
Quality-of-Experience driven configuration of
WebRTC services through automated testing

Antonia Bertolino∗, Antonello Calabró∗, Guglielmo De Angelis†,
Francisco Gortázar‡, Francesca Lonetti∗, Michel Maes‡, and Guiomar Tuñón§

∗CNR–ISTI, Pisa, Italy
Email: {antonia.bertolino, antonello.calabro, francesca.lonetti}@isti.cnr.it

†CNR–IASI, Roma, Italy

Email: guglielmo.deangelis@iasi.cnr.it
‡Universidad Rey Juan Carlos, Madrid, Spain

Email: {francisco.gortazar, michel.maes}@urjc.es
§NAEVA TEC, Madrid, Spain

Email: gtunon@naevatec.com

Abstract—Quality of Experience (QoE) refers to the end users
level of satisfaction with a real-time service, in particular in
relation to its audio and video quality. Advances in WebRTC tech-
nology have favored the spread of multimedia services through
use of any browser. Provision of adequate QoE in such services
is of paramount importance. The assessment of QoE is costly
and can be done only late in the service lifecycle. In this work
we propose a simple approach for QoE-driven non-functional
testing of WebRTC services that relies on the ElasTest open-
source platform for end-to-end testing of large complex systems.
We describe the ElasTest platform, the proposed approach and
an experimental study. In this study, we compared qualitatively
and quantitatively the effort required in the ElasTest supported
scenario with respect to a “traditional” solution, showing great
savings in terms of effort and time.

Index Terms—Quality-of-Experience, Non-functional Testing,
Configuration Testing, Real-time Services, WebRTC, ElasTest
Platform

I. INTRODUCTION

In last years the great advances of WebRTC technology

is favoring more and more the use of web services as the

preferred place for work meetings, social activities, and enter-

tainment. In fact, WebRTC supports real-time communication

across web browsers, thus making it possible the provision of

services requiring voice and video communication from any

web applications and mobile devices. In contemporary times,

in which people from many countries remain locked at home

to contrast the insurgence of Covid-19 disease, school lec-

tures, seminars, working meetings as well as social activities

continue to happen on-line largely thanks to WebRTC-centred

browsers, a solution that could not have been conceived on

such a scale a few years ago.

Although peer-to-peer communication is possible in We-

bRTC, usually some WebRTC server is involved for many rea-

sons: many-to-many communications, recording, or transcod-

ing, among others. Developers of WebRTC servers must ensure

not only that the provided services comply with the functional

specifications, but also that the end users will be satisfied with

the (audio and video) quality of provided services. To this end,

the notion of a user’s Quality-of-Experience (QoE) has gained

momentum. The QoE concept has been defined by the Qua-

linet consortium as the degree of delight or annoyance of the
user of an application or service.[1] The definition continues

by pointing out how such subjective concept depends on the

user’s expectations, also in relation with the service utility and

the user’s personality and state.

Research on how QoE should be modelled, measured and

assessed has been very active. As reported in [2], methods

have been proposed to evaluate QoE in subjective or objective

way. The former are based on end-users evaluation, whereas

the latter rely on some parameters that have been shown to

correlate well with subjective assessments. In either case, the

implicit idea is that the quality of the provided service is

assessed as delivered.

However such approaches cannot help while the services

are under development: during design and configuration the

programmer has to draw decisions about how to structure

and empower a server’s architecture, and how to quantify the

resources to be employed. Such type of decisions are aimed

at providing satisfying QoE, but on the other side must also

take into account the cost behind a certain configuration. This

is a question that arises often with OpenVidu1, an open source

WebRTC project aimed at enabling WebRTC in any web and

mobile application. Companies willing to use the project know

the number of users they are going to have in WebRTC calls,

and they are concerned with the computing resources needed

and their cost.

This is the problem we address here. We have recently

released the ElasTest open-source platform for automated

testing of cloud services, also embedding WebRTC solutions.

The platform has been developed within an H2020 European

project, now terminated (Dec. 2019). At time of writing,

1see https://openvidu.io/

152

2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)

978-1-7281-8913-0/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS51102.2020.00031

ElasTest 2.4.0 has been released. An extensive documentation

and the software can be obtained from the project web page2.

ElasTest supports both functional and non-functional end-

to-end testing of large applications. In particular we present

here how the platform can facilitate the QoE-driven evaluation

and configuration of WebRTC services. By ElasTest, a tester

can easily and quickly try different solutions so to identify the

best trade-off between delivered QoE and employed resources.

Moreover thanks to the online support provided by ElasTest,

QoE assessment can be shifted left in the life cycle, thus

supporting timely configuration and resource-related decisions.

A small experimental study provides preliminary evidence of

advantages in using ElasTest vs. a plain ad-hoc approach.

