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s INTRODUCTION

Since V,Strassen in 1969 showed that the complexity of

]

matrix wultiplication is lower than 0(n3) operations [10],
the problem arvised Lc‘dat&rhwnm the intrinsic complexity
of the problem. A lower bound to the number of operations
is n2, Dbut for ten years the best known upper bound was
O(n&81) . Recently +the use of new technigues allowed to
considerably reduce +this upper bound. The method of
Trilinear Uniting, Aggregating and Canceling {4,5,6,7,8]
the introduction of Approximate Algorithms {also called
Field Extension wmethed) [1,2,3], and the powerful theory
of Partial Matrix Multiplication [9], led to an exponsent
of 2.5218 { 7,8,

In this paper we start from the final argument of
A.3chonhage in [ 9] to derive some +theorems on the rank of
the s-th tensorial power of disjoint sums ¢f tensors. The
application of these theorems results in an exponent of

2.5166 for matrix multiplication.

Z. NOTATION AND PRELIFMINARIES

The reader is assumed to be familiar with the theory of

matrix multiplication algorithms, Fer a survey see [9]
whose notation is follcwed here with some mincr changes.
Let A and B be twe matrices of indeterninates cn some

scalar field ¥, For the sake of simplicity we assume F=R.

s

discussion of the role of ¥ can be found in

j=h

ded

fuds

A detal

[{9]s The problem is tc compute the matrix product C=1B.
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Let us introduce some definitions,

mam (n) is the total number of arithmetical operations

C})
o
L
£

ey X Dol to compute AB when A and B are square
matrices of order n.

bie
X oy oman{n)= 0{n ) }.

=

H
fe

[
1!
oy

m{n) is the total number of products between linear
combinations of indeterninates needed to compute AB in the
bilinear noncommutative nodel,

It is well known that m(n')sr' implies

b
manm (n) = O{n ), wsk, b = log r' , log n?.

The theory of matrix multiplication algorithms is
strictly related to the tenscr algebra. Here we deal only

Ew?

with 3-dimensional tensors. The tenscrial product of

three vectors x,y,z is a 3-dimensional tensor, it i

43

denoted with xaymz and is called triad. Any tensor % can
be expressed as a sum cf a number of triads. The rank of

t is defined to be the length of the minimal decomposition

X @Y Wz ).
o3 7

The tensorial product between tensors is defined as a
3~-dimensional tensor. By using nulti-indices i=(i?,i? "),

=3, 97) , k=(k',k") , t=t'gtn has elements:



t = £ .
i9k jrrkr jmgukm

Zwm,n,ny L& the tensor associated o the rproduct of a
E f 28 o 0

gatriy m ¥ n with a matrix n x p, i.e.

<Wwyn,pr = 1T = éﬂ g g »
Ak ]

(1,9 (heX) {z,8)

3

The following properties hold for tensors assc
matrix products

rk{<n,n,n>) = wi{nj,

i

Kmyn,poelnt,n?,pi> = <mp',ant,ppi>,

3 5 & =

C,N,p> = <@ ,0, P >,
rk{<myn, p>) is symmetrical im m,n,,

rk{<m,n, p») % v dlmgriies w £ 3 log © / log wup.

Given two tensors t' and tv the disjcint sum t'@¢

¥

formed by packing a copy of t' and a copy of tw into

o “ N

opposite corners of a parallelepiped of appropriate

and f£illding with =zercs the other positions. For

purposes t'@t® can be considered eguivalent to t"#te,

%
The sun @ + i1z denoted with k¥t
i=1

The following propezties hold:

H

ta (t1t") (tat') & (tat™),

rk(bt@ty) £ vk{t?)+rx{tn),

<m,n,prd<nt ,nl,n?!> 45 associated +to twoe independ
R ¢ S b

matrix products of size mxn x pxp and m*xn?' x n'yp'.

iated to

oS



an approximate decomposition of order

derive new low syponenis.

