ω] ω
w∗ = w − [(w − v) · ω] ω

(2)

where · denotes the standard scalar product. The function B is the so-called

collision kernel and describes the collision process between the molecules at

a microscopic level. A complete description of the Boltzmann model can be

found in [9]. See also the more recent [34] and references therein.
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All the results in this paper are obtained under two conditions on B. The

former is that we are considering Maxwellian molecules, meaning that the

kernel B does not depend on |w − v|, according to the law

B

(

|w − v|, w − v

|w − v| · ω
)

= b

(

w − v

|w − v| · ω
)

. (3)

The so-called angular collision kernel b : (−1, 1) → [0,+∞) is a measurable

function satisfying the symmetry assumption

b(x) = b(
√

1− x2)
|x|√
1− x2

= b(−x) (4)

for all x in (−1, 1), which reflects the indistinguishability of the two colliding

particles. The latter condition is usually referred to as the Grad angular

cutoff, according to which b is required to be integrable. Throughout this

paper, the Grad angular cutoff assumption is taken in the form

1
∫

0

b(x)dx = 1 . (5)

Maxwell [25] deduced (3) by considering the specific physical interaction

originated by a repulsive force proportional to r−5, r being the distance of

the two colliding particles. In this very particular situation, the kernel b

is made explicit, but its analytical form is overcomplicated and possesses

a non-integrable singularity. A few details are contained in Section 5 of

Chapter II of [9]. On the other hand, the hypotheses of the Grad angular

cutoff – though it allows a wide generality for the function b – excludes the

more meaningful form studied by Maxwell and, for this reason, the fictitious

model which is derived is often called pseudo-Maxwellian. Nevertheless, the

mathematical theory of pseudo-Maxwellian molecules is quite interesting

and reveals a very strong link with probability theory, as firstly pointed out

by McKean [26, 27].
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Now, let us consider some analytical properties of (1), under the as-

sumptions (3)-(5). Given a probability density function f0 on R3 as ini-

tial datum, the resulting Cauchy problem admits a unique solution f(·, t)
for each t ≥ 0, as proved in [28]. Each f(·, t) is then a probability den-

sity function on R3 for every t ≥ 0 and the mapping t 7→ f(·, t) is in

C([0,+∞),L1(R3)) ∩ C1((0,+∞),L1(R3)) and f(·, 0) = f0(·). To allow the

initial datum to be as general as possible, the classical framework can be

extended to a weak formulation based on probability measures. Maintaining

the validity of (3)-(5), the weak form of equation (1) reads

d

dt

∫

R3

φ(v)µ(dv, t) =

∫

R3

∫

R3

∫

S2

φ(v∗)b

(

w − v

|w − v| · ω
)

×

× uS2(dω)µ(dv, t)µ(dw, t)−
∫

R3

φ(v)µ(dv, t) . (6)

The function µ on B(R3)× [0,+∞) is defined to be a measure solution when

i) the map t 7→ µ(·, t) is in C([0,+∞),PTV(R3))∩C1((0,+∞),PTV(R3))

ii) µ satisfies (6) for every t > 0 and every test function φ in Cb(R3), the

space of bounded and continuous functions on R3.

Here, PTV(R3) is the space of all probability measures on B(R3) endowed

with the topology generated by the total variation distance dTV, which is

defined for any pair (α, β) of probability measures by

dTV(α(·);β(·)) := sup
B∈B(R3)

|α(B)− β(B)| .

Under hypotheses (3)-(5), if a probability measure µ0 on B(R3) is given

as initial datum, then there exists a unique measure solution µ such that

µ(·, 0) = µ0(·). This extension is discussed in [31] but, for reader’s con-

venience, some details are included in Subsection 2.3 of the present paper.

Throughout, the term solution of (1) will always mean measure solution, as

defined above.
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This paper proves the validity of a new representation for solutions of

(1), in terms of random probability measures. The meaning of this locution

is specified in Chapter 12 of [24]. The construction of such a representation

has a long story, started with a work of Wild [35] and then elaborated

by McKean [26, 27], who gave the original Wild formula a probabilistic

meaning. A recent development of this kind of research is contained in

[1, 2, 5, 6, 7, 12, 14, 15, 21, 22]. An outstanding motivation at the basis

of these works is the study of the convergence to equilibrium, as t goes

to infinity, of solutions of Boltzmann-like equations. In these papers, a

fundamental role is played by the so-called Wild-McKean sum

µ(·, t) =
+∞
∑

n=1

e−t(1− e−t)n−1
∑

tn∈T(n)
pn(tn)Qtn [µ0](·) (7)

which will be explained completely in Subsection 2.2. Now, suffice it to recall

that every Qtn [µ0] is a probability measure obtained as a particular n-fold

convolution of µ0 with itself, whose definition involves also the kernel b. In

the one-dimensional case (Kac’s model), the involvement of b does not alter

the nature of Qtn [µ0] as probability law of a sum of independent random

variables. On the contrary, in the three-dimensional case the presence of b

in each convolution represents an obstacle for a direct interpretation of the

aforementioned type. Since the opportunity of dealing with sums of random

variables has proved very fruitful in the study of the Kac model (see [14, 15]),

then one can try to go round to the aforesaid obstacle in order to recover a

new entity interpretable as distribution of a sum. This is the real motivation

for the present work, whose main results we are going to state.

The first consists in the announced probabilistic representation in terms

of a random probability measure, i.e. a random element taking values in

the space P(R3) of all probabilities on B(R3) endowed with the topology

of weak convergence.

Theorem 1.1. Assume that (3)-(5) are in force and that µ is the solution
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of (1) with initial datum µ0. Then, there exist a measurable space (Ω,F ),

a family of probability measures (Pt)t≥0 on (Ω,F ) and a random probability

measure M : Ω → P(R3) such that

i) equality

µ(D, t) = Et [M(D)] (8)

holds true for every t ≥ 0 and every D ∈ B(R3), where Et stands for

the expectation with respect to Pt.

ii) M depends on µ0 but not on b.

A precise specification for (Ω,F ) and (Pt)t≥0 is given in the course of

the proof of this theorem, in Subsection 2.5.

The presentation of the second main result, which contains a representa-

tion for M, requires some preliminaries. Define the family
(

(Ω,F ,Pt)
)

t≥0

of probability spaces, mentioned in Theorem 1.1, in such a way that they are

sufficiently large to support the following random elements. First, a random

number ν taking values in N := {1, 2, . . . }. Second, for every n in N, an

array (π1,n, . . . , πn,n) of random numbers πj,n which take values in [−1, 1].

Third, for every n in N, an array (O1,n, . . . ,On,n) of random matrices Oj,n

taking values in SO(3), the Lie group of orthogonal matrices with positive

determinant. Fourth, a sequence (Xj)j≥1 of independent and identically

distributed (iid) random vectors in R3. The laws of all the aforesaid random

elements will be specified in Subsection 2.5. The last objects to be defined

are elementary mathematical entities of different nature. For each u in S2,

let B(u) be an element of SO(3) whose third column coincides with u. Then,

after setting e3 := t(0, 0, 1), for every u in S2, n in N and j in {1, . . . , n},
put

ψj,n(u) := B(u)Oj,ne3 . (9)

Finally, if ζ̂ denotes the Fourier transform of the probability measure ζ on

B(R3), namely ζ̂(ξ) :=
∫

R3 e
iξ·xζ(dx) for every ξ in R3, the representation

6



theorem for M can be stated as follows.

Theorem 1.2. Under the same hypotheses of Theorem 1.1, one can con-

struct two σ-algebras G and H such that :

i) G $ H $ F .

ii) M, ν and the arrays (π1,n, . . . , πn,n) are G -measurable for every n.

iii) The arrays (O1,n, . . . ,On,n) are H -measurable for every n but not

G -measurable for n ≥ 2.

iv) The sequence (Xj)j≥1 is independent of H .

v) For u in S2 and

S(u) :=
ν
∑

j=1

πj,νψj,ν(u) ·Xj (10)

there is a version of

Et

[

eiρS(u) | H

]

(11)

which, as a function of ρ ∈ R, is the characteristic function of a

(finite) sum of independent random numbers.

vi) Equality

M̂(ξ) = Et

[

eiρS(u) | G

]

= Et

[

Et

[

eiρS(u) | H

]

| G

]

(12)

holds for every fixed ξ 6= 0, with ρ := |ξ|, u := ξ/|ξ|.

Finally, the terms of (12) are independent of the choice of matrix B(u).

It is worth noting that v)-vi) answer the problem of recovering an inter-

pretation of M in terms of sums of independent random variables.

The rest of the paper is organized as follows. Section 2 is concerned

with the proof of Theorems 1.1 and 1.2, along with a precise explanation of

the probabilistic apparatus introduced in the present section. Sections 3-4
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contain some relevant consequences of these main results. In particular, in

Section 3 it is shown that the condition

∫

R3

|x|2µ0(dx) < +∞ (13)

is necessary and sufficient in order that µ(·, t) be weakly convergent, as t

goes to infinity. Finally, Section 4 includes an improvement of some classical

inequalities due to Elmroth on the evolution of the moments of µ(·, t).
Theorems 1.1 and 1.2 can be used also to obtain bounds for the to-

tal variation distance between µ(·, t) and its equilibrium, under additional

conditions on µ0. This problem is one of the most important and math-

ematically challenging in the entire theory of the Boltzmann equation. A

solution in the case of spatially homogeneous Maxwellian molecules, based

on representation (8), has been presented in [12] and will form the subject

of future work which, because of its complexity, cannot be incorporated in

the present one due to lack of space.

2 Proof of the main results

This section, which is the core of the paper, is split into various subsections.

The first recalls some tools, due to McKean, which will come in useful in

the course of the work, such as the definition of McKean’s tree. Subsection

2.2 contains the definition of the Q operator, along with some extensions

which are needed to explain (7). Existence and uniqueness is discussed

in Subsection 2.3. Then, in Subsection 2.4, some formulas related to the

Q operator are manipulated to justify the definition of a new operator, C,
which sends a pair of probability measures (pms, from now on) onto another

pm. Finally, the probabilistic objects introduced in Section 1 are specified

in Subsection 2.5 and combined, successively, to get the proofs of Theorems

1.1 and 1.2, which are provided in Subsections 2.6 and 2.7, respectively.
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2.1 McKean’s trees

For every n in N, a McKean tree tn with n leaves is a binary tree, whose

points are either nodes or leaves. First, the only tree t1 with a single leaf

reduces to one point. For n ≥ 2, every tree tn possesses exactly n points with

no outward connection, the leaves, and exactly n−1 points, each generating

two “children”, a left and a right one, respectively. The top node, the only

which is not generated as a child, is called “root”. From now on, the leaves

will be numbered according to a natural left-to-right order. The number

of generations separating a leaf from the root is called depth and δj(tn)

indicates the depth of the j-th leaf of tn. Finally, let T(n) denote the (finite)

set of all McKean’s trees with n leaves and T := Xn≥1T(n). In this notation,

one can define the following operations on trees.

a) Split-up, when one erases the root of a tree tn to obtain two trees,

a left tree t
l
n and a right tree t

r
n, respectively. Henceforth, nl (nr,

respectively) will denote the number of leaves of tln (trn, respectively).

b) Recombination, when two trees tn and tm are combined so that they

become the left tree and the right tree, respectively, of a new tree

tn ⊕ tm of n+m leaves.

c) Germination, which consists in appending the two-leaved tree t2 to a

specific leave (say k) of tn. Let tn,k indicate the resulting tree.