In summary, the contribution of this work includes:

• the ElasTest approach for QoE-driven non-functional

testing: to the best of our knowledge this is the first auto-

mated approach that supports shift-left QoE assessment

to drive WebRTC service configuration;

• an experimental study comparing qualitatively and quan-

titatively the effort required in the ElasTest supported

scenario with respect to a “traditional” solution.

In the next section we present related work. Section III

provides an overview of ElasTest functions and architecture,

not only to make the paper self-contained, but also because we

believe it can be of interest to QRS participants also beyond the

specific usage scenario presented in this work. In Section IV

we discuss the motivations behind the work, and in Section V

we explain our approach. Then, in Section VI we present the

study conducted. Finally, we draw conclusions in Section VII.

II. RELATED WORK

The work presented in this paper spans over two main

research directions that are: i) the broad area of test execution

on large, complex, distributed and heterogeneous systems, with

a specific focus on non-functional testing; ii) QoE testing of

WebRTC applications.

a) Test execution on distributed systems: Testing re-

search addresses many scientific and technical challenges that

arise from the testing of complex distributed systems, and

more specifically of cloud-based systems[3]. A recent system-

atic review [4] provides an overview on the current status of

cloud testing. Among the main challenges resulted from the

study, the need emerged of efficient approaches to support

the execution of complex test scenarios where computational

resources are elastically provided on-demand. Indeed, setting

up the testing environment is often a time-consuming activity

that implies high costs and complexity. In this sense, the need

emerges [4] for an effort to link software testing research

with the progress in cloud computing so to facilitate the

management of the resources for a fast emulation of real-world

scenarios, while granting an increased observability at testing-

time.

ElasTest addresses several of the challenges emerged in [4].

Specifically, it supports end-to-end testing in different test

2see at https://elastest.io/

scenarios and allows for, among other features, simulation

of real-world conditions, analysis of test data as well as

performance testing combined with elasticity aspects.

Similar to ElasTest platform, several cloud testing tools or

infrastructures exist. For example, platforms such as Cloud

Crawler [5] allow cloud testers to better control the costs of the

cloud configurations and resources allocation; the Vee@Cloud

architecture [6] enables the configuration of scalable testbeds

by managing virtual resources from a Infrastructure as a

Service (IaaS) provider.

The outcome of a technical analysis of the SotA [7]

highlights the most important available tools and frame-

works that are related to the ElasTest platform and shows

the advancement of ElasTest with respect to these tools in

many technological areas, including those that are related

to the approach proposed in this paper. In detail, ElasTest

provides a whole set of functionalities specifically conceived

for managing the whole test process, reducing the complexity

of the configuration of the Continuous-Integration (CI) servers.

Also, the ElasTest platform provides a structured and complete

monitoring sub-system that realises an observability layer at

testing-time.

Concerning non functional testing, traditional relevant tools
3 such as Apache JMeter, Artillery.io, K6.io, WebLOAD,

Load Impact are used to perform load testing and measure

the performance of web applications. These tools focus on

assessing the load capability but provide limited function-

alities regarding the validation of the System Under Test

(SUT) in different scenarios whereas ElasTest enables the

combination of performance testing with scalability aspects,

allowing testers to run different configurations and compare

their results.

b) QoE Testing of WebRTC-based applications: QoE

assessment of WebRTC applications is nowadays a challenging

research topic aiming at identifying the many factors that

might influence the user experience. In this context, the authors

of [8] distinguish three main types of factors that influence

the QoE for WebRTC video calls: human factors referring

to human characteristic (e.g., age, gender, educational back-

ground, needs, previous experience); context factors describing

the physical, temporal, social, economic, and technical user

environment; and system factors defining the properties of

the content, medium, device, network that determine the

technical quality of the applications. Among context factors,

task complexity and duration are considered important factors

influencing the QoE assessment [9].

A recent systematic review on the assessment of QoE in

WebRTC applications [2] presents an updated comprehensive

summary of the aspects of Quality of Service (QoS) and QoE

covered by the existing works in literature. An outcome of

this review is that QoS parameters such as end-to-end delay,

jitter, packet loss, bandwidth, throughput, and bit-rate are more

used than QoE subjective methods (for instance the Mean

3see respectively: http://jmeter.apache.org/, https://artillery.io/,https://k6.io/,
http://www.radview.com/, and https://loadimpact.com/

153

Opinion Score (MOS)) for assessing the quality experienced

by end users. Moreover, the work in [2] defines a set of

KPIs for modelling and assessment of QoE for WebRTC

including, among the others, call establishment time, end-to-

end delay, audio, video and audiovisual quality. The same

authors released an open-source benchmark [10] for assessing

WebRTC applications in which different objective metrics for

video and audio can be correlated with a subjective analysis of

the same recording by means of Mean Opinion Score (MOS).