Ut

By h and lengbth 1
for a tensor t we mean a representaticsn
h h+1
T{Ly = ¥ {(Day {(i)rwz (1) = 1 t + 0{1 |
3 3 3
j=1
r (f) is the minimal length of a deccmpesiticn <¢f crder h,
h
r {z) = Thk{ty,
0
min r (%) = zk{t) is called the border rank of t.
h h
The following properiies hold
zk (v) S TX{%),
T (£rath) £ T (tY) +rn (L),
ht+h? b hv
5 s
roo(t) s {r (%)),
sh h
rk{t) € (1+2h} v (), [2].
h
This last property ailows To use approximate
deconmpositions to reduce the exponent, i.e.
rk{<m,n,p> £ r implies w £ 3 log r / log mnp.
42 fundamental thecrem by A.Schonhage allows to  use
approximate deconpositicns of disjoint sums of tensors to



k
Let + = @& ¢ , t ={m ,0 ,p >, f=m n ¢
i=1 1 i i3 i i o444

Then rk{t) < r imglies w £ 3x where x is the unigue

solution of the eqguaticn

= T
The trilinear Aogregating Uniting apd Canceling
technigue <can te used to obtain gcod arpproximate
decompositions of disdoint sum of tensors. Pan and
Winograd proved +that gk{t@&traty) S 2{n+2) (k+1) where

t=<1,k,2n>, t'=<n,2,k>, t"=2k,n,1> [7,8]. Lpplying

theoren 1 with n=11 and k=5 they get wi2.5218127005 =

In his paper [9] Schonhage noted that 2k+2 triads in
the Pan's decompositicr <can be Jjoined iptoc k1 trilinearx

Forms associated to the tensor <1,1,2>, i.e

&

ck{tdtratyy < rk{2{n+1) (k+1) >, 1,158 (k+1)*<C1,7,2> %

Symmetrizing g RARR LAl he obtains an expression
containing (k+71) I%C2,2,2> which allowus him  to use
Strassen's algorithm tc save (k+1) 3 scalar products. Thus

the exponent is reduced to w32.5218006c. o

In the following we develop the idea of Schonhage to

use higher powers of (t@tiaty),



3. THE RANK OF POWERS CF DISJOINT SUNS CF TFENSORS
We premit two simple lemnas.

LEMMA

b

b>w, then nin)< ¢ n for any n.

Proof: by definitiocn of w there exists a

b
for n>nt m{n) £ c' n
3
and for nga?! m{n) < nt

for any n.

Let b>w, msnsp thex
t-2
rk{<m,n,p> £ cn np.

that

ﬁk{<myny9>}irk{<m§m§m>x<3,{m/m]${y%mi>}§cm%§n/m§gg/mg

and gn/mi 2 1 and E@fm% 2 1 then

b b~2
(n/m) (p/m)y = cun

A

Tk {<m,1,p>) e m

Now it can be proved the central theorenm of

can be proved the central theorem of the

THEOREM 2.

k
Let © = @ <m ,n ,p >, b>w,
A= i i i

then



k

b2
it} n
i
i=1

where the max is taken over the pernutations of m,n,p.

Proof:
3 Sa & v:‘mng
Y = =y =5
wki{t y&rk - (!ﬁm y§§n §§§§ > s
s5lgle..sl i i i
[ R w
3. = =
. - ) b " ¢ p
b - & rk (<] Tm Ao $§§§ >) =
sl i i i
8 kN L2

Let 8,85,s0+5 be the k-ple for which the correspondi

a

term in the above expansion is maxiwmal, and assune

— D e B e S
Mm's 11 n <77 p (N
i i i
then
) k S S S
) s e § s 8 s e ]
rk{t ) £ 8 L N £k§<§§m“y§§m ggggq>§ “
2lsleess] i i i
¥ n

k e (b2} &- . .
¥ S 1]
s cs st |} =
slsl,..s8l - b i) i
¢ LN ® g g

ng



This formula holds under the assumption {1). But it

not known for which index the minimum is attained, henc

COROLLARY 1.

If the set of disdcint tensors in ¢ is

i
bt}
o
o
[
fob
&y
w
fod

m,N,p the three expressions are egual and

5 k
rk{t ) < ¢S

B

Theoren can be considered as a weak converse

t heoren 1.