For a given tree tn in T(n), the set of all its germinations constitutes a

subset G(tn) of T(n+1), while P(tn) denotes the subset of T(n−1) composed

of those trees which can produce tn by germination.

An important element to understand (7) is the “weight” pn(tn) associated

with each tree tn. After setting p1(t1) := 1, the definition of pn(tn) is given

inductively by putting

pn(tn) :=
1

n− 1
pnl

(tln)pnr(t
r
n) (14)

9



for every n ≥ 2. Then, one can note straightforwardly that the weights

{pn(tn)}tn∈T(n) form a probability distribution on T(n), in the sense that

they all belong to [0, 1] and

∑

tn∈T(n)
pn(tn) = 1

for every n in N.

2.2 The Q operator and its extension

Before introducing new definitions, it is worth recalling a few elementary

facts about the Boltzmann equation. First, for every u in S2, (4)-(5) imply

that
∫

S2

b(u · ω)uS2(dω) = 1 . (15)

Second, for every ω in S2, the map Tω : (v,w) 7→ (v∗,w∗), defined in

accordance with (2), is a linear diffeomorphism of R6 into itself. Linearity

follows by inspection, while, for the rest, it is enough to notice that T2
ω ≡

IdR6 , whence
∣

∣Jac [Tω]
∣

∣ = 1. Finally, after a direct verification, |w∗−v∗| =
|w − v| and (w∗ − v∗) · ω = −(w − v) · ω.

At this stage, for every pair (p, q) of probability density functions (pdfs,

from now on) on R3, define the Q operator according to

Q[p, q](v) :=

∫

R3

∫

S2

p(v∗)q(w∗)b

(

w − v

|w − v| · ω
)

uS2(dω)dw . (16)

Its main properties are collected in

Proposition 2.1. Let (4)-(5) be valid. Then, for any pair (p, q) of pdfs on

R3, Q[p, q](·) defines a new pdf on R3. Moreover, Q[p, q] = Q[q, p] and, for

every bounded and continuous φ, one has
∫

R3

φ(v)Q[p, q](v)dv

=

∫

R3

∫

R3

∫

S2

φ(v∗)p(v)q(w)b

(

w − v

|w − v| · ω
)

uS2(dω)dvdw . (17)
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Lastly, after setting fR(v) := Rv, where R is any orthogonal 3× 3 matrix,

equality

Q[p ◦ f−1
R , q ◦ f−1

R ](v) = Q[p, q] ◦ f−1
R (v) (18)

holds true for almost every v in R3.

This statement is classic in the theory of the Boltzmann equation and

its proof, here omitted, is contained in any specific text on this subject. See

[9, 34].

The analysis of (16) can be considerably simplified by means of a formula

due to Bobylev, concerning the use of the Fourier transform. See [4, 11, 31]

for details. Since this subject is usually reported starting from a different

parametrization of the post-collisional velocities – a choice that influences

the form of the ensuing equations – the Bobylev formula is stated and proved

ex novo, using the ω-representation, in

Proposition 2.2 (Bobylev). Let assumptions (4)-(5) be in force. Then,

given any pair (p, q) of pdfs on R3, equality

Q̂[p, q](ξ) =

∫

S2

p̂(ξ − (ξ · ω)ω)q̂((ξ · ω)ω) b
(

ξ

|ξ| · ω
)

uS2(dω) (19)

holds true for every ξ 6= 0.

Proof : Fix any ξ in R3 \ {0} and apply (17) with φ(v) = eiv·ξ to obtain

Q̂[p, q](ξ) =

∫

R3

∫

R3

∫

S2

eiv∗·ξp(v)q(w) b

(

w − v

|w − v| · ω
)

uS2(dω)dvdw . (20)

Then, recall the definition of v∗ to write

exp{iv∗ · ξ} = exp{iv · ξ} · exp{i[(w − v) · ω] · [ω · ξ]}

= exp{iv · ξ} · exp
{

i|w − v| · |ξ| ·
[

(w − v)

|w − v| · ω
]

·
[

ω · ξ|ξ|

]}

.

At this stage, take into account the integral

∫

S2

eiv∗·ξ b

(

w − v

|w − v| · ω
)

uS2(dω)

11



and change the variable according to ω = tOτ , where O is a 3×3 orthogonal

matrix such that O w−v

|w−v| =
ξ
|ξ| and O

ξ
|ξ| =

w−v

|w−v| . From a geometrical point

of view, such a matrix corresponds to a reflection, in the plane generated

by ξ and (w−v), around the bisectrix of these very same vectors, provided

that they are linearly independent. Of course, for any λ in R, {(v,w) ∈
R6 | (w − v) = λξ} is a null set under the measure p(v)q(w)dvdw, and so

the desired linear independence holds almost everywhere. Since the uniform

measure uS2 remains the same after the change ω = tOτ , one gets

∫

S2

eiv∗·ξ b

(

w − v

|w − v| · ω
)

uS2(dω)

=

∫

S2

exp{iv · ξ} · exp{i[(w − v) · τ ] · [τ · ξ]}b
(

ξ

|ξ| · τ
)

uS2(dτ ) . (21)

Substitution of this expression into (20) and, then, exchange of the integrals

yield

∫

R3

∫

R3

exp{iv · ξ} · exp{i[(w − v) · τ ] · [τ · ξ]}p(v)q(w)dvdw

= p̂
(

ξ − (ξ · τ )τ
)

q̂
(

(ξ · τ )τ
)

and hence (19). �

The Bobylev formula is a suitable tool to extend the Q operator from

pairs of pdfs (p, q) to pairs of pms. Accordingly, fix two pms ζ and η on

B(R3) and, on the same space, choose two sequences (ζn)n≥1 and (ηn)n≥1 of

absolutely continuous pms with densities (pn)n≥1 and (qn)n≥1, respectively,

in such a way that ζn → ζ and ηn → η, in the sense of weak convergence of

pms. See, e.g., Lemma 9.5.3 in [16]. Finally, set

Q[ζ, η](dv) := w-limn→∞Q[pn, qn](v)dv (22)

which, in view of the next proposition, is given as definition of the desired

extension of the Q operator.
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Proposition 2.3. The limit in (22) exists in the sense of weak conver-

gence of pms and is independent of the choice of the two approximating

sequences. The Q operator is continuous in its argument, that is, given

two sequences (ζn)n≥1 and (ηn)n≥1 (not necessarily absolutely continuous)

converging weakly to ζ and η, respectively, one has

lim
n→∞

Q[ζn, ηn] = Q[ζ, η] (23)

again in the sense of weak convergence of pms. Moreover, the Bobylev for-

mula extends through the relation

Q̂[ζ, η](ξ) =

∫

S2

ζ̂(ξ − (ξ · ω)ω)η̂((ξ · ω)ω) b
(

ξ

|ξ| · ω
)

uS2(dω) . (24)

Lastly, after setting fR(v) := Rv, where R is any orthogonal 3× 3 matrix,

equality

Q[ζ ◦ f−1
R , η ◦ f−1

R ](D) = Q[ζ, η] ◦ f−1
R (D) (25)

holds true for every D in B(R3).

Proof : Start from (22) and apply (17) with φ(v) = eiv∗·ξ, for fixed ξ in

R3, to get

Q̂[pn, qn](ξ) =

∫

R3

∫

R3

∫

S2

eiv∗·ξpn(v)qn(w) b

(

w − v

|w − v| · ω
)

uS2(dω)dvdw

=

∫

R3

∫

R3





∫

S2

ei[ω·ξ][(w−v)·ω] b

(

w − v

|w − v| · ω
)

uS2(dω)



 eiv·ξ ×

× pn(v)qn(w)dvdw .

Now, Q̂[pn, qn](ξ) converges pointwise for any ξ when n goes to infinity, from

the mapping Theorem 2.7 in [3]. The sole point which needs some work is

to check that the discontinuities of

(v,w) 7→
∫

S2

ei[ω·ξ][(w−v)·ω] b

(

w − v

|w − v| · ω
)

uS2(dω)

13



form a ζ ⊗ η null set D ⊂ R6. To this aim, fix a one-dimensional subspace

ℓ of R3 in such a way that

ζ ⊗ η
(

{(x,y) ∈ R6 | x− y ∈ ℓ0}
)

= 0 (26)

where ℓ0 := ℓ \ {0}. Next, determine an appropriate positive orthonormal

basis {a(u),b(u),u/|u|} of R3 whose components vary with continuity on

R3 \ ℓ with respect to u := w− v, which is possible in view of the so-called

“hairy ball theorem”. See [23] for details. Then, introduce the parametriza-

tion

ω(u) = sinϕ cos θa(u) + sinϕ sin θb(u) + cosϕu/|u| (27)

by which the spherical integral becomes

1

4π

2π
∫

0

π
∫

0

ei[ω(u)·ξ]|u| cosϕ b(cosϕ) sinϕdϕdθ .

It is now clear that this last integral, as a function of u, is continuous on

R3 \ ℓ0 and hence

lim
n→+∞

Q̂[pn, qn](ξ) =

∫

R3

∫

R3

∫

S2

eiv∗·ξ b

(

w − v

|w − v| · ω
)

uS2(dω)ζ(dv)η(dw) .

(28)

Since this limit, as a function of ξ, is clearly continuous, the continuity

theorem for characteristic functions can be applied to state that the pm

with density Q[pn, qn] converges weakly to a pm designated, from now on,

by Q[ζ, η]. Finally, observe that the limit is independent of the choice of

the approximating sequences (ζn)n≥1 and (ηn)n≥1 and, therefore, Q[ζ, η] is

well-defined.

To prove (24), start from (28) and operate on the spherical integral

by applying the argument used by Bobylev to write (21). This way, the

conclusion follows exactly as at the end of the proof of Proposition 2.2.