In the last years, several works are focusing on platforms

and tools for testing of WebRTC applications. According to

the technical analysis of the SotA [7], most of them, such

as TestRTC, Kurento Testing Framework (KTF) [11], [12] or

callstats.io 4 aim to test, monitor and analyse WebRTC-based

communications. They mainly focus on real-time reporting

about the voice/video quality, by collecting and calculating

many KPIs related to the voice and video streams. However,

the support they provide to the testing of QoE is still limited.

For instance, callstats.io provides an Extended Mean Opinion

Score (eMOS) metrics to measure QoE for WebRTC voice

and video, whereas KTF, developed within the Kurento open

source project, allows to capture both QoS and QoE indicators

by exercising the SUT in different network scenarios in

order to simulate potential real world WebRTC issues at the

development stage.

A recent state of the art of WebRTC testing presented by

García et. al [12] presents a comprehensive summary of the

trends in WebRTC testing, investigating: i) research papers

of WebRTC testing, ii) WebRTC testing tools and iii) grey

literature. Focusing on the tools, the authors find that the

Selenium framework provides the main tools for WebRTC

testing. The main problem of this framework is the need to

have browsers available to use. Some PaaS 5 as Saucelabs,

BrowserStack and Nightwatch.js offer commercial solutions

to this problem. With respect to these tools, ElasTest provides

enhanced WebRTC testing solutions by simulating different

WebRTC network topologies and addressing interoperability

issues for the SUT or any other device involved in the test.

Leveraging ElasTest support, testers are able to plan and to

emulate user actions in many heterogeneous GUIs (including

web browsers) in the same or different machines, overcoming

the limitations of WebRTC testing tools as Selenium. The

resulting coordinated support from the underlying platform,

allows testers to access integrated features such as the simul-

taneous display of the execution logs, synchronization between

video recording and logs useful for ease detection of failures

and management of different SUT environmental conditions

(e.g. load, network conditions, failures, etc.).

The experimental study reported in this work shows how

ElasTest can improve the QoE testing of WebRTC applica-

tions.

4see also respectively: https://testrtc.com/, and https://www.callstats.io/
5see respectively: https://saucelabs.com/, https://www.browserstack.com/,

and https://nightwatchjs.org/

III. THE ELASTEST PLATFORM

ElasTest [13] is an open source platform specifically con-

ceived for managing the end-to-end testing activities for dif-

ferent kinds of distributed applications. Its main purpose is

to support testers, and developers with dedicated feature for

the assessment of a distributed SUT in a comprehensive and

elastic platform [14]. In this sense, the use cases for ElasTest

cover the whole spectrum of activities in the testing life-cycle:

deploying and monitoring the SUT, executing the end-to-end

tests, gathering logs and metrics from the execution and its

elastic environment, exposing the results to software engineers

and testers.

From a methodological perspective, planning testing cam-

paigns with the help of ElasTest could led to the application of

several testing principles: addressing atomic testing objectives

by means of the definition of atomic testing bundles expressed

in any language and using any testing framework (i.e., TJobs);
enabling the sequential and parallel composition of available

TJobs (i.e., test orchestration [15]); executing the SUT in

operational conditions close to the actual real-world context;

customising the SUT so to gather relevant information dur-

ing testing; recommending those testing actions that enable

interactive decision-taking during the testing phase.

From a technical perspective the ElasTest platform is con-

ceived as a cloud-based architecture (see Figure 1) exposing

its functionalities through REST APIs (both HTTP and Web-

Socket). Developers and testers can interact with a platform

instance by means of web or command-line interfaces. Also,

the chaining with CI servers can be realised by means of

dedicated plugins (e.g., the ElasTest Jenkins plugin).

The architecture of ElasTest follows the microservices ar-

chitectural style. It distinguishes between a set of mandatory

services, and a set of other pluggable services that provide

optional support features or domain-specific/legacy features.

Among the mandatory services, the ElasTest Platform Man-
ager (EPM), is responsible of isolating the ElasTest services

from the underlying cloud infrastructure, enabling a seamless

deployment and execution of the ElasTest features across a

variety of target cloud infrastructures (e.g. Docker, Kubernetes,

AWS, OpenStack, etc.).

The ElasTest Orchestration and Recommendation Manager
(TORM) is the mandatory service acting as entry point to

all the functionalities in ElasTest. Overall, the main use-case

for TORM concerns the selection and the sequential/parallel

activation of the TJobs while a testing session is running.

Specifically, the orchestration concept refers to an on-line

decision mechanism about which TJobs have to be launched

next, which can be driven by the exit-status (i.e., verdict-driven
activation), or by the results (i.e, data-driven activation) of the

previous testing activities [15].

During the test execution the ElasTest platform handles

several kinds of data: outcome of the tests launched, logs from

the SUT, metrics about the resources consumed by the SUT,

etc. All these data are gathered by managing specific kinds

of data sources (e.g., EMS). The mandatory service that is

154

Fig. 1. Architecture of the ElasTest Platform

responsible for the persistence of the data collected during

the testing session is the ElasTest Data Manager (EDM). The
EDM functioning relies on different persistence paradigms:

relational DBs (MySQL), document indexing aggregators (the

ELK stack), or distributed storage system (Alluxio)6.