=

k
.G let + = @ <m ,n ,m >, then frewm theorem 1 it fol

k
3x
£ty < ¢ = Z§: il implies w<3x,
i
i=1

and from theoren 2

£

s

in

of



w53y implies rk{ﬁ\}

[T

COROLLAERY 2. Let

to=AEC, 1, 1>, t =e¥<1,1, k>, tr'=ex<l,k,1>, tuzex<ck,1,1>,

e

B

A
<

o= (t 8t )a(t &t')a(t H#t"), b>w, then
2 T2 T2
S 8 2 b-2 s
rk{t ) € cs [ {d+ek) {d+ek 7

Proof: the set of elements of + is symmetrical,
in fact
t=d3%CT, 1, 1>8d2ex (<1, 1,k>0<1,k,1>8<k,1,1>) 8

Bde2x (<1, k, k>8<k, 1, kx>8<k, k,1>)®e3%<k, k, k>,

¥

ter
(*]

pplying corollary 1 we get

3

s 8 302 b2 2 k-2 2 3 2

! A T 2 3
ctk{t ) £ s [d +d e(Zk+k y¥de {(2k% +k Y+e (k &k )1 o=
3 2 b=-2 s
= oy [ {d+ek) {d+ek I

4, APPLICATION TO MUOLTIPLICATION
Let ©t Dbe a sum of r +triads; + can be viewed as the

homomorphic image of the +tensor T=1%<1,1,1>, In such a

case we write t->T. It easy to see that



~

Ry ®7 - <lylek>s
33

j=1

Obvionsly t->T implies ck{t)<rk(I), morecver I,
to.>Tu igplies tiptu->TipTn,

The same considerations can be made for zums of triads

depending on a variable 1. Thus the follcwing theorems can

be stated,

and

K»«:ui
(4
4%
M
e
i

Te{ly -> t?
1
by hwe
I w" %+ QL )

i

TH{LYy => » imply
1
gggﬁ*@t“} £ vk {tvtatm,
1 1
From the definition of «> and of border Tank it follows:

ck{t'wt?) <y (trat™ysck (T (1) aT" (1)) <tk {t'at™),
hteh? 1

= ,0 ,b >,
N

4
NA

[l
6]
¥
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and let

h h+1
1t +0(1 ) = T(l) => a%<1,1, 1>8e

%

1,1, k>.

Then the unigue solution ¢f the eguatiocn
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Proot: Let
to=dxCl, 1,10, 1 o=mex<T, 1, k>, ti=e¥*{l,k,1>, tv=eXxlk, 1,1>,

i 2 2 2

and t?',tw the tenscrs obtained frem t with +he

corresponding permutations. We have

h , 2h+ %
(tettotn) +0 (1 )= (1) => (t 8t )p{t L) m(t tm)
1 Z 12 i 2
and
3sh Fa 3zh+ # s
{tattoty) +0(] )=T (L) ~-> t .
IS 3

Applying corollary 2 we oktain

5 5 8 2 Blodoy g
k[ (tmt'®wt") ] S rk{t ) € cs [ (d+ek) (d+ek )1,

3

for any s and pi03>y,

5 3s
How {temtimtw) has z independent components,

umes are given by the terms of the exransicn of
o ) 3:‘

3s
{ 2 £ » Then by thecrem 1 the solution of

8 2 btolw2 ¢
= ¢s5 [ {d+ek) {(d+ek Yy

=

isfies w < 3x. The solution of this egquation depends

¢ and 8. But x'=inf{x{(s,¢),s6N} is the solution of

t
it
B

i

ks

h

[

§«i.
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Loy 2 Lo d-D
{d+ek) [(d+ek 3

i
te
H

It is easy to see that substituting +o 1(0) +the new

value bl 1J)=3%' and iterating the precess, the resulting

]

values converge to the unique soluticn c¢f the eguation:

7

P by3-2
= (d+ek) (d+ek )

and any value of the seguence {bCO3,bU) ...} is an upper
bound for w.

COBOLLARY 3, WS Z.516648,., .

Proof: Pan presented a decongositicon T{1) for

=, k,2n>%<n, 2, k>8<2k,n, 1> [7,8] and Schonhage proved
T =>02(n+1) (k+1) #<T, 1, D@ (k+1) % (1,1,2>7 [9 1. Then from
theorem 4 w<b, where %t is the soluticn of

2 b2

b
Z

27 (2kn) = [ 2(n+2) (k+1)) (2(n+1) (ke1) s (kel) 2 1.

it

In fact the symwetrization of +t vyields 27 Lndepend
components of the same volume {2kn) 3,

The minimal value ¢f b is attained for n=10,k=5, i.e.
i [ )

o

o 2
1200 = 144 (132+6 2 V727 gives b=2.5166408... .
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