The continuity of the Q operator is an immediate consequence of (24):

Indeed, it is enough to combine the dominated convergence theorem with

the continuity theorem for characteristic functions.
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Finally, (25) can be proved by approximation. Choose two sequences

(ζn)n≥1 and (ηn)n≥1 of absolutely continuous pms, with densities (pn)n≥1

and (qn)n≥1, respectively, in such a way that ζn → ζ and ηn → η weakly.

From (18), Q[ζn ◦ f−1
R , ηn ◦ f−1

R ](D) = Q[ζn, ηn] ◦ f−1
R (D) for every D in

B(R3). At this point, first observe that if a sequence (πn)n≥1 of pms con-

verges weakly to the pm π, then also (πn ◦ h−1)n≥1 converges weakly to

π ◦ h−1, for every continuous function h : R3 → R3. Thus, to get (25),

exploit the weak continuity and take the limit in n of both sides. �

It remains to define the pms Qtn [µ0], which completes the description of

(7). After fixing the pm µ0 on B(R3), put

Qt1 [µ0] := µ0

Qtn [µ0] := Q
[

Qtln
[µ0],Qtrn

[µ0]
]

for n ≥ 2 .
(29)

2.3 Existence and uniqueness for the Cauchy problem

For the existence, it is enough to show that the right-hand side (RHS, in

short) of (7) gives a solution of (1) when hypotheses (3)-(5) are in force. Of

course, when t = 0, the series reduces to µ0 and so the initial condition is

fulfilled. The regularity of the map

t→
+∞
∑

n=1

e−t(1− e−t)n−1
∑

tn∈T(n)
pn(tn)Qtn [µ0] =: Wt[µ0]

follows from the fact that dTV(Wt1 [µ0];Wt2 [µ0]) ≤ c0(t1t2)|t1 − t2| for every
t1 and t2 in [0,+∞) and

sup
B∈B(R3)

∣

∣

∣

∑+∞
n=2 (n− 1)e−t1(1− e−t1)n−2

∑

tn∈T(n)
pn(tn)Qtn [µ0](B)

− ∑+∞
n=2 (n− 1)e−t2(1− e−t2)n−2

∑

tn∈T(n)
pn(tn)Qtn [µ0](B)

∣

∣

∣

≤ C1(t1, t2)|t1 − t2|

for every t1 and t2 in (0,+∞). Here, c0 and c1 are positive constants for

which lim supt2→t1 ci(t1, t2) < +∞, for i = 0, 1 and every t1 and t2. The
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expression of these constants can be essentially obtained by the elementary

relations |e−t1−e−t2 | ≤ |t1−t2| and |an−bn| ≤ (n−1)max{an−1; bn−1}|a−b|,
valid for positive t1, t2, a and b. Finally, to show that the RHS in (7) solves

(6) for every φ in Cb, define, for every n in N,

Q1[µ0] := Qt1 [µ0]

Qn[µ0] :=
∑

tn∈T(n) pn(tn)Qtn [µ0] for n ≥ 2

and note that

Qn[µ0] =
1

n− 1

n−1
∑

k=1

Q[Qk[µ0],Qn−k[µ0]] (30)

holds for every n ≥ 2. Thus, differentiation term by term gives

d

dt

∫

R3

φ(x)Wt[µ0](dx)

= −
∫

R3

φ(x)Wt[µ0](dx) +
+∞
∑

n=2

(n− 1)e−2t(1− e−t)n−2

∫

R3

φ(x)Qn[µ0](dx)

and, from (30) and the properties of Q,

+∞
∑

n=2

(n − 1)e−2t(1− e−t)n−2

∫

R3

φ(x)Qn[µ0](dx)

=

+∞
∑

n=2

e−2t(1− e−t)n−2
n−1
∑

k=1

∫

R3

φ(x)Q[Qk [µ0],Qn−k[µ0]](dx)

=

+∞
∑

n=2

e−2t(1− e−t)n−2×

×
n−1
∑

k=1

∫

R3

∫

R3

∫

S2

φ(v∗)b

(

w − v

|w − v| · ω
)

uS2(dω)Qk[µ0](dv)Qn−k[µ0](dw)

=

+∞
∑

n=1

e−t(1− e−t)n−1
+∞
∑

m=1

e−t(1 − e−t)m−1×

×
∫

R3

∫

R3

∫

S2

φ(v∗)b

(

w − v

|w − v| · ω
)

uS2(dω)Qn[µ0](dv)Qm[µ0](dw)

=

∫

R3

∫

R3

∫

S2

φ(v∗)b

(

w − v

|w − v| · ω
)

uS2(dω)Wt[µ0](dv)Wt[µ0](dw)
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which proves the claim.

For the uniqueness, let µ(1)(·, t) and µ(2)(·, t) be solutions with respect

to the same initial datum µ0. Put

∆t := sup
φ∈C0(R3)
|| φ ||∞ ≤1

∣

∣

∣

∫

R3

φ(v)µ(1)(dv, t)−
∫

R3

φ(v)µ(2)(dv, t)
∣

∣

∣

where ||φ ||∞:= supv∈R3 |φ(v)| and C0(R3) is the set of all continuous func-

tions on R3 which vanish at infinity. In view of the Riesz representation

theorem, ∆t = dTV(µ
(1)(·, t);µ(2)(·, t)). See Theorem 7.17 in [18]. Then, de-

fine Fφ(v,w) :=
∫

S2 φ(v∗)b
(

w−v

|w−v| · ω
)

uS2(dω) for every φ in C0(R3) with

||φ ||∞ ≤ 1, so that

∣

∣

∣

∫

R3

∫

R3

Fφ(v,w)[µ(1)(dv, t)µ(1)(dw, t)− µ(2)(dv, t)µ(2)(dw, t)]
∣

∣

∣

≤
∣

∣

∣

∫

R3

∫

R3

Fφ(v,w)[µ(1)(dv, t)µ(1)(dw, t)− µ(1)(dv, t)µ(2)(dw, t)]
∣

∣

∣

+
∣

∣

∣

∫

R3

∫

R3

Fφ(v,w)[µ(1)(dv, t)µ(2)(dw, t)− µ(2)(dv, t)µ(2)(dw, t)]
∣

∣

∣
≤ 2∆t

in view of Lemma 9.1.1 of [32] and the fact that v 7→
∫

R3 Fφ(v,w)µ(i)(dw, t)

is bounded for i = 1, 2. Integration of (6) with respect to time combined

with the last inequality, gives ∆t ≤ 3
∫ t
0 ∆sds. At this stage, the Gronwall

lemma entails ∆t = 0 for all t ≥ 0, which is tantamount to asserting that

µ(1)(·, t) = µ(2)(·, t). �
We conclude this subsection by pointing out a useful consequence of the

Wild-McKean sum (7) combined with (25) and (29).

Lemma 2.4. Assume that (3)-(5) are in force. Let µ0 be any pm on B(R3)

and let µ(·, t) be the solution of (1) with initial datum µ0. Then, given any

orthogonal 3 × 3 matrix R and the relative map R : x 7→ Rx, the solution

of (1) with initial datum µ0 ◦ R−1 coincides with µ(·, t) ◦ R−1.
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2.4 The C operator and its extension

The extended Bobylev formula (24) is now re-examined to derive the defini-

tion of a new convolution between pms, say ζ and η, on B(R3). Start from

that formula and rewrite the integral by changing the variables as follows:

First, for every unit vector u in S2, fix two vectors a(u) and b(u) in such

a way that {a(u),b(u),u} is a positive orthonormal basis of R3, regardless

of the regularity of the mappings u 7→ a(u) and u 7→ b(u). Second, for any

fixed ξ 6= 0, choose the parametrization given by

ω = sinϕ cos θa(u) + sinϕ sin θb(u) + cosϕu

where u := ξ/|ξ| and (ϕ, θ) belongs to [0, π]×(0, 2π), which becomes the new

domain of integration. Then, observe that (ξ · ω) = ρ cosϕ, with ρ := |ξ|,
and that the uniform pm uS2(dω) transforms into (1/4π) sinϕdϕdθ. An

elementary computation leads to

Q̂[ζ, η](ξ) =

π
∫

0

2π
∫

0

ζ̂(ρ cosϕψl)η̂(ρ sinϕψr)u(0,2π)(dθ)β(dϕ) (31)

for every ξ 6= 0, where u(0,2π) stands for the continuous uniform pm on

(0, 2π), β is the pm on [0, π] defined by

β(dϕ) :=
1

2
b(cosϕ) sinϕdϕ (32)

while ψl and ψr are abbreviations for the quantities

ψl(ϕ, θ,u) := cos θ sinϕa(u) + sin θ sinϕb(u) + cosϕu

ψr(ϕ, θ,u) := − cos θ cosϕa(u)− sin θ cosϕb(u) + sinϕu .
(33)

Observe that the realizations of ψl and ψr depend crucially on the choice

of the basis {a(u),b(u),u}. Now, some distinguishing properties of the

function

I(ξ, ϕ) :=







∫ 2π
0 ζ̂(ρ cosϕψl)η̂(ρ sinϕψr)u(0,2π)(dθ) if ξ 6= 0

1 if ξ = 0 ,
(34)

which appears in (31), are highlighted by
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Proposition 2.5. For every fixed pairs of pms (ζ, η), I is independent of

the choice of the basis {a(u),b(u),u}, for every u in S2, and turns out to

be a measurable function of (ξ, ϕ) in R3× [0, π]. For every fixed ϕ in [0, π],

I(·, ϕ) is the Fourier transform of a pm, say C[ζ, η;ϕ], on B(R3), that is

I(ξ, ϕ) = Ĉ[ζ, η;ϕ](ξ) (35)

for every ξ in R3. Moreover, the mapping ϕ 7→ C[ζ, η;ϕ] is a random pm

and

Q[ζ, η](D) =

π
∫

0

C[ζ, η;ϕ](D)β(dϕ) (36)

is valid for every D in B(R3).

Proof : To prove the first claim, fix ξ 6= 0 and let {a(u),b(u),u} and

{a′

(u),b
′

(u),u} be two distinct positive bases. Since there exists some θ∗

in [0, 2π) such that

a
′

= cos θ∗a− sin θ∗b

b
′

= sin θ∗a+ cos θ∗b ,

write

ψl(ϕ, θ,u) := cos θ sinϕa
′

(u) + sin θ sinϕb
′

(u) + cosϕu

= cos(θ − θ∗) sinϕa(u) + sin(θ − θ∗) sinϕb(u) + cosϕu

ψr(ϕ, θ,u) := − cos θ cosϕa
′

(u)− sin θ cosϕb
′

(u) + sinϕu

= − cos(θ − θ∗) cosϕa(u) − sin(θ − θ∗) cosϕb(u) + sinϕu

and substitute them into the integral in (34). An obvious change of variable

leads to the desired conclusion.