Another important mandatory service is the ElasTest Ser-
vice Manager (ESM) responsible for the discovery and the

enactment of other optional service instances in the platform.

For example, the ESM is responsible for the engagement of

test support services specifically conceived in order to support

the reuse testing harnesses offered by optional components of

ElasTest. Among them, the ElasTest User Service (EUS) offers
the impersonation of human actors interacting with the SUT

by means of an actual instance of some web browser (e.g.,

Google Chrome). In this sense, EUS provides a mechanism

for enabling the emulation of actual users in end-to-end tests

of the SUT. From a technological perspective, the EUS is

backwards compatible with existing frameworks for functional

testing such as Selenium7.

The EUS component is the one enabling WebRTC testing,

lowering the entry barrier and the efforts needed. This compo-

nent provides browsers as a service that, in collaboration with

the EUS, are capable of retrieving and send to the TORM real-

time statistics about WebRTC applications, and include setups

specific for measuring QoE using different algorithms. When

combining with services such as EMS, complex load scenarios

in the WebRTC arena can be devised and implemented with

a low effort in terms of both time and lines of code.

In broad terms, the ElasTest platform has been conceived so

to target any kind of SUT: no specific constraints are imposed

to the SUT or to its deployment. Nevertheless, ElasTest

includes features for managing and controlling the deployment

6see respectively: https://www.mysql.com/, https://www.elastic.co/, and
https://www.alluxio.org/

7see at https://www.selenium.dev/

of SUT instances over dedicated cloud facilities. In this case,

the ElasTest Instrumentation Manager (EIM), a dedicated

component of the architecture, is responsible for governing

potential realistic environmental conditions affecting the test

execution. Specifically, EIM can instrument a SUT instance so

to enable infrastructure-level failures such as network packet-

loss, available bandwidth adjustments, CPU bursting, node

failures, etc.

IV. MOTIVATION

Testing is a best-effort activity: the more extensive the

testing process, the higher the chances that the tested system

will meet the expectations from its stakeholders. However

the testing activities are usually quite costly both in terms

of resources required and in terms of human effort needed for

running and coordinating them. For this reason, the automation

of software testing has become a key ingredient in order to

grant the proper quality for the considered SUT.

In this section, we briefly introduce the overall context of

the ElasTest validation, by which our study related to QoE

assessment for WebRTC services is motivated.

A. Context

The ElasTest platform aims at improving the testing of com-

plex distributed software systems; notoriously this is difficult

and effort-prone domain. In this sense, several concerns could

tackle the acceptance of the ElasTest platform by both testers

and software companies. Among the others, its efficiency in

the testing process if compared with the existing practices of

combining other available testing frameworks.

The study reported in this work is part of a broader

evaluation effort that accompanied the whole project life-cycle.

Such effort aimed at continuously assessing the usefulness

and effectiveness of ElasTest support for test automation and

at providing evidence-backed feedback to project manage-

ment between successive platform releases. Its main objective

155

was answering the following broad research questions: Can

ElasTest contribute to improve the efficiency of the testing

process? How? How much?

Among the several validation metrics that had been set

since project inception (as described in the project deliverable

D7.2 [16]) to address such questions, we also aimed at

evaluating whether ElasTest could improve QoE testing.

For this aim, we set up a specific experimental scenario in

the context of developing WebRTC applications, as described

below.

B. Target Domain

The application domain subject of the case study concerns

solutions for real-time communications (RTC) based on the

WebRTC Technology. WebRTC8 is a free, open standard

that proposes reference specifications for a technological stack

and shared APIs specifically conceived for enabling RTC

capabilities among web and mobile applications. Different

reference implementations of the WebRTC technology have

been released for the most common web/mobile browsers as

well as for native clients.

In other words, WebRTC is a modern cross-platform so-

lution that aims to define an independent transmission level

for media over the Internet. Indeed, WebRTC clients can be

directly implemented within web pages by allowing direct

peer-to-peer media communication, and eliminating the need

to install plugins or download native apps.

Traditional testing for RTC applications focuses on validat-

ing if the system behaves as expected under an established

set of defined scenarios (e.g. the transmitted packages are

accepted/skipped according to the prescribed deadlines). Nev-

ertheless, in many practical cases such tests do not validate if

the experience of the participants during the communication

sessions (i.e. the Quality of Experience – QoE) is satisfying.

Among the main challenges for automation testing is that

QoE also involves subjective judgements. To circumvent the

challenges posed by testing with final users, QoE testing

often refers to indirect objective parameters (e.g., transmission

rate, delay, jitter, bit error rate, packet loss rate, etc.) in

order to estimate the perceived QoE of WebRTC sessions.

Specifically, each parameter is associated with a threshold

denoting the criteria for a successful communication. However

the measurement of these parameters are not easily accessible

by automatic testing machinery, and it is nearly impossible to

use them as oracles for judging the results of an acceptance

testing level.

Moreover, the evaluation of end-users experience (both sub-

jective and objective) can only take place after the service is

released, which might be late in the lifecycle. Developers need

to have a reliable prediction of QoE while a WebRTC service

is being configured, so to be able to assess the resources to

be employed to guarantee sufficient quality at proper costs.

ElasTest supports developers of WebRTC services in this

step, by allowing a quick and easy evaluation of different

8see https://webrtc.org/

configurations that may impact on the audio and video quality

of delivered solutions.

V. TESTING FOR QOE ASSESSMENT

Assessment of WebRTC applications is a difficult task. A

common question that arises when planning the infrastructure

for a WebRTC application is, given a number of participants,

what is the smallest server that will provide the desired quality.

This question seeks to find a server size that fits the needs with

the lowest cost.

As introduced before, quality in WebRTC applications is

usually measured in terms of Quality of Experience, with

either a subjective or objective approach. Obviously, the

subjective approach is unfeasible in many situations. For a

continuous testing approach, where tests are to be run on

continuous integration systems, it is not practical to rely on

human assessment of the quality of the videos produced.

Hence, the objective approach seems a better approach, but

it has two main problems: a) some methods are offline, and

they require the test to finish before being able to provide the

quality estimation; b) others require a reference video, i.e., the

original video sent by a participant, that is then compared to

the one received by another participant.

In addition to these limitations, there is nothing on the QoE

algorithms that is aimed towards deciding about a feasible

infrastructure for a given QoE threshold. Developers are re-

sponsible for preparing different scenarios, collecting the QoE

measurements, and then use the data to drive a decision.

One of the contributions of this paper is proposing a quick

way to assist decision-makers in choosing the best cost-

effective solution that fits their needs in terms of number of

users and QoE in the WebRTC arena. The method is not

as accurate when estimating QoE as the above-mentioned

algorithms, however, the development cost is much lower, as

many tasks are automated within ElasTest.

The proposed method consists on: a) implementing a test

that exercises a WebRTC application emulating a real scenario;

b) defining different configurations for the test; c) collecting

jitter and delay metrics from the different browsers involved in

the communication, and use them to estimate QoE; d) plotting

the results of the different scenarios in a graph for a better

assessment of the cost-effective solution that complies with

the desirec QoE.

How video-conference sessions are initiated, i.e, the video-

conference software to use, or how many participants are

involved in each session is up to the test. The rest of it is

automated by ElasTest. Once the test is in place, it is executed

against the configurations defined in step b). During each of

these executions jitter and delay metrics are collected. As

a result, it is possible to estimate the resources needed for

a given WebRTC load, something that, to the best of our

knowledge, is not possible with any other WebRTC testing

tool.

156

VI. EXPERIMENTAL STUDY

The case study on which we evaluated the ElasTest support

in assessing QoE refers to OpenVidu9: a specific video-

conference system that is able to manage WebRTC sessions

(e.g. enabling communication channels, or media transmis-

sion). OpenVidu is an open-source project that wraps and

hides all the low-level operations foreseen by the WebRTC

technology so to provide a simple, effective and easy-to-use

API.

The proposed case study envisions the dimensioning of

an online video-conferencing PAAS. On-demand, the service

offers a WebRTC server that can host up to 5 independent

video-conference sessions with 7 users each; all these sessions

are supposed to run in a single OpenVidu instance. For the

purpose of this study we assume that three different Virtual

Machine (VM) configurations are available (i.e., t3.medium,

t3.large, t3.xlarge10). The testers of the video-conferencing

PAAS aim at identifying the best VM configuration that should

be instantiated. Clearly, the more powerful a VM the higher

its costs. This scenario aims at investigating the best trade-

off between costs and potential QoE offered by the video-

conferencing service. The objective of the testing campaign is

to identify a VM configuration fitting with the purpose, which

is as small as possible while still providing good video and

audio quality.

A. Methodology

To evaluate the validity and efficiency of ElasTest support

in QoE assessment, we conducted a controlled study. The

hypothesis we test is that test automation can make early

assessment of QoE more efficient. Although the size of the

study we report here was quite small that calling it an

“experiment” may be too pretentious, nevertheless we applied

every care to make it in rigorous and unbiased manner.

Two practitioners from the consortium volunteered to per-

form the study. The two practitioners had similar coding

expertise and testing skills.

In detail, they have been assigned the same task of exploring

which VM configuration provides the best trade-off between

costs and potential QoE offered. The cost was measured by

the time required for testing, whereas the potential QoE was

measured by delay and jitter [17].