To proceed to the other points, it is first proved that ξ 7→ I(ξ, ϕ) is

continuous. Start by taking a sequence (ξn)n≥1 converging to ξ∗ and put

ρn := |ξn|. First, assume that ξ∗ = 0 and, to avoid trivialities, ρn 6= 0

for every n in N. Then, ρn goes to zero along with |ρn cosϕψl(θ, ϕ,un)|
and |ρn sinϕψr(θ, ϕ,un)|, where un := ξn/ρn, for every ϕ in [0, π] and θ in
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(0, 2π). An application of the dominated convergence theorem shows that

I(ξn, ϕ) converges to one, for every ϕ in [0, π]. If ξ∗ 6= 0, observe that ρn

converges to ρ∗ := |ξ∗|, as well as un converges to u∗ := ξ∗/ρ∗. Fix a

small open neighborhood Ω(u∗) ⊂ S2 of u∗ (with respect to the standard

topology of S2) in such a way that S2\Ω(u∗) contains at least two antipodal

points. In view of the independence of I(ξ, ϕ) of the basis {a(u),b(u),u},
fix a distinguished basis in such a way that the restrictions of u 7→ a(u) and

u 7→ b(u) to Ω(u∗) vary with continuity. As a consequence, ψl(ϕ, θ,un)

converges to ψl(ϕ, θ,u∗) and ψr(ϕ, θ,un) converges to ψ
r(ϕ, θ,u∗), for every

ϕ in [0, π] and θ in (0, 2π). At this stage, the convergence of I(ξn, ϕ) to

I(ξ∗, ϕ), for every ϕ in [0, π], follows once again by an application of the

dominated convergence theorem.

As for the measurability of (ξ, ϕ) 7→ I(ξ, ϕ), invoke Proposition 9 in

Section 9.3 of [20]. In view of the continuity of ξ 7→ I(ξ, ϕ) for every ϕ in

[0, π], it suffices to prove that ϕ 7→ I(ξ, ϕ) is measurable for each fixed ξ.

This claim follows from the continuity of ϕ 7→ I(ξ, ϕ), that can be verified

by observing the explicit dependence on ϕ in (33) and (34), regardless of

the choice of the basis {a(u),b(u),u}.
To show that ξ 7→ I(ξ, ϕ) is a characteristic function for every ϕ in [0, π],

one can resort to the multivariate version of the Bochner characterization.

See Exercise 3.1.9 in [32]. The only point that requires some care is, at this

stage, positivity. If this property were not in force, one could find a positive

integer N , two N -vectors (ω1, . . . , ωN ) and (ξ1, . . . , ξN ) in CN and (R3)N ,

respectively, and some ϕ∗ in [0, π] in such a way that

N
∑

j=1

N
∑

k=1

ωjωkI(ξj − ξk, ϕ∗) < 0 .

Hence, by continuity of ϕ 7→ I(ξ, ϕ), for each fixed ξ, there exists an open
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interval J in [0, π] containing ϕ∗ such that

ϕ 7→
N
∑

j=1

N
∑

k=1

ωjωkI(ξj − ξk, ϕ)

is strictly negative on J . Now, choose a specific Maxwellian kernel b∗ for

which the resulting pm in (32), say β∗, is supported by J . By construction,

2π
∫

0

N
∑

j=1

N
∑

k=1

ωjωkI(ξj − ξk, ϕ)β∗(dϕ) (37)

is a strictly negative number, a fact which immediately leads to a contra-

diction. Indeed, define Q∗[ζ, η] to be the pm with Fourier transform given

by (24) with b∗ in place of b, and note that, in view of (31), (37) is equal to

N
∑

j=1

N
∑

k=1

ωjωkQ̂∗[ζ, η](ξj − ξk)

a quantity that must be non negative, from the Bochner criterion.

To prove the measurability of ϕ 7→ C[ζ, η;ϕ] it is enough to verify that

each map ϕ 7→ C[ζ, η;ϕ](K) is B([0, π])/B([0, 1])-measurable, for every rect-

angle K = X3
i=1(−∞, xi]. See, for example, Lemma 1.40 of [24]. To this end,

note that the Fubini theorem can be applied to show that

(ϕ,b) 7→ G(ϕ,b)

:= lim
a→−∞

lim
c→+∞

1

(2π)3

c
∫

−c

c
∫

−c

c
∫

−c

[

3
∏

m=1

e−iξmam − e−iξmbm

iξm

]

Ĉ[ζ, η;ϕ](ξ)dξ

is B(R3× [0, π])/B([0, 1])-measurable. See Section 8.5 of [10]. At this stage,

to complete the argument it suffices to note that

C[ζ, η;ϕ]
(

X3
i=1(−∞, xi]

)

= lim
b↓x

G(ϕ,b) .

Finally, equality (36) can be derived from (31) and (35), through the

following lemma, which completes the proof of the proposition.
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Lemma 2.6. Let (S,S , λ) be a probability space, π be a pm on B(Rd) and

η : S × B(Rd) → [0,+∞) be a probability kernel with ηs(·) := η(s, ·) for

every s in S. If π̂(ξ) =
∫

S η̂s(ξ)λ(ds) for every ξ in Rd, then π(D) =
∫

S ηs(D)λ(ds) holds true for every D in B(Rd).

Proof : For ǫ > 0, set

π̂ǫ(ξ) := π̂(ξ) exp{−ǫ|ξ|2/2}
η̂ǫs(ξ) := η̂s(ξ) exp{−ǫ|ξ|2/2}

for every s in S. Then, equality π̂ǫ(ξ) =
∫

S η̂
ǫ
s(ξ)λ(ds) is still valid for every

ξ in Rd, which entails πǫ(D) =
∫

S η
ǫ
s(D)λ(ds) for every D in B(Rd), from

the classical inversion theorem for the Fourier transform. Now, πǫ and ηǫs

converge weakly to π and ηs, respectively, as ǫ ↓ 0. See, for example, Lemma

9.5.3 in [16]. Moreover,

lim inf
ǫ↓0

πǫ(A) ≥
∫

S

lim inf
ǫ↓0

ηǫs(A)λ(ds) ≥
∫

S

ηs(A)λ(ds)

where the former inequality follows from the Fatou lemma, while the latter

holds for every open subset A of Rd, in view of Theorem 2.1 (iv) of [3] applied

to ηǫs. A further application of this very same theorem to πǫ gives the weak

convergence of πǫ to
∫

S ηsλ(ds) and the thesis follows from the uniqueness

of the weak limit. �

In view of the last proposition, given any ϕ in [0, π], C[ζ, η;ϕ] can be

seen as an operator which sends the pair (ζ, η) onto a new pm. Then, it is

natural to mimic the procedure of iteration for the Q operator, defined in

Subsection 2.2, to get an analogous result for the C operator. After fixing

the pm µ0 on B(R3), set Ct1 [µ0; ∅] := µ0 and, for every tree tn with n ≥ 2

and any vector ϕ = (ϕ1, . . . , ϕn−1) in [0, π]n−1, introduce the symbols

ϕl := (ϕ1, . . . , ϕnl−1)

ϕr := (ϕnl
, . . . , ϕn−2)
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to define

Ctn [µ0;ϕ] := C
[

Ctln [µ0;ϕ
l], Ctrn [µ0;ϕr];ϕn−1

]

(38)

with the proviso that ϕl (ϕr, respectively) is void when nl (n − nl, respec-

tively) is equal to one. These definitions, combined with Proposition 2.5,

lead to

Proposition 2.7. For every tree tn in T, the mapping ϕ 7→ Ctn [µ0;ϕ] is a

random pm, and

Qtn [µ0](D) =

∫

[0,π]n−1

Ctn [µ0;ϕ](D)β⊗n−1(dϕ) (39)

holds true for every n ≥ 2 and D in B(R3).

Proof : As to the measurability of Ctn [µ0;ϕ], note that Ctn gives a pm

for every ϕ in [0, π]n−1. Then, proceed to show that its Fourier transform is

measurable as a function of (ξ,ϕ). By resorting, once again, to Proposition

9 in Section 9.3 of [20], it suffices to verify that Ĉtn [µ0;ϕ](ξ) is continuous

as a function of ξ, for every fixed ϕ, and measurable as a function of ϕ, for

every fixed ξ. The former claim is immediate in view of the basic properties

of the Fourier transform, while the latter can be proved by induction. Fix

ξ 6= 0 and combine (35) with (38) to write

Ĉtn [µ0;ϕ](ξ) =

2π
∫

0

Ĉtln [µ0;ϕ
l](ρ cosϕn−1ψ

l(ϕn−1, θ,u))

× Ĉtrn [µ0;ϕr](ρ sinϕn−1ψ
r(ϕn−1, θ,u))u(0,2π)(dθ) . (40)

Assume, as inductive hypothesis, the measurability of ϕ 7→ Ct[µ0;ϕ] for
every t ∈ ∪h≤n−1T(h). Then, invoke the already mentioned proposition in

[20] to prove that both

Ĉtln [µ0;ϕ
l](ρ cosϕn−1ψ

l(ϕn−1, θ,u))

Ĉtrn [µ0;ϕr](ρ sinϕn−1ψ
r(ϕn−1, θ,u))
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are measurable. Clearly, it is enough to study the former, the analysis

of the latter being analogous. First, as ρ, u and θ are fixed, think of

Ĉtln [µ0;ϕ
l](ρ cosϕn−1ψ

l(ϕn−1, θ,u)) as a function of the pair (ϕl, ϕn−1) and

note that the dependence on ϕn−1 is continuous, for any given ϕl. To show

this, it suffices to check the position of ϕn−1 in the definition of ψl (see

(33)) and to observe that ρ cosϕn−1ψ
l is the argument of a characteristic

function. Next, for fixed ϕn−1, ϕ
l 7→ Ĉtln [µ0;ϕ

l](ρ cosϕn−1ψ
l(ϕn−1, θ,u)) is

measurable thanks to the inductive hypothesis. This proves the measurabil-

ity of the Fourier transform of Ctn [µ0;ϕ]. At this stage, the same argument

as in the proof of Proposition 2.5, based on the Lévy inversion formula, leads

to the measurability of ϕ 7→ Ctn [µ0;ϕ].
Finally, as far as (39) is concerned, one first proves the equality

Q̂tn [µ0](ξ) =

∫

[0,π]n−1

Ĉtn [µ0;ϕ](ξ)β⊗n−1(dϕ) (41)

for n = 2, 3, . . . , by mathematical induction. Indeed, (41) coincides with

(31) when n = 2. For n ≥ 3, combine (29) with (31) to obtain

Q̂tn [µ0](ξ) = Q̂
[

Qtln
[µ0],Qtrn

[µ0]
]

(ξ)

=

π
∫

0

2π
∫

0

Q̂tln
[µ0](ρ cosϕψ

l)Q̂trn
[µ0](ρ sinϕψ

r)u(0,2π)(dθ)β(dϕ) .

24



By the inductive hypothesis,

π
∫

0

2π
∫

0

Q̂tln
[µ0](ρ cosϕψ

l)Q̂trn
[µ0](ρ sinϕψ

r)u(0,2π)(dθ)β(dϕ)

=

2π
∫

0

π
∫

0

∫

[0,π]nl−1

Ĉtln [µ0;ϕ
l](ρ cosϕψl)β⊗nl−1(dϕl)×

×
∫

[0,π]nr−1

Ĉtrn [µ0;ϕr](ρ sinϕψr)β⊗nr−1(dϕr)β(dϕ)u(0,2π)(dθ)

=

∫

[0,π]n−1

2π
∫

0

Ĉtln [µ0;ϕ
l](ρ cosϕψl)Ĉtrn [µ0;ϕr](ρ sinϕψr)×

× u(0,2π)(dθ)β
⊗n−1(dϕ) .

This yields (41) by means of (35) and (38). Then, equality (39) follows from

(41) through Lemma 2.6.

2.5 Description of the probabilistic framework

The sample space Ω, mentioned firstly in Theorem 1.1 and used throughout

the work, is defined to be

Ω := N× T× [0, π]∞ × (0, 2π)∞ × (R3)∞

where, for every nonempty set X, X∞ stands for the set of all sequences

(x1, x2, . . . ) whose elements belong to X. The σ-algebra F is given by

F := B(N)⊗ B(T)⊗ B([0, π]∞)⊗ B((0, 2π)∞)⊗ B((R3)∞)

where N and T are endowed with the discrete topology and B(X) stands

for the Borel class in X. The symbols

ν, (τn)n≥1, (φn)n≥1, (ϑn)n≥1, (Xn)n≥1

denote the coordinate random variables of Ω. They can be given the follow-

ing meaning: ν is the number of leaves, (τn)n≥1 is a sequence of trees with
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τn in T(n) for every n ≥ 1, (φn)n≥1 and (ϑn)n≥1 are sequences of angles

taking values in [0, π] and (0, 2π), respectively, and (Xn)n≥1 is a sequence

of velocities. For each t ≥ 0, Pt is defined to be the pm on (Ω,F ) which

makes these random variables all stochastically independent of one another,

with these properties:

a) ν takes values in N and

Pt[ν = n] = e−t(1− e−t)n−1 (n = 1, 2, . . . ) (42)

with the proviso that 00 := 1.

b) (τn)n≥1 is a Markov sequence driven by

Pt[τ1 = t1] = 1 (43)

Pt[τn+1 = tn,k | τn = tn] =
1

n
(44)

for every n, tn in T(n) and k = 1, . . . , n, and

Pt[τn+1 = s | τn = tn] = 0

whenever s 6∈ G(tn).

c) The elements of (φn)n≥1 are iid random numbers with common distri-

bution β, specified in (32).

d) The elements of (ϑn)n≥1 are iid with common distribution u(0,2π).

e) As stated in Section 1, the Xjs are iid with

Pt[X1 ∈ D] = µ0(D) (45)

for every D in B(R3).

As to the existence of Pt satisfying the above properties, see Theorem 3.19

in [24].

There is an interesting relationship between the weights pn, given in (14),

and the law of the Markov sequence in b).
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Lemma 2.8. Equality

pn(tn) = Pt[τn = tn] (46)

holds true for every n and tn in T(n).

Proof : Argue by mathematical induction. First, the assertion is trivially

true for n = 1, 2. Next, given any n ≥ 3,

Pt[τn = tn] =
∑

sn−1∈P(tn)
Pt[τn = tn | τn−1 = sn−1] Pt[τn−1 = sn−1]

=
1

n− 1

∑

sn−1∈P(tn)
Pt[τn−1 = sn−1] =

1

n− 1

∑

sn−1∈P(tn)
pn−1(sn−1)

the last equality being valid thanks to the inductive hypothesis. Now,

∑

sn−1∈P(tn)
pn−1(sn−1) =

∑

sn−1∈P(tn)
sln−1

=tln

pn−1(sn−1) +
∑

sn−1∈P(tn)
srn−1

=trn

pn−1(sn−1)

and, by (14),

∑

sn−1∈P(tn)
sln−1

=tln

pn−1(sn−1) +
∑

sn−1∈P(tn)
srn−1

=trn

pn−1(sn−1)

=
1

n− 2

[

∑

sn−1∈P(tn)
s
l
n−1

=t
l
n

pnl
(sln−1)pnr−1(s

r
n−1) +

∑

sn−1∈P(tn)
s
r
n−1

=t
r
n

pnl−1(s
l
n−1)pnr(s

r
n−1)

]

=
1

n− 2

[

pnl
(tln)

∑

sn−1∈P(tn)
sln−1

=tln

pnr−1(s
r
n−1) + pnr(t

r
n)

∑

sn−1∈P(tn)
srn−1

=trn

pnl−1(s
l
n−1)

]

.

At this stage, one can conclude by working out the previous sums as follows.

As to the sum relative to s
l
n−1 = t

l
n,

∑

sn−1∈P(tn)
s
l
n−1

=t
l
n

pnr−1(s
r
n−1) =

∑

snr−1∈P(trn)
pnr−1(snr−1)

=
∑

snr−1∈P(trn)
Pt[τnr−1 = snr−1]

= (nr − 1)
∑

snr−1∈P(trn)
Pt[τnr−1 = snr−1]Pt[τnr = t

r
n | τnr−1 = snr−1]

= (nr − 1)Pt[τnr = t
r
n] = (nr − 1)pnr(t

r
n) .
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The same line of reasoning leads to

∑

sn−1∈P(tn)
s
r
n−1

=t
r
n

pnl−1(s
l
n−1) = (nl − 1)pnl

(tln) .

The proof of the lemma terminates by combining the previous equations,

upon noting that n = nl + nr. �

The way is paved for the definition of the arrays (π1,n, . . . , πn,n) and

(O1,n, . . . ,On,n) mentioned in Section 1. As to the former, let π∗j,n be a real-

valued function on T(n)× [0, π]n−1, for j = 1, . . . , n and n in N. Specifically,

π∗1,1 ≡ 1 and, for n ≥ 2,

π∗j,n(tn,ϕ) :=







π∗j,nl
(tln,ϕ

l) cosϕn−1 for j = 1, . . . , nl

π∗j−nl,n−nl
(trn,ϕ

r) sinϕn−1 for j = nl + 1, . . . , n
(47)

for every ϕ = (ϕl,ϕr, ϕn−1) in [0, π]n−1. At this stage, set

πj,n := π∗j,n(τn, (φ1, . . . , φn−1)) (48)

for j = 1, . . . , n and n in N. A straightforward induction argument shows

that
n
∑

j=1

π2j,n = 1 (49)

for every n in N and ω in Ω. By arguing as in [1, 21], verify that

Et





ν
∑

j=1

|πj,ν|s


 = e−(1−2ls(b))t (50)

holds true for every s > 0 and ls(b) :=
∫ π
0 (sinϕ)

sβ(dϕ).

The definition of the Oj,ns requires the introduction of the following 3×3

orthogonal matrices

Ml(ϕ, θ) :=











− cos θ cosϕ sin θ cos θ sinϕ

− sin θ cosϕ − cos θ sin θ sinϕ

sinϕ 0 cosϕ










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and

Mr(ϕ, θ) :=











sin θ cos θ sinϕ − cos θ cosϕ

− cos θ sin θ sinϕ − sin θ cosϕ

0 cosϕ sinϕ











on the basis of which one considers SO(3)-valued functions O∗
j,n on T(n)×

[0, π]n−1 × (0, 2π)n−1, for j = 1, . . . , n and n in N. They are defined by

O∗
1,1 ≡ Id3×3

and, for n ≥ 2,

O∗
j,n(tn,ϕ,θ)

:=







Ml(ϕn−1, θn−1)O
∗
j,nl

(tln,ϕ
l,θl) for j = 1, . . . , nl

Mr(ϕn−1, θn−1)O
∗
j−nl,n−nl

(trn,ϕ
r,θr) for j = nl + 1, . . . , n

(51)

for every ϕ in [0, π]n−1 and θ in (0, 2π)n−1. Development of this recursion

formula gives

O∗
j,n(tn,ϕ,θ) =

δj(tn)
∏

h=1

Mǫh(tn,j)(ϕmh(tn,j), θmh(tn,j)) (52)

where
∏n

h=1Ah := A1 × · · · ×An. The ǫh(tn, j)s take values in {l, r} and, in

particular, ǫh(tn, j) equals l (r, respectively) if j ≤ nl (j > nl, respectively).

Each mh belongs to {1, . . . , n − 1} and m1 6= · · · 6= mδj(tn). In particular,

m1(tn, j) = n−1, for every tn in T(n) and j = 1, . . . , n. It is worth mention-

ing that there is a more direct procedure to prove (52) based on the specific

structure of each tn. It is explained in detail in Section 2.5 of [12].