They have been asked to complete the assigned task by

using differing methodology. Precisely:

• one of them, denoted as the traditional tester (TT in

the following), was asked to follow the testing practices,

current tools, frameworks, and facilities in place at her

company;

• the other one, denoted as the ElasTest tester (ET), had
to conduct the same checks but managing the testing

activities with the support of the ElasTest platform.

More specifically, both testers (TT and ET) have been

informed about the objective of the testing campaign (see

9see at https://openvidu.io/
10see at https://aws.amazon.com/ec2/instance-types/

Sec. IV-B); the OpenVidu documentation and its testing har-

nesses have been provided, as well as the information about the

target infrastructure for hosting the deployment of the testbed.

The assessment of quality during the WebRTC sessions

is achieved by observing interactions among the OpenVidu

instance and actual browsers from emulated clients deployed

in the testbed. Each test estimated the QoE by relying on two

metrics provided by each of the browsers: delay and jitter. If

at any moment the delay or jitter exceeded a given threshold,

the test failed so that the specific configuration of VM used

for hosting OpenVidu should be discarded.

Each the testers applied the testing plan by taking notes of

each configuration launched, the indirect objective parameters

measured at the client-side (i.e., delay, jitter), their final

evaluation about the result of each testing session, and the

time they spent for each activity performed in order to setup

and launch each test.

B. Set-up

Both testers had to set-up a testbed enabling an OpenVidu

instance running on Amazon WebServices (AWS) resources.

Specifically, they defined a test checking if the OpenVidu

instance was able to serve 5 parallel video-conference sessions,

each of them connecting 7 different users. Each WebRTC

session lasted for 1 minute.

The test was run three times on three instances of the

testbed, one per VM configuration:

• t3.medium: 2 vCPUs, 4Gb memory, up to 5Gb band-

width.

• t3.large: 2 vCPUs, 8Gb memory, up to 5Gb bandwidth.

• t3.xlarge: 4 vCPUs, 16Gb memory, up to 5Gb band-

width.

In detail, both testers referred three different deployments

of the OpenVidu instance, each one corresponding to a VM

configuration accessible by means of a given IP address.

Users in the video-conference sessions have been emulated

using browsers running in AWS VMs, as well. Specifically

both testers were provided with a VM image for AWS

equipped with the Chrome Browser. The VM image was

ready to be instantiated and to provide browsers emulation

on-demand.

About the measurement fetched from the browsers: both the

considered metrics has been sampled every second; for each

metric the average across the samples from all the available

browser instances is computed. The estimated QoE for a user

(i.e., a browser instance) is considered too low if the reported

average exceeds the reference thresholds: 150 msec for the

delay, and 100 msec for the jitter [17][18]. In this case, the

test is considered failed. It is important to note here that these

metrics and averages are automatically retrieved and provided

to the ET by ElasTest, but the TT will have to implement the

retrieval of this information by hand.

In a first step, both TT and ET contributed in developing

an abstract set of test cases for the considered scenario.

Then, they had to individually adjust these implementations by

157

adding adaptations taking into account each specific execution

context.

In this sense, TT had to set-up all the required infrastructure

and machinery necessary for enabling the test to work. For

example the TT tester had to implement 2 jobs in Jenkins 11

in order to properly activate/deactivate the VMs required by

the scenario. Also, the refinement of the tests required for the

implementation of a software layer (i.e. ad-hoc infrastractural

scripts) for aligning the averages form the fetched metrics,

asserting the exit status of the test, and reporting the observed

outcomes.

ET implemented the testbed by defining a configurable

TJob were a collection of parameters were referred. Among

the others, parametric data included the IP addresses of the

three VMs running the SUT (i.e. referring the VM hosting the

OpenVidu instance), and the security keys to be used during

the interactions. All the required VMs emulating the active

browsers were deployed and controlled by ElasTest. This

way, ElasTest was able to reproduce the exact environmental

conditions for three runs each time against a different SUT.

Furthermore, its native dashboard for collecting and plotting

information has been easily exploited in order to aggregate

and compare the data notified by the managed VMs. Still ET
had to implement the logic for asserting the exit status of the

test, but the task was considerably simplified because of the

shared time-stamping system impressed by the coordination

of the activities by the ElasTest platform.

The artefacts developed by both TT and ET are available

as replication package of the experimental study in: [19]

C. Results

The reported study aimed to assess if ElasTest could con-

tribute to improve the efficiency of the WebRTC configuration

by means of test process automation. In this sense, we ob-

served the verdict and the testing time of two testers (i.e., TT
and ET) assessing the best trade-off in terms of potential QoE

and costs of the configuration for a given scenario.

As expected, the achieved results in terms of enabled

users/sessions/vm-instance were similar for both TT, and ET.
Both the testers tested the same system, thus the testing

campaigns should observe similar outcomes for delay and

jitter for each configuration. Indeed, the metrics should not

be affected by the referred testing method.