The random matrices mentioned in Section 1 can now be specified by

Oj,n := O∗
j,n(τn, (φ1, . . . , φn−1), (ϑ1, . . . , ϑn−1)) (53)

for j = 1, . . . , n and n in N. To conclude, note that ψj,n, defined by (9), is

a random function of the variable u satisfying

|ψj,n(u)| = 1 (54)

for u in S2, j = 1, . . . , n and n in N.
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2.6 Proof of Theorem 1.1

Substitute (39) in (7) to have

µ(D, t) = e−tµ0(D) +
+∞
∑

n=2

e−t(1− e−t)n−1
∑

tn∈T(n)
pn(tn)×

×
∫

[0,π]n−1

Ctn [µ0;ϕ](D)β⊗n−1(dϕ) (55)

for every D in B(R3) and every t ≥ 0. Next, define the function M : Ω →
P(R3) as

M(D) := Cτν [µ0; (φ1, . . . , φν−1)](D) (56)

for every D in B(R3), with the proviso that (φ1, . . . , φν−1) := ∅ if ν =

1. In view of Proposition 2.7, M is F/B(P(R3))-measurable, which is

tantamount to saying that M is a random pm. Moreover, M does not

depend on b. Taking expectation of both sides of (56) yields

Et[M(D)] =

∫

Ω

Cτν [µ0; (φ1, . . . , φν−1)](D)dPt

= e−tµ0(D) +
+∞
∑

n=2

∑

tn∈T(n)

∫

[0,π]n−1

Ctn [µ0; (ϕ1, . . . , ϕn−1)](D)×

× Pt[ν = n, τn = tn, φ1 ∈ dϕ1, . . . , φn−1 ∈ dϕn−1] . (57)

After recalling the assumption of independence of the coordinate random

variables, combination of points a)-c) in Subsection 2.5 with Lemma 2.8

gives

Pt[ν = n, τn = tn, φ1 ∈ dϕ1, . . . , φn−1 ∈ dϕn−1]

= e−t(1− e−t)n−1pn(tn)β
⊗n−1(dϕ1, . . . ,dϕn−1)

for every n ≥ 2, which shows that the RHSs in (55) and (57) coincide.
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2.7 Proof of Theorem 1.2

After defining the σ-algebras

G := σ
(

ν, (τn)n≥1, (φn)n≥1

)

H := σ
(

ν, (τn)n≥1, (φn)n≥1, (ϑn)n≥1

)

it is easy to verify points from i) to v) and the validity of the equalities

M̂(ξ) = Ĉτν [µ0; (φ1, . . . , φν−1)]

Et

[

eiρS(u) | H

]

= Et





ν
∏

j=1

µ̂0(ρπj,νψj,ν)
∣

∣ H





Et

[

eiρS(u) | G

]

= Et





ν
∏

j=1

µ̂0(ρπj,νψj,ν)
∣

∣ G





so that the problem reduces to proving that

Ĉtn [µ0;ϕ](ξ)

=

∫

(0,2π)n−1





n
∏

j=1

µ̂0
(

ρπ∗j,n(tn,ϕ)qj,n(tn,ϕ,θ,u)
)



u
⊗n−1

(0,2π)(dθ) (58)

=

∫

(0,2π)n−1





n
∏

j=1

µ̂0
(

ρπ∗j,n(tn,ϕ)B(u)O
∗
j,n(tn,ϕ,θ)e3

)



u
⊗n−1

(0,2π)(dθ) (59)

hold true for every n ≥ 2, for every tree tn in T(n), ϕ in [0, π]n−1 and ξ 6= 0,

with ρ = |ξ| and u = ξ/|ξ|. In (58), the qj,ns are defined as follows. First,

q1,1(t1, ∅, ∅,u) := u. Then, for every tree tn with n ≥ 2, put

qj,n(tn,ϕ,θ,u)

=







qj,nl
(tln,ϕ

l,θl,ψl(ϕn−1, θn−1,u)) for j = 1, . . . , nl

qj−nl,n−nl
(trn,ϕ

r,θr,ψr(ϕn−1, θn−1,u)) for j = nl + 1, . . . , n
(60)

for every ϕ = (ϕl,ϕr, ϕn−1) in [0, π]n−1 and θ = (θl,θr, θn−1) in (0, 2π)n−1,

where ψl and ψr are given by (33).

To prove (58), first consider the case when n = 2 and observe that

π∗1,2 = cosϕ1, π
∗
2,2 = sinϕ1, q1,2 = ψl, q2,2 = ψr. Then, check that (58)
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reduces to (35) with ζ = η = µ0. Next, by mathematical induction, assume

n ≥ 3 and recall (35) again and (38) to write

Ĉtn [µ0;ϕ](ξ) =

2π
∫

0

Ĉtln [µ0;ϕ
l](ρ cosϕn−1ψ

l(ϕn−1, θn−1,u))

× Ĉtrn [µ0;ϕr](ρ sinϕn−1ψ
r(ϕn−1, θn−1,u))u(0,2π)(dθn−1) .

Thus, assuming that (58) holds true for every l in {1, . . . , n− 1} and every

tree tl in ∪l≤n−1T(l), deduce that

Ĉtln [µ0;ϕ
l](ρ cosϕn−1ψ

l(ϕn−1, θn−1,u))

=
∫

(0,2π)nl−1

{

∏nl

j=1 µ̂0
[

ρ cosϕn−1π
∗
j,nl

(tln,ϕ
l)

×qj,nl
(tln,ϕ

l,θl,ψl(ϕn−1, θn−1,u))
]

}

u
⊗nl−1

(0,2π) (dθ
l)

and

Ĉtrn [µ0;ϕr](ρ cosϕn−1ψ
r(ϕn−1, θn−1,u))

=
∫

(0,2π)nr−1

{

∏nr

j=1 µ̂0
[

ρ cosϕn−1π
∗
j,nr

(trn,ϕ
r)

×qj,nr(t
r
n,ϕ

r,θr,ψr(ϕn−1, θn−1,u))
]

}

u
⊗nr−1

(0,2π) (dθ
r) .

To complete the argument, combine the above equalities, invoke (47) and

(60) and note that u(0,2π) ⊗ u
⊗nl−1

(0,2π) ⊗ u
⊗n−nl−1

(0,2π) = u
⊗n−1

(0,2π).

As far as the proof of (59) is concerned, start by noting that

qj,2(t2, ϕ, θ,u) = B(u)O∗
j,2(t2, ϕ, θ)e3

for j = 1, 2, for every ϕ in [0, π], θ in (0, 2π) and u in S2, provided that the

basis {a(u),b(u),u} in (33) is formed by the three columns of B(u). Then,

assume n ≥ 3 and argue by induction, starting from (58) and definitions
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(53) and (60). Whence,

∫

(0,2π)n−1





n
∏

j=1

µ̂0
(

ρπ∗j,n(tn,ϕ)qj,n(tn,ϕ,θ,u)
)



u
⊗n−1

(0,2π)(dθ)

=

2π
∫

0

∫

(0,2π)nl−1

∫

(0,2π)nr−1





nl
∏

j=1

µ̂0
(

ρπ∗j,n(tn,ϕ)qj,nl
(tln,ϕ

l,θl,ψl(ϕn−1, θn−1,u))
)



×

×





nr
∏

j=1

µ̂0
(

ρπ∗j+nl,n
(tn,ϕ)qj,nr(t

r
n,ϕ

r,θr,ψr(ϕn−1, θn−1,u))
)



×

×u⊗nr−1

(0,2π) (dθ
r)u

⊗nl−1

(0,2π) (dθ
l)u(0,2π)(dθn−1)

=

2π
∫

0

∫

(0,2π)nl−1

∫

(0,2π)nr−1





nl
∏

j=1

µ̂0
(

ρπ∗j,n(tn,ϕ)B(ψ
l(ϕn−1, θn−1,u))O

∗
j,nl

(tln,ϕ
l,θl)e3

)



×

×





nr
∏

j=1

µ̂0
(

ρπ∗j+nl,n
(tn,ϕ)B(ψ

r(ϕn−1, θn−1,u))O
∗
j,nr

(trn,ϕ
r,θr)e3

)



×

×u⊗nr−1

(0,2π) (dθ
r)u

⊗nl−1

(0,2π) (dθ
l)u(0,2π)(dθn−1) . (61)

The integral
∫

(0,2π)nl−1 (
∫

(0,2π)nl−1 , respectively) should not be written if

nl = 1 (nr = 1, respectively) since θl (θr, respectively) corresponds to the

empty set. At this stage, it will be proved that

∫

(0,2π)nl−1





nl
∏

j=1

µ̂0
(

xB(ψl(ϕn−1, θn−1,u))O
∗
j,nl

(tln,ϕ
l,θl)e3

)



u
⊗nl−1

(0,2π) (dθ
l)

=

∫

(0,2π)nl−1





nl
∏

j=1

µ̂0
(

xB(u)O∗
j,n(tn,ϕ,θ)e3

)



u
⊗nl−1

(0,2π) (dθ
l) (62)

for every real x, u in S2, ϕ in [0, π]n−1 and θn−1 in (0, 2π). If nl = 1, it is
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immediate to verify that

tψl(ϕn−1, θn−1,u) = B(ψl(ϕn−1, θn−1,u))e3 = B(u)Ml(ϕn−1, θn−1)e3

(63)

which implies (62). Then, pass to the most interesting case when nl ≥ 2. In

view of (63), the last column of the two matrices B(ψl(ϕn−1, θn−1,u)) and

B(u)Ml(ϕn−1, θn−1) are the same and, therefore, there exists an orthogonal

matrix of the type

R(α) :=











cosα − sinα 0

sinα cosα 0

0 0 1











for which B(ψl(ϕn−1, θn−1,u)) = B(u)Ml(ϕn−1, θn−1)R(α). Note also that

α depends only on ϕn−1, θn−1 and u. Now, when nl ≥ 2, recall that

Oj,nl
(tln,ϕ

l,θl) = Mǫ1(tln,j)(ϕnl−1, θnl−1)Qj,nl

where Qj,nl
is another orthogonal matrix. If δj(t

l
n) = 1, Qj,nl

reduces

to the identity matrix. Otherwise, it depends on t
l
n, (ϕ1, . . . , ϕnl−2) and

(θ1, . . . , θnl−2) through (52). In any case, the precise expression is not needed

here. The key remark is represented by the equality

R(α)Ms(ϕ, θ) = Ms(ϕ, θ + α)

which holds for both s = l, r and for every ϕ and θ. Then, start from the

LHS of (62) and take account of the product R(α)Mǫ1(tln,j)(ϕnl−1, θnl−1),

which equals Mǫ1(tln,j)(ϕnl−1, θnl−1+α(ϕn−1, θn−1,u)). A change of variable

θ
′

nl−1 = θnl−1 + α(ϕn−1, θn−1,u) transforms the LHS of (62) into

∫

(0,2π)nl−1





nl
∏

j=1

µ̂0
(

xB(u)Ml(ϕn−1, θn−1)O
∗
j,nl

(tln,ϕ
l,θl)e3

)



u
⊗nl−1

(0,2π) (dθ
l)

which equals the RHS of (62), in view of (53).
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To complete the proof of (59), use (61) after noting that an equality

similar to (62) can be stated by changing subscripts and superscripts from

l to r, and replacing O∗
j+nl,n

to O∗
j,n.

Finally, the above argument works in the same way to show that two

representations of the type of (59) are equivalent even if definition (9) is

based, through the matrix B(u), on two different choices of orthonormal

bases, such as {a(u),b(u),u} and {a′

(u),b
′

(u),u}.

3 Central limit theorem for Maxwellian molecules

We are going to give a necessary and sufficient condition for the convergence

of the solution µ(·, t) of (1), as t goes to infinity, by resorting to arguments

which are reminiscent of those used to prove central limit theorems. This is

made possible in view of Theorems 1.1-1.2, which express µ in terms of sums

of random numbers. As recalled in Section 1, the study of the convergence

to equilibrium of the solution of (1) has been considered as a problem of

paramount interest ever since the pioneering works in kinetic theory of gases.

As a consequence, this question has given rise to an extensive research. See

Chapter 2D in [34].

Before stating the main result of this section, it is worth recalling that

(13) implies

∫

R3

vµ(dv, t) =

∫

R3

vµ0(dv) (64)

∫

R3

|v|2µ(dv, t) =

∫

R3

|v|2µ0(dv) (65)

for every t ≥ 0. Moreover, the unique stationary solutions of (1) – in the

class of all pms on B(R3) – are the so-called Maxwellian distributions given

by

γv0,σ(dv) =

(

1

2πσ2

)3/2

exp{− 1

2σ2
|v − v0|2}dv (66)
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with (v0, σ) in R3 × [0,+∞). If σ = 0, γv0,0 reduces to the unit mass δv0
at

v0. We are now in a position to formulate the foretold result.

Theorem 3.1. Let conditions (3)-(5) be in force. Then, µ(·, t) converges

weakly, as t goes to infinity, if and only if (13) holds true. In case this

condition is satisfied, the limiting distribution is given by (66) with

v0 =

∫

R3

vµ0(dv)

σ2 =
1

3

∫

R3

|v − v0|2µ0(dv) .

At the beginning, starting from initial data with finite second moment

and satisfying extra conditions related to the Boltzmann H-theorem, dif-

ferent authors stated the convergence to the Maxwellian distribution with

respect to the total variation distance. Afterwards, on the basis of inspiring

principles different from the H-theorem, the aforesaid conclusions have been

improved in different ways. In [33] it has been proved that the solution con-

verges weakly when (13) is valid. A definitive result in [8] has finally stated

that (13) suffices to obtain convergence in total variation. To the best of

the authors’ knowledge, the only proof that (13) is necessary is contained in

[7], where it has been shown that if the second moment of µ0 is infinite then

all the mass “explodes to infinity”. The motivations for the new proof, we

are going to present, rely on the nexus with the methods of current usage

for solving the central limit problem, which one can now institute thanks to

Theorems 1.1-1.2. Indeed, the cohesive power of these methods gives rise

to a well-structured, transparent and direct proof that turns out to be, on

the whole, more comprehensible than a mere union of necessarily disparate

arguments extracted from the above-mentioned works. An analogous strat-

egy has already been followed in [22] apropos of the simpler case of Kac’s

equation.
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3.1 Sufficiency of condition (13)

If
∫

R3 |x|2µ0(dx) = 0, then µ(·, t) coincides with the unit mass at 0, δ0(·), for
every t ≥ 0. On the other hand, when (13) is in force with

∫

R3 |x|2µ0(dx) >
0, one can assume that the following extra-conditions are valid, without any

loss of generality.

i)
∫

R3 xµ0(dx) = 0

ii)
∫

R3 |x|2µ0(dx) = 3

iii)
∫

R3 xixjµ0(dx) = 0, whenever 1 ≤ i 6= j ≤ 3

iv) σ2∗ := min{σ21 , σ22 , σ23} > 0, with σ2i :=
∫

R3 x
2
iµ0(dx) for i = 1, 2, 3.

In fact, i) and ii) can be assumed in view of the conservation property

encapsulated in (64)-(65). Under i) and ii), the thesis of Theorem 3.1 can

be specified by saying that the parameters of the limiting Maxwellian are

v0 = 0 and σ2 = 1. Condition iii) can be assumed in view of Lemma 2.4, by

choosing R in such a way that tRV [µ0]R is a diagonal matrix, where V [µ0]

denotes the covariance matrix of µ0. At this stage, replacement of µ0 with

µ0 ◦ R−1, where R : x 7→ Rx, does not alter the conclusion to be reached.

Note that the ensuing initial datum fulfills conditions i)-iii). As to condition

iv), recall that
∫

R3 x
2
iµ(dx, t) → 1 as t goes to infinity, for i = 1, 2, 3. See

Lemma 1.8 in [6]. Hence, for each strictly positive η, there is t0 = t0(η, b)

so that
∣

∣

∫

R3

x2iµ(dx, t)− 1
∣

∣ ≤ η (67)

for every t ≥ t0, and i = 1, 2, 3. Substituting µ0 with µ(·, t0), iv) holds true
along with i)-iii).

The sufficiency of (13) will be now proved by means of the Lévy continu-

ity theorem for characteristic functions, by adapting the argument displayed,

for example, in Section 9.1 of [10]. To start, fix ξ 6= 0, put ρ := |ξ| and
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u := ξ/ρ. Theorem 1.1 gives

∣

∣µ̂(ξ, t)− exp{−|ξ|2/2}
∣

∣ =
∣

∣EtM̂(ξ)− exp{−|ξ|2/2}
∣

∣

≤
∣

∣Et[M̂(ρu)− exp{−T 2ρ2/2}]
∣

∣

+
∣

∣Et exp{−T 2ρ2/2} − exp{−ρ2/2}
∣

∣ (68)

where

T 2 := Et

[

(

S(u)
)2 ∣
∣

∣ H

]

=

ν
∑

j=1

π2j,ν

3
∑

i=1

σ2i ψ
2
j,ν;i(u) .

As to the first summand in (68), Theorem 1.2 can be invoked to write

∣

∣Et[M̂(ρu)− exp{−T 2ρ2/2}]
∣

∣ ≤ Et

∣

∣

∣Et

[

eiρS(u) | H

]

− exp{−T 2ρ2/2}
∣

∣

∣ .

(69)

By using (6)-(7) in Section 9.1 of [10], one gets

∣

∣

∣
Et

[

eiρS(u) | H

]

− exp{−T 2ρ2/2}
∣

∣

∣

≤ ρ2
ν
∑

j=1

π2j,ν

∫

Aj(ε)

(ψj,ν(u) · x)2µ0(dx) + ε|T |3ρ3

+
1

8
T 4ρ4

max1≤j≤ν π
2
j,ν

∑3
i=1 σ

2
i ψ

2
j,ν;i(u)

T 2
(70)

with

Aj(ε) := {x ∈ R3
∣

∣ |πj,ν(ψj,ν(u) · x)| ≥ ε|T |}

for j = 1, . . . , ν. Combination of points i)-iv) with (49) and (54) shows that

σ2∗ ≤ T 2 ≤ 3 and

1

8
T 2ρ4 max

1≤j≤ν
π2j,ν

3
∑

i=1

σ2i ψ
2
j,ν;i(u) ≤

9

8
ρ4π2o (71)

with πo := max1≤j≤ν |πj,ν |. Put M(y) :=
∫

|x|≥1/y |x|2µ0(dx) for every y in

(0,+∞) and note that M is a monotonically increasing, bounded function

satisfying limy↓0M(y) = 0. Moreover, from

Aj(ε) ⊂ {x ∈ R3
∣

∣ |πj,ν(ψj,ν(u) · x)| ≥ εσ∗}

⊂ {x ∈ R3
∣

∣ |πo(ψj,ν(u) · x)| ≥ εσ∗} ⊂ {x ∈ R3
∣

∣ |πo| · |x| ≥ εσ∗}
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one can conclude that

ν
∑

j=1

π2j,ν

∫

Aj(ε)

(ψj,ν(u) · x)2µ0(dx) ≤M

(

πo
εσ∗

)

(72)

holds true for every strictly positive ε. At this stage, fix ε =
√
πo and

combine (70) with (71) and (72) to get

∣

∣

∣Et

[

eiρS(u) | H

]

− exp{−T 2ρ2/2}
∣

∣

∣ ≤M

(√
πo
σ∗

)

ρ2 + 3
√
3
√
πoρ

3 +
9

8
π2oρ

4 .

(73)

To complete the analysis of the RHS of (69), it can be shown that the

expectation of the RHS of (73) goes to zero as t goes to infinity, for every

ρ in (0,+∞). Indeed, for any monotonically increasing, bounded function

g : (0,∞) → (0,∞) satisfying limx↓0 g(x) = 0, one has

Et[g(πo)] = Et[g(πo)1l{πo ≤ e−zt}] + Et[g(πo)1l{πo > e−zt}]

≤ g(e−zt) + sup
x∈(0,∞)

g(x) · Pt[πo > e−zt]

≤ g(e−zt) + sup
x∈(0,∞)

g(x) · Et[π
4
o ]e

4zt

for any z in (0,∞). Using (50) with s = 4 gives Et[π
4
o ] ≤ e−(1−2l4(β))t and,

after choosing z = 1
8(1 − 2l4(b)), one obtains limt→+∞ Et[g(πo)] = 0. This

argument, with g(x) =M
(√

x
σ∗

)

ρ2+3
√
3
√
xρ3+ 9

8x
2ρ4, leads to the desired

result.

As far as the second summand in (68) is concerned, one first observes

that, in view of Theorem 1.1, Et[e
−T 2ρ2/2] can be thought of as the Fourier

transform of the solution of (1) when the initial datum µ0 meets

µ0(dx) =

3
∏

i=1

1

σi
√
2π

exp{− x2i
2σ2i

}dxi . (74)

By resorting to an easy argument developed in [13], η in (67) can be chosen

so small that (74) belongs to a convenient neighborhood of γ0,1, so that

∣

∣Et exp{−T 2ρ2/2} − exp{−ρ2/2}
∣

∣ ≤ c1e
−c2t

for some strictly positive constants c1, c2. See Theorem 1 in [13].
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3.2 Necessity of condition (13)

Suppose that the solution µ(·, t) of (1), with initial datum µ0, converges

weakly to some limit, as t goes to infinity. Following a technique developed

in [19], the argument starts with the introduction of the random vector

W =
(

ν, (τj)j≥1, (φj)j≥1, (ϑj)j≥1,λ,Λ,U
)

defined on (Ω,F ). The meaning of ν, (τj)j≥1, (φj)j≥1, (ϑj)j≥1 is the same as

in Subsection 2.5 while, to explain the other symbols, one fixes an arbitrary

point u0 in S2 and defines:

i) λ := (λ1(·), . . . , λν(·), δ0(·), δ0(·), . . . ) to be the sequence of random

pms with Fourier transforms λ̂j(ξ) := µ̂0(ξπj,νψj,ν(u0)), for j = 1, . . . , ν

and ξ in R, while δx stands for the degenerate pm at x.

ii) Λ to be the random pm obtained as convolution of all the elements of

λ, i.e. Λ = λ1 ∗ · · · ∗ λν .

iii) U := (U1, U2, . . . ) to be the sequence of random numbers defined by

Uk := max1≤j≤ν λj
([

− 1
k ,

1
k

]c)
for every k in N.