Nevertheless by analysing the feedback from the testers,

there was an evident difference in terms of effort and complex-

ity in conducting the study, as we show in Figure 2. Notice

that main differences come from the coding and setting-up,

whereas test execution times remain similar. This comes as

expected, because both testers were running tests that were

performing the same actions. However, differences arise when

we look into the developing of the tests and setting-up of

the infrastructure in need for running them. TT who directly

composed the features of JUnit, Selenium and Maven (plus

their manual reviews) recorded that about 73 hours had been

11see at:https://jenkins.io/

Fig. 2. Results of the experimental study about QoE

required in order to assess the QoE. Specifically, from the

records it results that greatest part of their time (i.e., almost

66 hours) have been employed in refining the tests, coding

the infastructural scripts, and properly setting up the testbed.

Specifically, TT had to code the logic to instruct the browsers

to send the jitter and delay, collect these metrics, align them

and process them. After running the tests, TT also had to

manually compare the results of each tests in terms of QoE

to provide a final answer as to which VM was providing

better trade-off between QoE and cost. On the other side, ET
recorded that all the assessment of the QoE took almost 4

hours, where 2 hours were spent in order to adapt the abstract

set of tests.

Such an impressive difference can be justified by consider-

ing two major factors: on the one hand the TT tester spent a lot

of effort in preparing ad-hoc code able to specifically record

the metrics of interest within the testbed and to redirect them

to the specific log produced during the testing process; on the

other hand logs produced at each run should have been aligned

and processed in order to retrieve measured values that could

be properly compared. In other words, the direct composition

of available testing framework required to develop a specific

system observability layer running at testing-time [20].

ET had this concept available within the ElasTest platform

at no cost. In this way they leveraged it easing the under-

standing of the system as well as the detection of potential

issues or undesired behaviour. Specifically in the experimental

study the ET tester used the services from ElasTest in order

to deploy, launch, and handle both the testbed and the test

programs. In addition this tester could also access an analytics

dashboard enabling a goal-driven inspection, visualisation, and

comparison of both logs and metrics collected during the tests

for the three VMs considered.

The factors were also confirmed by the qualitative feedback

that has been collected from an ex-post meeting with the

two testers. Specifically, the discussion led to identify those

facilitators that contributed to the efficiency of ElasTest while

assessing the QoE [16]. Among the others, the following major

facilitators were identified:

158

• a lower number of test sessions to be executed, thanks to

the multi-configuration browsers;

• a more comfortable way to save and inspect logs of non-

functional data;

• the end-user service (EUS) from ElasTest emulates ac-

tions from a potential user within a browser, and reports

all relevant information about the web session (including

jitter/delay) without any extra coding;

• ET tester had more time for configuring a custom so-

lution, tailored on the desired performance and quality,

reducing the costs in instances;

• ET tester could more easily correlate the video with the

data and the graphs that provide hints about what and

where was the problem (in the browser, or in OpenVidu

for example).

The above quantitative and qualitative results have of course

to be considered in view of the many limitations and threats

to validity of the study. Indeed, although we put in place any

care to ensure a fair comparison, the experience is limited to

one case study involving two testers only. The results achieved

have to be taken as indicating a promising direction rather than

an actual measurement of ElasTest performance.

VII. CONCLUSIONS AND FUTURE RESEARCH

Provisioning adequate QoE for WebRCT services is of

paramount importance, but still nowadays its assessment re-

mains a costly and complex activity. Existing solutions foresee

either human evaluation or the ad-hoc composition of several

frameworks, by aligning the results they provide. Easing how

QoE of WebRTC application is assessed would clearly affect

the way decisions about deployment and configurations are

taken, but it could also impact the whole development process,

and reduce the costs of the considered application.

In this work we present an integrated approach that could

support software engineers in drawing decisions about con-

figurations, deployments, and resources to be employed in

developing WebRTC servers. The ElasTest approach lever-

ages automated testing for the shift-left assessment of QoE

on a collection of alternative configurations. A preliminary

validation of the solution has been addressed by proposing

an experimental study that compares both qualitatively and

quantitatively the effort required while evaluating the QoE of

WebRTC services with or without the ElasTest platform.

The results highlight that ElasTest improves the simplicity

to set-up the testbed, to coordinate the execution of the

modules of the SUT, to take and compare measures/logs

collected during the execution of the test cases. Although

the study is small and has no statistical significance, we

believe that its results bring to the table a whole set of new

possibilities for evaluating a SUT that relies on WebRTC

communications driven by tested QoE. Automated testing of

QoE configurations will bring the ability to reduce the time-

to-market for WebRTC systems while increasing their overall

quality. Indeed, engineering effort would be narrowed only

to those scenario acceptable with respect to the constraining

non-functional requirements.

Future research will target to replicate the experience re-

ported in this paper, so to extend the assessment of the

proposed approach in a broader context, and also in other

domains.