To grasp the usefulness of W , one can note that its components are the

essential ingredients of the central limit problem for independent uniformly

asymptotically negligible summands. See Sections 16.6-9 of [20]. Apropos of

the negligibility condition, it is easy to prove that

lim
t→+∞

Pt[Uk > α] = 0

holds for every k in N and for every α in (0,+∞). In fact, observe that

|ψj,ν | = 1 entails {x ∈ R3
∣

∣ |πj,νψj,ν · x| ≥ 1/k} ⊂ {x ∈ R3
∣

∣ |πj,νx| ≥ 1/k}
and hence

{Uk > α} ⊂
{[

max
1≤j≤ν

µ0{x ∈ R3
∣

∣ |πj,νx| ≥ 1/k}
]

≥ α

}

.

Then, apply the argument used to prove Lemma 2 in [22].
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Now, think of the range of W as a subset of

S := N× T× [0, π]∞ × [0, 2π]∞ × (P(R))∞ × P(R)× [0, 1]∞

where T is the one-point compactification of the discrete topological space

T; N := {1, 2, . . . ,+∞}, R := [−∞,+∞]. According to results explained in

Section 6.II of [29], P(R) can be metrized, consistently with the topology of

weak convergence, in such a way that it turns out to be a separable, compact

and complete metric space. It follows that S is a separable, compact and

complete metric space with respect to the product topology and so the

family of probability distributions (Pt ◦W−1)t≥0 is tight. This implies that

any sequence (Ptm ◦W−1)m≥1, such that tm strictly increases to infinity as

m goes to infinity, contains a subsequence (Qn)n≥1, with Qn := Ptmn
◦W−1,

which converges weakly to a pm Q. It is worth noting that, thanks to the

weak convergence of µ(·, t), Q is supported by

{+∞}× T× [0, π]∞ × [0, 2π]∞ × (δ0, δ0, . . . )× P(R)× {0}∞ .

This claim can be verified by invoking Lemma 3 in [22].

Since S is Polish, from the Skorokhod representation theorem (see Theo-

rem 6.7 in [3]) one can determine a probability space (Ω̃, F̃ , P̃) and random

elements on it, taking values in S,

W̃n =
(

ν̃n, (τ̃j,n)j≥1, (φ̃j,n)j≥1, (ϑ̃j,n)j≥1, λ̃n, Λ̃n, Ũn

)

W̃∞ =
(

{+∞}, (τ̃j,∞)j≥1, (φ̃j,∞)j≥1, (ϑ̃j,∞)j≥1, (δ0, δ0, . . . ), Λ̃∞, (0, 0, . . . )
)

which have respective probability laws Qn and Q and satisfy W̃n(ω̃) →
W̃∞(ω̃) in the metric of S, as n→ +∞, for every ω̃ in Ω̃. This entails

ν̃n → +∞, Ũn → (0, 0, . . . )

λ̃n ⇒ (δ0, δ0, . . . ), Λ̃n ⇒ Λ̃∞
(75)

as n goes to infinity. The symbol ⇒ is here used to designate weak conver-

gence of pms. The distributional properties of W̃n imply that Λ̃n is the con-
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volution of the elements of λ̃n, and that Ũk,n = max1≤j≤ν̃n λ̃j,n
([

− 1
k ,

1
k

]c)

for every k in N, P̃-almost surely.

From now on, given any pm q on B(Rd), q(s) will denote the symmetrized

q, i.e. q̂(s)(·) := |q̂(·)|2. Then, (75) entails Λ̃
(s)
n ⇒ Λ̃

(s)
∞ for every ω̃ in Ω̃,

which, combined with Theorem 24 in Chapter 16 of [20], gives

+∞ > σ2(ω̃) := lim
ε↓0

limn

ν̃n(ω̃)
∑

j=1

∫

[−ε,ε]

x2λ̃
(s)
j (dx; ω̃) (76)

with the exception of a set of points ω̃ of P̃-probability 0. The proof of the

necessity starts from this inequality and carries on according to the following

argument. Firstly,

ν̃n
∑

j=1

∫

[−ε,ε]

x2λ̃
(s)
j (dx) =

ν̃n
∑

j=1

π̃2j,ν̃n

∫

R3

(ψ̃j,ν̃n · x)21l{|π̃j,ν̃nψ̃j,ν̃n · x| ≤ ε}µ(s)0 (dx)

≥
ν̃n
∑

j=1

π̃2j,ν̃n

3
∑

i=1

ψ̃2
j,ν̃n;i

∫

π̃∗
n|x|≤ε

x2iµ
(s)
0 (dx) (77)

where π̃ and ψ̃ denote the counterparts, in the Skorokhod representation,

of the π and ψ defined in Subsection 2.5, π̃∗n := max1≤j≤ν̃n |π̃j,ν̃n| and the

inequality is a consequence of the inclusion

{x ∈ R3
∣

∣ |π̃j,ν̃nψ̃j,ν̃n · x| ≤ ε} ⊃ {x ∈ R3
∣

∣ π̃∗n|x| ≤ ε} .

Secondly, define k = k(ω̃; j, n) to be an element of {1, 2, 3} for which ψ̃2
j,ν̃n;k

=

max1≤i≤3 ψ̃
2
j,ν̃n;i

, which is greater than 1/3 since ψ̃j,ν̃n belongs to S2, for

every ω̃ in Ω̃, n in N and j = 1, . . . , ν̃n. Then,

ν̃n
∑

j=1

π̃2j,ν̃n

3
∑

i=1

ψ̃2
j,ν̃n;i

∫

π̃∗
n|x|≤ε

x2iµ
(s)
0 (dx) ≥

ν̃n
∑

j=1

π̃2j,ν̃nψ̃
2
j,ν̃n;k

∫

π̃∗
n|x|≤ε

x2kµ
(s)
0 (dx)

≥ 1

3

ν̃n
∑

j=1

π̃2j,ν̃n

∫

π̃∗

n|x|≤ε

x2kµ
(s)
0 (dx)

=
1

3

3
∑

h=1

s̃h,n

∫

π̃∗

n|x|≤ε

x2hµ
(s)
0 (dx)
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where s̃h,n denotes the sum of those π̃2j,ν̃n so that k(ω̃; j, n) = h. In view

of Lemma 1 in [22], without real loss of generality one can assume that

π̃∗n goes to zero with probability one, as n goes to infinity. Hence, since
∑3

h=1 s̃h,n = 1 with probability one, there are some ω̃ and h, say h∗ = h∗(ω̃),

so that π̃∗n(ω̃) → 0 and limns̃h∗,n is strictly positive. Then,

σ2(ω̃) ≥ lim
ε↓0

limn
1

3

3
∑

h=1

s̃h,n

∫

π̃∗
n|x|≤ε

x2hµ
(s)
0 (dx)

≥ 1

3
limr→+∞

∫

|x|≤r

x2h∗
µ
(s)
0 (dx) · limns̃h∗,n

which is enough to show that the h∗-th marginal of µ
(s)
0 – and hence also

the h∗-th marginal of µ0 – has finite second moment.

To complete the proof, recall Lemma 2.4 and note that weak convergence

of µ(·, t) entails weak convergence of µ(·, t)◦R−1. Hence, the above argument

can be used to prove that
∫

R3 x
2
h∗

µ0◦R−1(dx) is finite for every choice of the

orthogonal matrix R, with the same h∗, independently of R and µ0. At this

stage, it suffices to choose R firstly equal to R1 := (x1, x2, x3) 7→ (x2, x3, x1)

and, then, equal to R2 := (x1, x2, x3) 7→ (x3, x1, x2) to have the desired

result.

4 Global boundedness of the moments of M

The present section deals with the moments

Mr :=

∫

R3

|x|rM(dx)

of the random pmM. SinceM depends on µ0, it is interesting to investigate

the connection between the finiteness of Mr and the finiteness of the mo-

ments of µ0. This problem is intimately linked with the global boundedness

of the moments of the solution of (1), through Theorems 1.1-1.2. Global
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boundedness of the moments of µ has been carefully investigated in some

papers. See [17] and the references therein.

As an application of Theorems 1.1-1.2, we are now able to determine

upper bounds, which are expressed as functions of the moments of µ0 and are

independent of b, for the random moments Mr. To appreciate the novelty

of this statement, recall that existing literature is limited to inequalities

concerning only the expectation of the above random moments.

Proposition 4.1. Assume that
∫

R3 xµ0(dx) = 0,
∫

R3 |x|2µ0(dx) = 3 and

that

mr :=

∫

R3

|x|rµ0(dx) < +∞

for r = 3, . . . , 2k and some integer k ≥ 2. Then, the random number S(u)

defined by (10) satisfies

Et

[

|S(u)|l | H

]

≤ gl (78)

for l = 2, . . . , 2k and for every u in S2, Pt-almost surely. The upper bounds

gl are positive constants depending on µ0 only through ml. Consequently

∣

∣

∣

∂l

∂ρl
M̂(ρu)

∣

∣

∣ ≤ gl (79)

for l = 2, . . . , 2k, ρ in R and u in S2, Pt-almost surely. Moreover,

M2h ≤ 3hg2h (80)

for h = 1, . . . , k, Pt-almost surely.

The expression of the constants gl can be found in the following

Proof : First, note that

Et

[

(S(u))2 | H
]

=

ν
∑

j=1

π2j,νEt

[

(Xj ·ψj,ν)
2 | H

]

≤ 3

as an obvious consequence of the conditional Cauchy-Schwarz inequality.

Whence, (78) holds true for l = 2 with g2 := 3. Then, for l ≥ 3, an
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inequality due to Rosenthal – see Section 2.3 in [30] – yields

Et

[

|S(u)|l | H

]

≤ c(l)
{

ν
∑

j=1

Et

[

|πj,νXj · ψj,ν|l | H

]

+
(

ν
∑

j=1

Et

[

|πj,νXj · ψj,ν|2 | H
]

)l/2}

where c(l) is a positive constant depending only on l. An additional ap-

plication of the Cauchy-Schwarz inequality, combined with (49) and (54),

gives

Et

[

|S(u)|l | H

]

≤ c(l)
{

ml

ν
∑

j=1

|πj,ν|l +
(

3
ν
∑

j=1

π2j,ν

)l/2}

= c(l)
{

ml

ν
∑

j=1

|πj,ν|l + 3l/2
}

which entails (78) with gl := c(l){ml + 3l/2}. By elementary properties of

the characteristic function, (78) entails

∣

∣

∣

∂l

∂ρl
Et

[

eiρS(u) | H

] ∣

∣

∣ ≤ gl

for l = 2, . . . , 2k, which gives (79) through an application of the dominated

convergence theorem in (12). As for (80), verify that

M2h =

∫

R3

(

3
∑

i=1

x2i

)h

M(dx) ≤ 3h−1
3
∑

i=1

∫

R3

x2hi M(dx)

= 3h−1
3
∑

i=1

lim
ρ→0

∂2h

∂ρ2h
M̂(ρei) ,

where ei stands for the i-th vector of the canonical basis of R3, and conclude

by applying (79).
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