VIII. ACKNOWLEDGEMENTS

This paper has been supported by the the European Project

H2020 731535: ElasTest, and partially by the Italian MIUR

PRIN 2017 Project: SISMA (Contract 201752ENYB).

REFERENCES

[1] K. Brunnström, S. A. Beker, K. De Moor, A. Dooms, S. Egger, M.-N.
Garcia, T. Hossfeld, S. Jumisko-Pyykkö et al., “Qualinet white paper
on definitions of quality of experience,” https://hal.archives-ouvertes.fr/
hal-00977812/document, 2013 (accessed 13/03/2020).

[2] B. García, M. Gallego, F. Gortázar, and A. Bertolino, “Understanding
and estimating quality of experience in WebRTC applications,” Comput-
ing, vol. 101, no. 11, pp. 1585–1607, 2019.

[3] A. Bertolino, G. De Angelis, and F. Lonetti, “Governing regression
testing in systems of systems,” in Int. Work. on Governing Adaptive
and Unplanned Systems of Systems. IEEE, 2019, pp. 144–148.

[4] A. Bertolino, G. De Angelis, M. Gallego, B. García, F. Gortázar,
F. Lonetti, and E. Marchetti, “A systematic review on cloud testing,”
ACM Comput. Surv., vol. 52, no. 5, pp. 93:1–93:42, 2019.

[5] M. Cunha, N. Mendonça, and A. Sampaio, “Cloud crawler: a declara-
tive performance evaluation environment for infrastructure-as-a-service
clouds,” Concurrency & Computation: Practice and Experience, vol. 29,
no. 1, 2017.

[6] X. Bai, M. Li, X. Huang, W. T. Tsai, and J. Gao, “Vee@cloud: The
virtual test lab on the cloud,” in Proc. of 8th Int. Work. on Automation
of Software Test, 2013, pp. 15–18.

[7] F. Lonetti, Ed., SotA Revision Document – Ver.2. The ElasTest
Consortium, 2019, no. Del. D2.4.

[8] J. B. Husić, S. Barakovic, and A. Veispahic, “What factors influence the
quality of experience for WebRTC video calls?” in Proc. of 40th Int.
Conv. MIPRO, May 2017, pp. 428–433.

[9] J. B. Husić, E. Alagić, S. Baraković, and M. Mrkaja, “The Influence
of Task Complexity and Duration when Testing QoE in WebRTC,” in
Proc. of 18th Int. Symp. INFOTEH-JAHORINA. IEEE, 2019, pp. 1–6.

[10] B. García, F. Gortázar, M. Gallego, and A. Hines, “Assessment of QoE
for Video and Audio in WebRTC Applications Using Full-Reference
Models,” Electronics, vol. 9, no. 3, p. 462, 2020.

[11] B. García, L. López-Fernández, M. Gallego, and F. Gortázar, “Testing
framework for WebRTC services,” in Proc. of the 9th EAI International
Conference on Mobile Multimedia Communications, 2016, pp. 40–47.

[12] B. Garcia, F. Gortazar, L. Lopez-Fernandez, M. Gallego, and M. Paris,
“WebRTC testing: challenges and practical solutions,” IEEE Communi-
cations Standards Magazine, vol. 1, no. 2, pp. 36–42, 2017.

[13] A. Bertolino, A. Calabrò, G. De Angelis, M. Gallego, B. García, and
F. Gortázar, “When the testing gets tough, the tough get elastest,” in
Proc. of the 40th International Conference on Software Engineering:
Companion, (ICSE 2018). ACM, Jun. 2018, pp. 17–20.

[14] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in cloud comput-
ing: What it is, and what it is not,” in Proc. of the 10th International
Conference on Autonomic Computing, 2013, pp. 23–27.

[15] B. García, F. Lonetti, M. Gallego, B. Miranda, E. Jiménez, G. De
Angelis, C. Moreira, and E. Marchetti, “A proposal to orchestrate test
cases,” in Proc. of the 11th Int. Conf. on the Quality of Information and
Communications Technology. IEEE-CS, Sept. 2018, pp. 38–46.

[16] A. Bertolino and E. Marchetti, Eds., ElasTest Validation Methodology
and its Results – Ver.2. The ElasTest Consortium, 2019, no. Del. D7.2.

[17] M. Baldi and Y. Ofek, “End-to-end delay analysis of videoconferencing
over packet-switched networks,” IEEE/ACM Transactions On Network-
ing, vol. 8, no. 4, pp. 479–492, 2000.

[18] G. Karlsson, “Asynchronous transfer of video,” IEEE Communications
magazine, vol. 34, no. 8, pp. 118–126, 1996.

[19] A. Calabró and G. Tuñón, “Replication package for ElasTest QoE
experiment,” Apr. 2020. [Online]. Available: https://doi.org/10.5281/
zenodo.3739091

[20] F. Gortázar, “Observability in testing,” 2018, QA3C Workshop: Invited
Talk.

159

